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A B S T R A C T   

Nontuberculous mycobacterial (NTM) pulmonary disease (PD) disproportionately affects otherwise healthy, 
older, Caucasian females. The reasons behind this are likely multifactorial involving several conspiring factors. A 
variety of factors are thought to contribute to increased susceptibility to NTM in the older adult including 
exposure to various environmental conditions and contaminants across the lifespan, genetic risk factors, hor
monal changes, and immunodeficiency. Independent of sex and ancestry, respiratory muscle atrophy intensifies 
with age and an aging immune system can show functional decline of macrophages, poor lung migration and 
homing of dendritic cells, promotion of aberrant pro-inflammatory responses, acceleration of inflammation 
related to aging, and increased immunosenescence. The purpose of this review is to synthesize the current body 
of knowledge regarding the roles of sex, ancestry, senescence, and aging (SAnSA) in NTM acquisition and the 
possible mechanisms involved in NTM PD, highlighting age-related respiratory and immune system changes. We 
also summarize molecular tools and biomarkers of these fields and contextualize these into the study of NTM PD. 
Finally, we discuss the relevance of biomarkers described for senescence and aging and senolytic therapies as 
potentially new adjunctive strategies to reduce the burden of NTM PD.   

1. Introduction 

1.1. Sex, ancestry, senescence, and aging (SAnSA) 

In this review, we apply the term “SAnSA” as the individual or col
lective roles of sex, ancestry, senescence, and aging to the development 
of a number of medical conditions. In the aftermath of the COVID-19 
pandemic, it is increasingly important to understand the role of SAnSA 
in pulmonary diseases (PD). In regard to sex, autoimmune PD and 
lymphangioleiomyomatosis (LAM) are characteristically more common 
in females than males and rates of chronic obstructive PD (COPD) are 
rising rapidly in females [1]. Genealogical ancestry studies in PD is a 
burgeoning field, but remains a large and formidable unexplored terri
tory. Cellular senescence is a broad term first used by Hayflick and 
Moorhead in 1961 referring to the irreversible loss of the proliferative 
activity of human somatic cells [1], but has since been applied to cells 
exposed to stressors including radiation, chemotherapeutics, and aging 

[2]. While the body can undergo significant changes with advancing 
age, the immune system also concomitantly ages and shows reduced 
performance, referred as “immunosenescence,” affecting both the innate 
and adaptive arms of immunity [2]. In parallel, aging is a risk factor for 
the development of a number of medical conditions including PD and 
increased susceptibility to respiratory infections. Consequently, aging 
can cause the progressive accumulation of cellular metabolic products 
and increased DNA damage, resulting in the development of a low-grade 
inflammatory phenotype commonly referred as “inflammaging” [3–4]. 
While it is important to understand how SAnSA affects the ability of the 
pulmonary system to respond to infections, its role in the lung is limited. 
This review focuses on SAnSA in the context of nontuberculous myco
bacterial (NTM) PD. 

1.2. NTM is commonly a pulmonary disease of older, Caucasian females 

PD caused by NTM is, in part, a SAnSA related disease. Caucasian 
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post-menopausal females who typically show taller and slender body 
morphotypes are a prominent NTM PD cohort compared to others in 
similar age groups [5]. A pair of studies reported that females were 1.4 
times more likely to show NTM PD cases than males and NTM PD 
prevalence was two-fold higher among Asian/Pacific Islanders than 
Caucasians, clustering among persons 65 years of age or older [6–7]. 
Susceptibility also extends to individuals with prior lung infections, 
bronchiectasis, and genetic diseases such as cystic fibrosis, alpha-1 
antitrypsin deficiency, and primary ciliary dyskinesia [8]. These vul
nerabilities and other exposures have been previously reviewed in the 
literature [9–10]. 

In the United States (U.S.), the incidence of NTM infections has 
increased from 1.6 to 1.8 cases per 100,000 persons in the 1980′s [11], 
to 8.7 cases per 100,000 persons in 2008, and to 13.9 cases per 100,000 
persons in 2013 [12]. National studies of Medicare beneficiaries 
regarding disease frequency have also revealed NTM PD prevalence 
increasing annually at an average of 8.5% from 1997 to 2007, reaching a 
nation-wide average of 47 per 100,000 persons in 2007, with the highest 
rates seen in the West at 149 per 100,000 persons, driven primarily in 
California and Hawai’i [13]. By comparison, Europe shows lower inci
dence rates of NTM infections ranging from 0.2 to 2.9 cases per 100,000 
persons depending on the geographic region. In Scotland, the mean 
incidence rate of NTM PD was 2.4 cases per 100,000 between 2000 and 
2010, while 0.2 cases per 100,000 persons was reported in Croatia be
tween 2006 and 2010 [14]. Among the pathogenic NTM, members of the 
Mycobacterium avium complex (MAC) or Mycobacterium abscessus group 
are the most common species associated with pulmonary infections 
[15]. 

1.3. The first “S” of SAnSA: The role of sex in NTM PD 

Most studies have reported the preponderance of NTM PD in females. 
Within a subset of the U.S. population, females show 1.1–1.6 fold higher 
NTM prevalence rates than males [16]. Higher number of NTM PD in 
females is also observed among European, New Zealand, and Australian 
cohorts [17–19]. In a Japanese cross-sectional study of 11,034 in
dividuals with NTM PD, the incidence of NTM was reported to be higher 
among females in all age groups except for those aged ≥ 80 years [20]. 
Of note, females are more likely to show more severe NTM PD disease 
than males, evidenced by more cavitation of the lung, lower body mass 
index, and extensive treatment history. 

1.4. The “An” of SAnSA: The role of ancestry in NTM PD 

Genealogical ancestry, or identifiable ancestors in a family tree, 
provides biogeographic history of genetic variation in a population (e.g., 
Asian, African, European ancestry) [21]. Ancestry can be further 
extrapolated into one’s ethnicity (e.g., white, black, non-Hispanic white, 
etc…) [22]. In general, the role of ancestry in respiratory diseases has 
not been widely studied and will be inherently complex; however, the 
possible contribution of African ancestry among females and males to 
pulmonary function variables such as FEV1, FVC, and the FEV1:FVC ratio 
in the context of coronary artery risk and asthma has been reported [23]. 
Other genetic studies indicate that Amerindian ancestry influences 
susceptibility to PD such as COPD [24]. Genome wide-association 
studies (GWAS) have identified genetic variants associated with sus
ceptibility to idiopathic pulmonary fibrosis (IPF) in people of European 
ancestry [25]. While the literature regarding the role of ancestry in NTM 
PD remains scant, NTM PD has been reported among families including 
a pair of siblings in Japan as well Korean, Caucasian, and Hispanic 
families in the U.S., suggesting there may be a heritable, genetic 
contribution to NTM PD [26–27]. While resident Asians in geographic 
hot spots for NTM like Hawai’i show the highest period prevalence of 
NTM PD, disease is lowest among Native Hawaiian and other Pacific 
Islanders [28]. 

Adding complexity to an already complicated situation, where 

someone lives may also contribute to NTM exposures [29]. Still, other 
studies suggest exposure to hazardous aerosols such as air pollution can 
affect gene expression in individuals with respiratory diseases more than 
genetic ancestry [30]. Multiple GWAS studies using a multiethnic 
approach consisting of equal numbers of NTM PD and uninfected in
dividuals from varied ancestral/ethnic backgrounds would be a 
welcome body of work to the literature. 

1.5. The second “S” of SAnSA: The role of senescence in NTM PD 

Cellular senescence is a widely recognized marker of aging, charac
terized as a state of irreversible cell-cycle arrest. Aging is a natural 
phenomena of every living organism that unfolds across the lifespan. 
The accumulation of senescent cells in aged animals result in tissue 
dysfunction, age-related diseases, and lifespan shortening. The conse
quence and functional role of senescent alveolar macrophages and 
airway epithelial cells in NTM PD are not known, but in other PD such as 
IPF the accumulation of these cells contribute to disease progression. 
Markers for cellular senescent cells include absence of proliferative 
makers such as Ki767, senescence-associated β-galactosidase (SAβGAL) 
activity, expression of tumor suppressors and cell-cycle inhibitors, and 
cells with enlarged flat morphology [31]. 

Senescent cells increase in number, show irreversible cell arrest 
across the aging process, but remain metabolically active, secreting a 
diverse array of biologically active molecules referred to as the 
senescence-associated secretory phenotype (SASP), first coined by 
Campisi et al., in 2008 [32]. The SASP typically consists of inflammatory 
cytokines and chemokines, proteolytic factors, exosomes, miRNA, and 
other mediators that recruit immune cells responsible for clearance of 
damaged cells, wound healing, tissue regeneration, and tissue remod
eling. Studies have not yet been performed to understand the SASP 
specific profile of NTM PD patients. However, from other generalized 
studies on senescence, an enhanced SASP response can be triggered by 
tumor suppressor p21 activation of p38 mitogen-activated protein ki
nase and Janus-activated kinases resulting in the activation of the 
proinflammatory transcription factor nuclear factor κB (NFκB) [33]. 
Upon NFκB activation, multiple inflammatory proteins such as cyto
kines, chemokines, proteases, and growth factors increase particularly 
during chronic PD [34]. 

SASP components may also influence the development of mycobac
terial PD in older adults. Alveolar lining fluid (ALF) from Mycobacterium 
tuberculosis infected older adults show a unique proteomic composition 
characterized by a pro-oxidative lung environment and surfactant pro
tein dysfunction when compared to ALF of younger adults [47]. ALF 
from both older adults and older mice show increased amounts of sur
factant proteins A and D (SP-A, SP-D) and complement C3b that opso
nizes pathogens for destruction [50]. This literature advocates for new 
studies to study the role of SASP components in the development of NTM 
PD in older adults. 

Similar to senescence of human cells, microbial senescence is over
looked in the context of respiratory infections. No matter the organism, 
senescence decreases overall fitness [35]. Even aged bacteria can and do 
undergo senescence that decreases the fitness of individual organisms 
[36]. The significance of exposure to aged microbes has been studied in 
the Saccharomyces cerevisiae yeast and for the bacterium Caulobacter 
[37]. Significantly more studies are needed to explore the role of im
mune lung cell and NTM senescence in the pathogenesis of NTM PD. 

The majority of mycobacterial PD studies in aging have been re
ported in the context of Mtb [47–48] particularly in the context of 
“inflammaging” [50]. Inflammaging is an increase in basal inflamma
tion driven by inflammatory cytokines including TNF-α, IL-6, and IL-1β. 
ALF in aged mice and older human donors show increased levels of 
TNFα, IL-6, and IL-1β in proteomic studies [39] and TNFα, IL-6, and IL- 
1β levels are high in Mtb-infected older adults compared to uninfected 
older adults [49]. Elevated levels of TNFα, IL-6, and IL-1β are produced 
by healthy adult macrophages infected with M. avium which may 
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negatively influence the ability of macrophages to control NTM [51]. A 
more comprehensive understanding of senescence versus inflammaging 
in the context of NTM PD remains to be assessed. 

1.6. The last “A” of SAnSA: The role of aging in NTM PD 

Aging, as a natural biological process, may progressively alter the 
physiological and molecular function of the respiratory system via 
multiple aging mechanisms. For example, FEV1 and FVC (indicators of 
lung volume), peak at 25 years and decline slowly with age and lung 
capacity decreases with increasing age [38]. Decreased respiratory 
muscle strength, as much as 20%, is commonly observed in individuals 
over 70 years of age [39]. While alveoli numbers remain constant over 
the lifespan, their size can abnormally increase over time due to changes 
in the coiling structure of elastin and other fibers [38]. Physiological 
changes in the lung also occurs across the lifespan caused by exposure to 
common cellular stressors such as cigarette smoke or oxidative stress 
due to an imbalance of natural antioxidants and reactive oxygen species 
[40]. Depressed beating of lung cilia can start as early as age 40, 
reducing effective airway clearance and cough strength [39]. Depressed 
lung cilia beating results in impaired mucociliary clearance and trapping 
of particles and pathogens causing recurrent bacterial infections as 
observed with individuals with NTM lung infections [41]. 

It is well established that macrophage function also declines with age 
involving reduced expression of pattern-recognition receptors such as 
Toll-like receptors (TLR), diminished recognition of foreign opsonized 
pathogens, and reduced phagocytic ability [42]. Macrophages from 
older adults show reduced respiratory burst, resulting in ineffective 
intracellular bacterial killing and prolonged bacterial infections [43]. 
Monocyte-derived macrophages (MDM) from frail, older adults exhibit 
significant defects in controlling Streptococcus pneumoniae due to de
ficiencies in LC3-associated phagocytosis [44], but this needs elucida
tion in the context of MDM from older adults with NTM PD. 

According to the U.S. Census Bureau, by the year 2050 21.4% of the 
total population of North America will be comprised of individuals aged 
65 and older [45]; thus, expanding the population of individuals 
vulnerable to NTM. However, a study reported that age accounted for 
<25% of the total increase in NTM PD cases [46]. It may be reasonable 
to suspect that a combination of intersecting factors increase suscepti
bility to NTM PD, i.e., SAnSA. NTM pulmonary infections have increased 
in number over the years, particularly in individuals over 50 years of 
age. Prevots et al. reported a higher increase in the annual prevalence of 
NTM in individuals aged ≥ 60 years than in those aged <60 years [16]. 
Adjusted odds ratio for NTM PD incidence in different age groups 
showed the lowest odds ratio (7.4; 95% CI, 2.9 to 19.3) for persons aged 
<18 years and highest odds ratio (106.4; 95% CI, 42.0 to 270.0) in in
dividuals aged ≥ 65 years [28]. 

In a cardiac-specific study using aged female C57BL/6 mice (18 
months), M. avium was shown to induce significant cardiac damage and 
dysfunction by surface electrocardiogram monitoring, histology, and 
gene expression immunoassays compared to young mice (3 months) 
[52]. Moreover, increased expression of chemokines and chemokine 
receptors were observed in aged mice compared to young mice. The 
implication of this study was that M. avium infection may escalate risk 
for cardiac failure, a common cause of hospitalization for older adults. A 
missing opportunity from this cardiac-specific study was that lung 
function was not concomitantly studied and NTM burden was not 
quantified from lung tissue. Future studies should explore potential 
physiological changes associated with aging in pulmonary NTM infected 
young and old mice. In a separate study, heme oxygenase-1 (HO-1) was 
implicated in protection against M. avium infection. HO-1 canonically 
functions as a key mediator of antioxidant/oxidant homeostasis in the 
prevention of inflammation-associated injury and was identified as an 
important modulator of granuloma formation and programmed cell 
death of macrophages through Bcl2 and necrosis pathways that pro
tected young (4–6 month) and aged female and male (18–21 month) 

C57BL/6J mice against M. avium infection [53]. 
NTM PD is generally rare in females younger than 50 years of age and 

it is surmised that menopausal status and hormone levels contribute to 
susceptibility to NTM infections. For example, deficiencies in estradiol, a 
predominant estrogen of reproductive years is associated with the 
development of NTM PD [54]. Aged mice have been leveraged in NTM 
studies to understand the role of hormones as drivers of infections. 
Tsuyuguchi et al., utilized 6-week old ovariectomized DBA/2 female 
mice to study the role of estrogen i.e., 17β-estradiol (E2) in the patho
genesis of MAC PD, reporting estrogen protects mice from MAC infection 
through augmenting macrophage function via increased production of 
reactive nitrogen intermediates [55]. To investigate the opposing role of 
the male hormone testosterone in susceptibility to NTM infection, 
Yamamoto et al., monitored survival, incidence of skin lesions due to 
Mycobacterium marinum (a slow-growing NTM responsible for water- 
associated skin lesions), and dissemination of M. marinum to visceral 
organs in 5–7 week castrated and non-castrated C3H/He, A/J, BALB/c, 
B10.A, DBA/2 and C57BL/6 mice [56]. While variations between mouse 
strains were observed, castrated mice with significantly reduced levels 
of testosterone showed similar capacity to defend against M. marinum 
infection as female mice, indicating host resistance to NTM may be 
related to sex. Follow-up studies using female and male aged mice and 
relevant NTM species important to PD such as MAC and M. abscessus are 
needed. 

The changing lung microbiome with advanced age is an under
studied area that may play a role in the susceptibility to or progression of 
NTM PD. Age-associated alterations in immune function may affect the 
lung microbiome, generating low-grade inflammation, a key contributor 
to arterial stiffness and declining lung function [57]. Lee at al., 
compared the lung microbiome between healthy young and older adults 
and reported increased relative abundance of Firmicutes and decreased 
relative abundance of Proteobacteria in older adults [58], concluding 
that Firmicutes is positively associated with lung function and benefi
cial. In a microbiome study of oral washes, induced sputum, and bron
choalveolar lavage samples, Mycobacterium was identified in 27% of 
NTM positive samples tested along with other common oral commensals 
[59]. In a Korean cohort, lower microbial richness was observed among 
11 NTM PD patients and 10 controls over the age of 57 years using 
bronchial washings [60]. Additional information about the lung 
microbiome of older adults are sure to come in the future and may reveal 
novel prognostic indicators of lung health status to forecast the likeli
hood of individuals developing NTM PD. 

While innate immunity is important in aging, the adaptive immune 
system can also be consequentially affected. Studies of aged mice have 
shown B cell development declines with aging, specifically, lower 
numbers of pro-B, pre-B, and immature B cells that would develop into 
mature B cells [41]. Although the ability to produce antibodies remain 
intact, having fewer B cells results in diminished capacity for mounting 
strong antibody responses in older adults. Furthermore, the number of 
CD3+, CD4+, and CD8 + T effector cells is reduced in the older adults, 
which can extend the chronicity of lung infections (e.g., NTM PD) [41]. 

A pictorial diagraming increased susceptibility of older females to 
NTM infection, possible exposure across a lifespan, and age-related 
immune system changes that may contribute to NTM acquisition are 
shown in Fig. 1. 

2. Adapting established biomarkers to examine the role of 
SAnSA in NTM PD 

Molecular biomarkers of NTM PD are an under-studied area of 
research, but perhaps three established molecular markers of senescence 
and a marker of aging can be applied including A) sirtuins, B) α-Klotho, 
and C) senescence marker protein-30 (SMP30) and mTOR, respectively.  

A) Sirtuins (SIRT) were originally discovered to increase the life 
span of yeasts, nematodes, and flies [61] as promising regulators 
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of longevity [33]. SIRT1 regulates cellular senescence and 
longevity through acetylation and deacetylation of histones as 
well as non-histone proteins like p53 and NFκB [62]. Over
expression of SIRT1 homologs increases the lifespan of mice and 
in human tissues, including lung tissue.  

B) α-Klotho functions as the receptor for fibroblast growth factor-23 
involved in phosphate homeostasis. Decreases in α-Klotho levels 
accelerate with age correlating with phosphate toxicity, a feature 
of mammalian aging [63]. α-Klotho reduces cellular senescence 
by decreasing the biological activity of different Wnt family 
members. α-Klotho knockout mice have an accelerated aging 
phenotype similar to premature human aging [61,64]. These 
mice have a shorter life span as well as premature thymic invo
lution and pulmonary emphysema; α-Klotho overexpression in
creases life span by 30% in both sexes and reduces the risk of age- 
related diseases. In studies using human serum, α-Klotho protein 
levels decrease with age [64]. A population-based study in Italy, 
involving 804 adults aged 65 and over, found that those with 
lower plasma α-Klotho levels showered a greater risk of death 
compared to those with higher levels [64].  

C) SMP30, also known as regucalcin, is an intracellular calcium 
signaling protein that confers protection against oxidative stress 
and chronic inflammation while regulating calcium homeostasis, 
chronic inflammatory processes, cell proliferation and cellular 
senescence [65]. SMP30 knockout mice show reduced weight and 
shorter lifespan compared to wild-type mice and elevated in
flammatory markers with aging [66]. SMP30 deficient mice 
exposed to chronic smoke showed significant body weight loss, 
more lung protein oxidation, pulmonary emphysema, and sig
nificant lung parenchyma destruction as they aged compared to 
wild-type mice [66].  

D) mTOR is an important kinase protein that regulates biological 
processes related to longevity and aging and is involved in 

autophagy, a cellular mechanism used for clearing damaged cells 
and protein aggregates [67]. Inhibition of the mTOR signaling 
pathway by rapamycin was initially discovered to increase the 
lifespan of yeast, nematodes, and flies but reduced symptoms 
associated with accelerated aging diseases, such as Hutchinson- 
Gilford progeria [61]. Hutchinson-Gilford progeria is a rare ge
netic disorder that causes newborn babies to rapidly age soon 
after birth [68]. The cause of premature aging in progeria is the 
dysregulation of the gene LMNA encoding for lamin A that ac
cumulates in various tissues including the lung, skin, tongue, 
heart, liver, and skeletal muscles, and causes changes in the dis
tribution and levels of heterochromatin as well as telomere 
shortening [68]. Telomere shortening in fibroblasts activates the 
production and expression of progerin, which rapidly induces 
telomerase dysfunction that leads to DNA damage in cellular 
structures. Progerin may be an important biomarker for studying 
the role of natural aging in the context of NTM infections, of 
which, no studies have been performed to date. 

2.1. Role of anti-senescence and anti-aging treatments to reduce NTM PD 
progression 

Current therapeutics for NTM PD are inefficient in controlling the 
progression of disease and senolytic therapies might be at the forefront 
of innovative drug therapies to slow down age-related PD. Senolytic 
drugs are among a class of small molecules under scrutiny as targeted 
therapies to induce the death of senescent cells and slow the aging 
process. Senolytic drugs induce apoptosis in senescent cells and reduce 
SASP proteins [34]. SIRT1 activators such as SRT1720 and SRT2104 
have demonstrated to extend the lifespan of mice [61]. These animal 
studies have led to a number of human clinical trials employing SIRT1 
activators [34,61]. Activation of SIRT1 also inhibits p53, and may be a 

Fig. 1. SAnSA and NTM PD. Sex, ancestry, senescene, again and a variety of lifespan circumstances in the development of NTM PD. Right, middle: NTN infections 
occur more frequently in older females than males. A myriad of reasons may contribute to NTM infections at older age with influences across the lifespan oncluding 
birth sex, ancestry, increased immuno senescene and the aging process. Top: Immune system changes with aging also include increased inflaming and immuno 
senescene. Bottom: independently, other factors may also contribute to the development of NTM infections including household exposures, geography, outdoor 
activity, exercise, pregnancy, worklife, altered hormones, muscle atrophy and BMI. Imaging created with BioRender. 
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potential therapeutic strategy for aging-related diseases. 
Finally, caloric restriction (CR), diet, and exercise could be the 

easiest ways to prevent age-related diseases and prolong lifespan. CR can 
inhibit mTOR signaling pathway, activate and increase the levels of 
SIRT1, and inhibit the intracellular insulin/IGF-1 signaling cascade 
[34]. An alternative to CR is intermittent fasting regimes and changes in 
diet regimes that give sufficient CR to activate anti-aging pathways. 
Such options are currently being explored in animal models, but the 
effectiveness of CR, diet changes, and increased exercise in age-related 
PD and NTM is yet to be realized. 

3. Future directions 

Expansion of knowledge regarding the roles of SAnSA in complex, 
chronic, recalcitrant infectious respiratory diseases such as NTM PD are 
needed and should be a global priority. Currently, more than 86,000 
individuals with NTM PD in the U.S. alone [69]. These individuals await 
new information to alleviate their burden of NTM PD, but millions more 
worldwide also wait for these applicable answers for other similarly 
emerging respiratory pathogens such as COVID-19. 
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OLIVIERI MARIA DE LUCA ENZO OTTAVIANI et al. An evolutionary perspective 
on immunosenescence 908 1 2000 244 254 10.1111/j.1749-6632.2000.tb06651.x. 

[4] Kanasi E, Ayilavarapu S, Jones J. The aging population: demographics and the 
biology of aging. Periodontol 2000;2016(72):13–8. https://doi.org/10.1111/ 
prd.12126. 

[5] Kartalija M, Ovrutsky AR, Bryan CL, Pott GB, Fantuzzi G, Thomas J, et al. Patients 
with nontuberculous mycobacterial lung disease exhibit unique body and immune 
phenotypes. Am J Respir Crit Care Med 2013;187(2):197–205. https://doi.org/ 
10.1164/rccm.201206-1035OC. 

[6] Adjemian J, Olivier KN, Seitz AE, Falkinham JO, Holland SM, Prevots DR. Spatial 
clusters of nontuberculous mycobacterial lung disease in the United States. Am J 
Respir Crit Care Med 2012;186(6):553–8. 

[7] Adjemian J, Olivier KN, Seitz AE, Holland SM, Prevots DR. Prevalence of 
nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am J 
Respir Crit Care Med 2012;185(8):881–6. 

[8] Moon P, Guillaumin E, Chan ED. Non-tuberculous mycobacterial lung disease due 
to multiple “minor” risk factors: an illustrative case and a review of these “lesser 
elements”. Journal of thoracic disease 2020;12(9):4960–72. https://doi.org/ 
10.21037/jtd10.21037/jtd-20-986. 

[9] Honda JR, Knight V, Chan ED. Pathogenesis and Risk Factors for Nontuberculous 
Mycobacterial Lung Disease. Clin Chest Med 2015;36(1):1–11. https://doi.org/ 
10.1016/j.ccm.2014.10.001. 

[10] Virdi R, Lowe ME, Norton GJ, Dawrs SN, Hasan NA, Epperson LE, et al. Lower 
Recovery of Nontuberculous Mycobacteria from Outdoor Hawai’i Environmental 
Water Biofilms Compared to Indoor Samples. Microorganisms 2021;9(2):224. 
https://doi.org/10.3390/microorganisms9020224. 

[11] Honda JR, Virdi R, Chan ED. Global Environmental Nontuberculous Mycobacteria 
and Their Contemporaneous Man-Made and Natural Niches. Front Microbiol 2018; 
9:2029. https://doi.org/10.3389/fmicb.2018.02029. 

[12] Sood G, Parrish N. Outbreaks of nontuberculous mycobacteria. Current opinion in 
infectious diseases 2017;30(4):404–9. https://doi.org/10.1097/ 
QCO.0000000000000386. 

[13] Prevots DR, Marras TK. Epidemiology of human pulmonary infection with 
nontuberculous mycobacteria: a review. Clin Chest Med 2015;36(1):13–34. 
https://doi.org/10.1016/j.ccm.2014.10.002. 

[14] Wassilew N, Hoffmann H, Andrejak C, Lange C. Pulmonary Disease Caused by Non- 
Tuberculous Mycobacteria. Respiration 2016;91:386–402. https://doi.org/ 
10.1159/000445906. 

[15] To K, Cao R, Yegiazaryan A, Owens J, Venketaraman V. General Overview of 
Nontuberculous Mycobacteria Opportunistic Pathogens: Mycobacterium avium 
and Mycobacterium abscessus. J Clin Med 2020;9 doi: 10.3390/jcm9082541. 

[16] Prevots DR, Shaw PA, Strickland D, Jackson LA, Raebel MA, Blosky MA, et al. 
Nontuberculous mycobacterial lung disease prevalence at four integrated 
healthcare delivery systems. Am J Respir Crit Care Med 2010;182(7):970–6. 

[17] Hoefsloot W, van Ingen J, Andrejak C, Ängeby K, Bauriaud R, Bemer P, et al. The 
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