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Abstract
The role of general transcription factor TFIIB in transcription extends well beyond its evolutionarily conserved function in 
initiation. Chromatin localization studies demonstrating binding of TFIIB to both the 5’ and 3’ ends of genes in a diverse set 
of eukaryotes strongly suggested a rather unexpected role of the factor in termination. TFIIB indeed plays a role in termina-
tion of transcription. TFIIB occupancy of the 3’ end is possibly due to its interaction with the termination factors residing 
there. Interaction of the promoter-bound TFIIB with factors occupying the 3’ end of a gene may be the basis of transcription-
dependent gene looping. The proximity of the terminator-bound factors with the promoter in a gene loop has the potential to 
terminate promoter-initiated upstream anti-sense transcription thereby conferring promoter directionality. TFIIB, therefore, 
is emerging as a factor with pleiotropic roles in the transcription cycle. This could be the reason for preferential targeting of 
TFIIB by viruses. Further studies are needed to understand the critical role of TFIIB in viral pathogenesis in the context of 
its newly identified roles in termination, gene looping and promoter directionality.

Keywords Gene expression · TFIIB · RNA polymerase II · Termination of transcription · Promoter directionality · Gene 
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Introduction

Transcription is an essential step in expression of genetic 
information in living organisms and is also a process often 
altered in a plethora of diseases including cancer and virus-
related ailments (Liu et al. 2020). An in-depth functional 
analyses of factors that regulate transcription is crucial to 
understanding the molecular basis underlying diseases, 
development and homeostasis. The focus of this review is 
TFIIB, which is a general transcription factor of RNA poly-
merase II (RNAPII) transcription machinery. Recent stud-
ies revealing novel roles of TFIIB in transcription and its 
involvement in viral infection have the potential to change 
the way we currently think about transcription as a process 
regulated by factors with rigid, step-specific roles.

In eukaryotes, RNAPII transcribes DNA to mRNA. 
Transcription by RNAPII is comprised of a number of steps 

(Fig. 1). First, is the recruitment of RNAPII to the DNA, 
made possible by a suite of general transcription factors 
(GTFs). RNAPII along with the GTFs constitute the preini-
tiation complex (PIC). The GTFs, in order of recruitment to 
the promoter, are TFIID, TFIIA, TFIIB, TFIIF, TFIIE and 
TFIIH (Woychik and Hampsey 2002; Krishnamurthy and 
Hampsey 2009; Luse 2014).

Following the assembly of the PIC, initiation of tran-
scription takes place. RNAPII must be released from the 
initiation complex in a coordinated event known as promoter 
clearance, leaving behind some of the GTFs on the promoter 
as a ‘scaffold’ (Yudkovsky et al. 2000; Hahn and Young 
2011). Following promoter clearance, RNAPII enters the 
elongation phase. Elongation is marked by RNAPII synthe-
sizing a growing RNA chain as it proceeds along the body 
of the gene toward the 3’ end (Jonkers and Lis 2015). When 
the polymerase reaches the terminator region at the 3’ end 
of a gene, the process of termination takes place. Multi-
subunit protein complexes such as the cleavage and poly-
adenylation factor (CPF) complex, cleavage factor I (CFI) 
complex, and ribonucleic acid trafficking 1 (Rat1) complex 
facilitate termination in budding yeast (Mischo and Proud-
foot 2013; Baejen et al. 2017). There are orthologous termi-
nation complexes in higher eukaryotes (Richard and Manley 
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2009; Kuehner et al. 2011). Proper termination is vital to 
the production and nucleocytoplasmic transport of mature 
mRNA transcripts (Hammell et al. 2002; Mapendano et al. 
2010; Lykke-Andersen et al. 2011; Al-Husini et al. 2020).

The focus of this review is the general transcription fac-
tor TFIIB, which in addition to its well-established role in 
initiation, has been implicated in multiple aspects of the 
transcription cycle (Wang et al. 2010; Medler et al. 2011; 
Henriques et al. 2012; Allepuz-Fuster et al. 2019). Further-
more, TFIIB has also been found crucial for viral pathogen-
esis (O’Brien and Ansari, 2021). It is critical to understand 
the non-canonical roles of TFIIB to fully comprehend the 
process of transcription, and the molecular basis underlying 
the role of TFIIB in viral pathogenesis.

TFIIB

TFIIB is a single subunit GTF and is an essential compo-
nent of the PIC. It exhibits remarkable structural similarity, 
both at the primary and higher order structural level, among 
eukaryotes (Deng and Roberts 2007; Adachi et al. 2016). It 
is involved in initiation of transcription as well as transcrip-
tion start site selection (Pinto et al. 1994; Luse 2014). It 
binds to the promoter region following recruitment of TFIID 
or SAGA complex. TFIIB interacts with both DNA elements 
and other proteins to facilitate transcription. It binds directly 
to sequences in the promoter region (Lagrange et al. 1998; 
Deng and Roberts 2005). The carboxy-terminal core domain 
of TFIIB interacts with the promoter DNA as well as TATA 
binding protein (TBP) and TFIIF, while the amino-terminal 
zinc ribbon domain interacts with the catalytic center of 
RNAPII (Nikolov and Burley 1997; Bushnell et al. 2004; 
Weinzierl and Wiesler et al. 2011; Sainsbury et al. 2013). 
TFIIB acts as a bridge between TFIID bound to the DNA 
and RNAPII (Nikolov et al. 1995). The B-finger region of 
TFIIB is thought to interact with the active center of the 
polymerase where it possibly plays a role in abortive tran-
scription and promoter escape (Bushnell et al. 2004). The 
amino and carboxy-terminal domains also interact with each 

other to form an open or closed conformation of the protein. 
Thus, TFIIB can occur in an active, open conformation or a 
closed, inactive conformation (Glossop et al. 2004). Interac-
tion with transcriptional activators is thought to stabilize the 
open form of TFIIB and thus stimulate transcription initia-
tion (Hawkes et al. 2000; Glossop et al. 2004).

TFIIB facilitates crosstalk between 5’ and 3’ 
ends of a gene

Genomewide analyses have revealed that TFIIB occupies the 
promoter elements at the 5’ end of genes (Venters and Pugh 
2013; Pugh and Venters 2016; Rossi et al. 2021). This is in 
accordance with the role of TFIIB in initiation of transcrip-
tion. It was, however, surprising to find that TFIIB occu-
pies the terminator region toward the 3’ end of a number of 
genes in budding yeast (Singh and Hampsey 2007; Mavrich 
et al. 2008; El Kaderi et al. 2009; Mayer et al. 2010; Medler 
et al. 2011; Murray et al. 2012; Al Husini et al. 2013). A 
similar 3’ end localization of TFIIB has been observed for 
a subset of genes in metazoans (Yochum et al. 2007; Map-
endano et al. 2010; Henriques et al. 2012). Nearly 65% of 
genes exhibit crosslinking of TFIIB to both the 5’ and the 
3’ end in humans (Yochum et al. 2007). The same study 
found TFIIB crosslinking internally to the coding region, 
between the 5’ and 3’ ends of genes, as well. The promoter 
occupancy of TFIIB is due to its interaction with the DNA 
elements called BREs (TFIIB Recognition Elements), 
which are present in the promoter region of some but not 
all RNAPII-transcribed genes (Deng and Roberts 2005). 
There is, however, no evidence for the presence of any such 
TFIIB-binding DNA element at the 3’ end of genes. In all 
likelihood, terminator localization of TFIIB may not be due 
to protein-DNA interaction, but rather due to protein–pro-
tein interactions of TFIIB with components of the 3’ end 
processing-termination machinery. This could be the reason 
for the failure to detect TFIIB signal at the 3’ end of genes in 
budding yeast by ChIP-exo approach, which is more efficient 
in detecting direct protein-DNA interactions (Rhee and Pugh 

Fig. 1  Multiple roles of TFIIB 
in the RNA polymerase II tran-
scription cycle
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2012). Several independent studies have confirmed multiple 
interactions of TFIIB with the factors operating at the 3′ 
end of genes. Foremost among these interactions is with 
Ssu72, which is a subunit of the CPF termination complex. 
TFIIB exhibits both a genetic and physical interaction with 
Ssu72 (Pinto et al. 1994; Sun and Hampsey 1996; Wu et al. 
1999; Allepuz-Fuster et al. 2019). TFIIB also interacts with 
the yeast CF1 subunit Rna15 as well as its human homolog 
CstF64 (El Kaderi et al. 2009; Wang et al. 2010). Further 
investigation of TFIIB-Rna15 interaction culminated in puri-
fication of a megacomplex of TFIIB with Rna14, Rna15, 
Pcf11, Clp1, Hrp1 and poly(A) polymerase from yeast cells 
(Medler et al. 2011). An independent study confirmed the 
existence of the interaction of TFIIB with CF1 and CPF 3’ 
end processing-termination complexes (Chereji et al. 2017). 
Further purification and characterization of the holo-TFIIB 
complex may reveal novel factors whose role in the tran-
scription cycle has not yet been discovered. Taken together, 
these studies lead to the speculation that TFIIB functions at 
more than just the initiation step of transcription.

The role of TFIIB in termination 
of transcription

The intriguing presence of TFIIB at the 3′ end of a gene and 
its interaction with a gamut of termination factors raised the 
possibility of its involvement in termination of transcription. 
Indeed, TFIIB has been implicated in termination of tran-
scription in multiple model organisms. In mammalian cells, 
phosphorylation of TFIIB occurs at serine-65 and is neces-
sary for its termination function (Wang et al. 2010). TFIIB 
serine-65 phosphorylation regulates the TFIIB interaction 
with the Cstf-64 subunit of the CstF 3’ end processing-ter-
mination complex and facilitates recruitment of the termina-
tion complex near the 3’ end of a gene (Wang et al. 2010). 
A similar role of TFIIB in termination was demonstrated 
in flies and budding yeast (Henriques et al. 2012; Allepuz-
Fuster et al. 2019). The sua7-1 mutant of TFIIB, in which 
glutamic acid is replaced by lysine at position 62, exhibits a 
termination defect (Allepuz-Fuster et al. 2019). In the sua7-1 
mutant, promoter occupancy of TFIIB remains unaffected, 
but its terminator recruitment is compromised (Singh and 
Hampsey 2007). Furthermore, the interaction of TFIIB with 
the termination factors is disrupted in the sua7-1 mutant 
(Medler et al. 2011). Consequently, recruitment of termina-
tion factors at the 3’ end of genes is adversely affected in the 
sua7-1 strain leading to a termination defect (Allepuz-Fuster 
et al. 2019). In budding yeast, there is an alternative pathway 
for termination of transcription, the poly(A)-independent 
pathway, which requires the Nrd1-Nab1-Sen1 termination 
complex. TFIIB, along with the transcription activator Rap1, 

has been implicated in this poly(A)-independent termination 
as well (Roy and Chanfreau 2018).

The next obvious question is how does TFIIB facilitate 
termination? The simplest explanation is that TFIIB interacts 
with termination factors and facilitates their recruitment at 
the 3’ end of a gene leading to termination of transcription 
as described above. There is, however, an alternative or addi-
tional possibility. It is established that following initiation of 
transcription, TFIIB dissociates from the initiation complex. 
Since the B-finger/reader domain of TFIIB blocks the RNA 
exit channel of polymerase in the initiation complex, the 
release of TFIIB is critical for the polymerase to continue 
transcription (Kostrewa et al. 2009). A similar mechanism 
may explain the TFIIB function in termination as well. At 
the terminator, the TFIIB B-finger/reader domain may insert 
into the RNA exit channel of elongating RNAPII. This may 
block elongation thereby facilitating termination. Inciden-
tally, glutamic acid to lysine substitution at position 62 in the 
sua7-1 mutant and serine-65 phosphorylation site of mam-
malian TFIIB, both of which affect termination, also localize 
to the B-reader domain (Pinto et al. 1994; Wang et al. 2010). 
Whether TFIIB makes physical contact with the polymerase 
through its B-reader domain at the 3' end, however, needs 
further scrutiny.

TFIIB facilitates gene looping

A critical question is how TFIIB, which is expected to 
occupy the 5′ end of a gene, is able to contact both ends of a 
gene. Analysis of yeast genes using the ‘Chromosome Con-
formation Capture’ (3C) approach revealed genes assum-
ing a looped conformation during transcription (Ansari 
and Hampsey, 2005). Such gene loops are formed due to 
interaction of the promoter with the terminator region of 
a gene (Fig. 2). Our laboratory has demonstrated crucial 
roles of TFIIB, TFIIH, Mediator, CF1 and CPF complexes 
in gene looping in budding yeast (Ansari and Hampsey 
2005; Medler et al. 2011; Tan-Wong et al. 2012; Al Husini 
et al. 2013; Mukundan and Ansari 2013; Medler and Ansari 
2015). TFIIB, however, has emerged as a central player 
in gene loop formation (Singh and Hampsey 2007; Wang 
and Roberts 2010; Medler et al. 2011; Allepuz-Fuster et al. 
2019). Independent studies have revealed existence of a 
complex of TFIIB with termination factors (Medler et al. 
2011; Chereji et al. 2017). This explains how TFIIB is able 
to crosslink to both the 5’ and 3’ ends of a gene. Further-
more, these observations suggest that the interaction of 
promoter-bound TFIIB with the termination factors brings 
the distal ends of a gene in proximity, thereby facilitating 
gene loop formation. 

Gene looping is completely abolished in the sua7-1 
mutant of TFIIB in budding yeast (Singh and Hampsey 
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2007; Allepuz-Fuster 2019). In this mutant, the recruitment 
of TFIIB at the promoter region remains unaffected, but the 
3′ end localization of the protein is almost completely abol-
ished (Singh and Hampsey 2007). Since the TFIIB-termina-
tion factor complex is not observed in the sua7-1 mutant, we 
postulated that the looped gene architecture is formed pri-
marily due to the interaction of the promoter-bound TFIIB 
with the termination factors occupying the 3′ end of a gene 
(Medler et al. 2011) (Fig. 2). In such a scenario, it is likely 
that the same molecule of TFIIB is crosslinked to both the 
ends of the gene. Consequently, TFIIB-interacting termina-
tion factors are observed at the 5′ end of a gene in wild type 
cells, but not in the looping-defective sua7-1 cells (Singh 
and Hampsey 2007).

Potential role of TFIIB in promoter 
directionality

Genomewide analysis of human and yeast transcription 
revealed a somewhat unanticipated finding that the pro-
moter-bound RNAPII transcribes both in the sense as well 
as anti-sense direction (Fig. 1) (Core et al. 2008; Neil et al. 
2009; Xu et al. 2009; Andersson et al. 2015; Duttke et al. 
2015). Such divergent transcription from promoters has also 
been observed in Caenorhabditis elegans and Drosophila 
melanogaster (Ibrahim et al. 2018). Transcription in the 

downstream sense direction, which produces mRNA, con-
tinues until the polymerase reaches the 3′ end of the gene. 
The promoter-initiated upstream anti-sense transcription, 
which produces non-coding RNA, however, is terminated 
when the transcript is only a few hundred nucleotides long, 
thereby conferring directionality to the bidirectional RNAPII 
promoter (Fig. 1). In mammalian cells where transcription 
initiating in opposite directions is widespread (Vihervaara 
et al. 2018), asymmetric distribution of poly(A) sites and 
U1 snRNA-binding-sites in the promoter-proximal regions 
confer directionality to the promoter-bound polymerase 
(Almada et al. 2013; Ntini et al. 2013). In budding yeast, 
there is no such asymmetric distribution of poly(A) sites and 
U1-sites in the region surrounding the promoter. It is tempt-
ing to propose that the recruitment of termination factors in 
the promoter upstream region to stop uaRNA transcription 
is primarily dependent on gene looping in budding yeast 
(Tan-Wong et al. 2012; Al Husini et al. 2013). In mammalian 
cells, mutation of the terminator-proximal poly(A) site of 
the human β-globin gene results in loss of gene looping as 
well as promoter directionality, thereby suggesting that the 
looped gene architecture may also play a role in regulating 
promoter directionality in higher eukaryotes as well (Tan-
Wong et al. 2012). Since TFIIB is a central player in gene 
loop formation, we propose that, at least in budding yeast, 
TFIIB indirectly influences promoter directionality by affect-
ing gene loop formation (Tan-Wong et al. 2012; Al Husini 
et al. 2013; Agarwal and Ansari 2016). Consequently, the 
looping-defective sua7-1 mutant of TFIIB exhibits loss of 
promoter directionality (Tan-Wong et al. 2012; Agarwal and 
Ansari 2016). TFIIB is not the only transcription factor to 
play a role in promoter directionality, as the transcription 
factor Rap1 has also been implicated in repressing divergent 
transcription in yeast (Wu and Van Werven 2019; Rossi et al. 
2021). A recent study in plants also implicated gene looping 
in promoter directionality similar to that in yeast (Gagliardi 
et al. 2019). Whether plant gene looping is dependent on 
TFIIB, however, needs further scrutiny.

TFIIB involvement in viral pathogenesis

The multifaceted role of TFIIB in eukaryotic transcription 
extends to its emergence as a critical player in viral patho-
genesis. TFIIB has been found crucial to pathogenesis of 
many human and animal viruses including human immu-
nodeficiency virus, herpes simplex virus, vaccinia virus, 
Thogoto virus, hepatitis virus, Epstein-Barr virus and gam-
maherpesviruses (O’Brien and Ansari 2021). A recent com-
putational analyses revealed TFIIB to be a high confidence 
transcriptional target of coronavirus as well (Ochsner et al. 
2020). Viruses have to transcribe their genes to produce pro-
teins to complete their life cycle and infect new hosts (An 

Fig. 2  Gene looping is facilitated by the interaction of TFIIB with 
termination factors



65Current Genetics (2022) 68:61–67 

1 3

et al. 2019; Liu et al. 2020). To accomplish this, viruses uti-
lize host transcription machinery, and specifically have been 
shown to hijack host TFIIB (Agostini et al. 1996; Gelev et al. 
2014; Liu et al. 2020). Key to the viral targeting of TFIIB are 
viral transcriptional regulatory proteins, which directly inter-
act with host TFIIB to accomplish expression of their genes 
and to repress transcription of host antiviral genes, espe-
cially those linked to the antiviral immune response (Gelev 
et al. 2014; Haas et al. 2018; Yang and You, 2020; Wang 
et al. 2020). Some viruses have evolved transcription regula-
tory proteins with a three-dimensional structure very similar 
to TFIIB, demonstrating the importance of TFIIB for viral 
persistence (Grimm et al. 2019; Hillen et al. 2019; Liu et al. 
2020; Cackett et al. 2020). TFIIB-like viral proteins of vac-
cinia virus and African Swine Fever Virus exhibit similari-
ties with host TFIIB in crucial and conserved regions such 
as the B-ribbon, B-cyclin, and B-reader domains (Grimm 
et al. 2019; Cackett et al. 2020). These conserved regions 
of TFIIB may be crucial for facilitating viral transcription. 
Whether targeting of TFIIB by viral transcriptional regu-
lators affects the initiation step only, or termination and 
promoter directionality are also impacted, needs further 
investigation. It is highly likely that the monomeric nature, 
involvement at early steps in PIC assembly and pleiotropic 
role of TFIIB in transcription cycle makes it a preferred 
target of viruses during pathogenesis. The nature of viral uti-
lization of TFIIB for expression of its own genes, along with 
selective repression of host antiviral genes, makes TFIIB a 
potential candidate for antiviral therapies.

Future perspectives

Since its discovery as a GTF, TFIIB has primarily been 
thought of as a factor limited to involvement in PIC forma-
tion and initiation of transcription. Recent studies presented 
here have challenged this dogma. The role of TFIIB in the 
transcription cycle extends beyond the initiation step. Differ-
ent steps of transcription do not occur separately as discreet 
events, but rather intertwine with each other. It is therefore 
not surprising that TFIIB, in addition to its established role 
in initiation, also impacts termination, gene loop formation 
and promoter directionality (Fig. 1). Further studying TFIIB 
in the context of these newly discovered roles will augment 
our understanding of the process of transcription.

The recently observed roles of TFIIB in termination and 
promoter directionality are dependent to a great extent on 
its ability to simultaneously contact the distal ends of a gene 
and transform a transcribing linear gene into a looped struc-
ture. At the core of the gene loop is the complex of TFIIB 
with termination factors (Fig. 2). This complex called the 
holo-TFIIB complex is transiently formed during transcrip-
tion and can be purified only from transcriptionally active 

chromatin (Chereji et al. 2017). The characterization of this 
complex may reveal novel accessory factors whose role in 
the transcription cycle, especially in termination, reinitiation 
and promoter directionality has so far eluded us. It will be 
worth investigating if such a complex is unique to yeast or if 
it is a general feature of eukaryotic transcription machinery.

The process of transcription is essential to human life but 
is also necessary for viruses to replicate and infect a new 
host. TFIIB has been found crucial for pathogenesis of many 
deadly viruses, as viral transcription is often dependent upon 
host TFIIB. The importance of TFIIB as a potential antiviral 
target has been made apparent as, in some cases, inactiva-
tion of host TFIIB severely impairs viral replication without 
adversely affecting general host transcription (reviewed in 
O’Brien and Ansari 2021). A thorough examination of the 
role of TFIIB in the transcription cycle will not only help 
understand the process of transcription in its entirety but 
may also help to find targets for antiviral therapies.
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