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Abstract: Previous studies have shown that germin-like proteins (GLPs) are present ubiquitously
in rice and Arabidopsis. However, the understanding regarding their role in development and
abiotic/biotic stress resistance remains limited. In the present study, we report genome-wide
identification, characterisation, subcellular localization, enzyme activity, and expression analysis
of the GLP gene family in rice and Arabidopsis to study their functions. In total, 43 and 32 GLPs
in the rice and Arabidopsis genome were identified based on a systematic analysis, respectively.
The GLP genes were clustered into six clades based on phylogenetic analysis, and many stress and
developmental-related cis-elements were detected in promoters of GLP genes. In addition, subcellular
location and superoxide dismutase (SOD) analysis demonstrated that the random selected OsGLP
genes on chromosomes 8 and 4 of rice were expressed in the cell wall with SOD activity. Overall, our
results showed that tandem duplication events, especially the clusters of tandem duplication genes
on chromosome 8 in rice, play a major role in expansion of the GLP family and thus increase our
understanding of the role of the GLP family in abiotic/biotic stress and development.

Keywords: GLPs; tandem duplication; phylogenetic analysis; expression pattern; cell wall;
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1. Introduction

Germin and germin-like proteins (GLPs) were first discovered in wheat seeds as specific markers
of germination [1,2], after which they were widely found in monocotyledons, dicotyledons, and
gymnosperms [3]. The germin family belongs to the functionally diverse cupin superfamily, and
generally codes two exons, and contains a “cupin” (PF00190) at its C-terminus [4]. It is a challenging
work to classify germins and GLPs, due to their high conserved sequence and the similarity of
structural characteristics [5]. In general, the “true germins” belong to a well-conserved homogeneous
group and are almost uniquely found within cereal plant species [6–8], while GLP proteins belong to a
heterogeneous group and have a wider taxonomic coverage in plants [2,9].

Most GLPs are reported to have enzyme activities only in the polymeric form [10–12], but one
GLP protein in Capsicum chinense showed superoxide dismutase (SOD) activity without forming
polymers [13]. In barley, six germin proteins that each combines a single manganese-ion, form an
extremely stable hexamer protein structure [9]. In addition, GLPs have been reported to possess other
enzyme activities, such as functioning as an auxin receptor [14], oxalate oxidase (OXO) activity [12],
as well as polyphenol oxidase [11] and serine protease inhibitors [15].

GLP genes are expressed in all types of organs including leaves, cotyledons, stems, roots, embryos,
flowers, and seeds, and are involved in developmental processes [3,16]. The overexpression of GLP
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genes in Arabidopsis and rice influenced the normal growth and development of plants [17,18].
Besides, GLP genes have different spatial and temporal expression characteristics in a variety of plants,
which could affect the enzyme activities [3]. For example, GLP genes are expressed in the apoplast and
cell wall of embryonic cells compared with OXO activity during germination, and those genes were
considered to be plant cell defenders [19]. The quaternary structure of GLPs is highly resistant to heat,
extreme pH, proteases, and sodium dodecyl sulfonate (SDS) [10,20]. High GLP gene expressions have
been observed under different abiotic stresses, such as salt stress [16], drought stress [16], heavy metal
stress [19,21] and wound stress [16]. The GLP genes are also expressed under many biotic stresses, such
as in the presence of fugal pathogens [10,22], bacteria [23], and viruses [13]. Expressions of GLP genes
have also been shown to be increased within the plant cell wall after infection, and the mechanism
by which GLPs influence plant defence is likely related to ROS (reactive oxygen species) production
and formation of an “oxidative burst” response [23,24]. Recent studies revealed a close connection
between both GLP gene clusters and disease resistance phenotypes [25,26]. However, the functions of
many GLP genes are still largely unknown, and the response of GLP gene tandem clusters or single
GLP genes to biotic/abiotic stresses needs to be identified.

Although the functions of some GLP genes have been characterised in barley [27], wheat [28],
soybean [3], and moss [29], a comparison of the GLP family between monocotyledon and dicotyledon
has never been performed. In this study, members of the GLP family in rice and Arabidopsis were
reanalysed based on complete genome sequences and annotation. We proposed nomenclature,
provided chromosomal distribution, identified tandem duplications, and performed phylogenetic
analyses of GLP genes in Arabidopsis and rice. The expressions of GLP genes during development
and under biotic/abiotic stress conditions were evaluated based on bioinformatics analysis, and the
“hotspot” genes for biotic/abiotic stress were identified. In addition, quantitative real time PCR
(qRT-PCR) analyses of rice GLP genes under four different abiotic stresses were performed and the
subcellular localisation of three GLPs in rice were analysed. Our study will provide a reference for
further functional analyses of members of the GLP family in rice and Arabidopsis.

2. Results and Discussion

2.1. Identification and Nomenclature of GLP Genes in Arabidopsis and Rice Genomes

A total of 32 distinct chromosomal loci encoding for 37 GLP genes in Arabidopsis and
43 chromosomal loci encoding for 48 GLP genes in rice were identified (Table S1). Previous studies
reported 29 AtGLP genes in Arabidopsis [18] and 41 OsGLP genes in rice [25]. We found three new GLP
genes (AT1G74820, AT5G39100, AT5G61750) in Arabidopsis and two new GLP genes (Os01g14670,
Os03g58990) in rice. Manosalva et al. divided GLP genes in rice into six groups (from OsGER1
to OsGER6) according to the barley nomenclature [25], while GLP genes in Arabidopsis have not
been systematically denominated. To maintain uniformity and avoid ambiguity, we proposed new
nomenclature for GLP family members in this study (Table S1). We numbered the GLP genes according
to their 1–5 chromosomal location for Arabidopsis, and 1–12 chromosomal location for rice, and from
top to bottom. Details of each GLP member, including the locus ID, open reading frame length, protein
length, and chromosomal location of all GLP genes, are shown in Table S1.

2.2. Chromosomal Distribution of GLP Genes

To determine the chromosomal distribution of GLP genes in rice and Arabidopsis, chromosomal
maps were constructed (Figure 1). In rice, the OsGLP genes are distributed on nine of 12 chromosomes,
excluding chromosomes 6, 7, and 10 (Figure 1A). Chromosome 8 encoded the highest number
(14 of 43, 32.6%) of OsGLP genes, followed by chromosome 3 (9 of 43, 20.9%) and chromosome 1
(5 of 43, 11.6%). Tandem duplications were observed among 32 genes forming eight clusters on
chromosomes 1, 2, 3, 8, 9, and 12. Maximum tandem duplicated genes were found on chromosome
8 (11 members), which also harboured another cluster with two OsGLP genes. In Arabidopsis,
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chromosome 5 encoded the maximum 15 AtGLP genes (Figure 1B), and tandem duplications were also
observed among 21 genes forming four clusters. The largest cluster localised on chromosome 5 contains
12 GLP genes presenting in tandem at a single locus. Besides, two pairs of GLP genes were found
to be segmentally duplicated in Arabidopsis, whereas only one pair of GLP genes was segmentally
duplicated in rice. Tandem duplications of genes from rice oxalate oxidase cupin subclasses have also
been reported [7]. Tandem duplication was common among chromosomes of rice and Arabidopsis,
which may contribute to the plant evolution of the GLP family [30] and function under “abiotic and
biotic stress”. For both Arabidopsis and rice, the number of GLP genes present in tandem is much
larger than those located on the segmentally duplicated region. Thus, tandem duplications appear to
play an important role in expansion of the GLP family in rice and Arabidopsis.
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tandem clusters from chromosomes 3 and 5. GLP genes from two tandem clusters on rice 
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Figure 1. Chromosomal distribution of rice (A) and Arabidopsis (B) germin-like protein (GLP) genes.
The chromosome numbers are shown at the top of the chromosomes and the centromeric regions are
indicated by ellipses. Tandem duplicated genes are shown in boxes, and the segmentally duplicated
genes are connected by dashed lines. The exact position of each GLP gene on rice and Arabidopsis
chromosome pseudo-molecules is given in Table S1.

2.3. Phylogeny and Structure Analysis of GLP genes

To elucidate the evolutionary significance of GLP genes across Arabidopsis and rice, phylogenetic
analysis was performed using conserved regions of OsGLP and AtGLP sequences (Figure 2). The rice
genome encodes a significantly higher number of GLP genes (43 genes) compared to Arabidopsis
(32 genes), indicating a more rapid evolutionary rate in rice than Arabidopsis. According to the
phylogenetic tree, all GLP genes of Arabidopsis and rice could be divided into six major clades.
All GLP genes from clade 1 belong to Arabidopsis, which are mainly comprised of two tandem
clusters from chromosomes 3 and 5. GLP genes from two tandem clusters on rice chromosomes 8
and 12 constitute clade 2. Clade 3 is comprised of GLP genes in rice, with one tandem cluster from
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chromosome 2 and one GLP gene from chromosome 4 (OsGLP4-1). Besides, other GLP genes from
Arabidopsis and rice were clustered together (clades 4, 5, and 6). These results indicated that GLP genes
existed before the divergence of monocots and dicots, and some GLP genes expanded independently
in a species-specific manner. This species-specific expansion pattern has been reported in other gene
families, such as the VQ motif-containing protein family [31] and zinc finger-homeodomain gene
family [32].
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Figure 2. Phylogenetic relationships (A) and exon/intron structure (B) of GLP genes of rice and
Arabidopsis. Multiple sequence alignment of nucleotide sequences was performed using the MAFFT
program and a phylogenetic tree was generated using Bayesian inference (BI). Posterior probabilities
(scaled to 100) are showed on the branch. The gene structure schematic diagrams were drawn using
the Gene Structure Display Server (GSDS); (http://gsds1.cbi.pku.edu.cn/). The exons, introns and
upstream/downstream sequences are indicated by green rectangle, black lines and blue rectangle,
respectively. The length of the rectangles and lines are scaled based on the length of the gene.

Many studies proved that gene structural diversity is a possible mechanism for the evolution of
multi-gene families [33,34]. To increase the understanding of the structural diversity of GLP genes,
we compared the exon/intron organisation in the coding sequences of individual GLP genes in rice
and Arabidopsis (Figure 2B). In general, we found that most closely related members in the same
clade shared a similar exon/intron structure in terms of intron number and exon length. For example,
no intron is present in GLP members of clade 4, except OsGLP5-1, and clade 6 contains no introns
except OsGLP3-8. All GLP genes in clades 1, 2, and 3 contained one intron, excluding AtGLP5-7,
OsGLP12-4, and OsGLP2-3, which do not possess an intron.

2.4. Differential Expression of GLP Genes during Development

To gain insight into the possible function of GLP genes during development, we analysed the
expression pattern of OsGLP and AtGLP genes in various tissues/organs and developmental stages
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using microarray data (Tables S2 and S3). For rice GLP genes, Affymetrix GeneChip rice genome arrays
(GSE6893 and GSE7951) were used, and 31 OsGLP genes were represented (Figure 3A).
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Figure 3. Expression patterns of rice and Arabidopsis GLP genes in various tissues/organs and
developmental stages. Hierarchical clustering analysis of 31 OsGLP genes (A) and 25 AtGLP genes
(B) represented on an Affymetrix genome array is shown. Reproductive development comprising
six stages of panicle (P1 (0–3 cm), P2 (3–5 cm), P3 (5–10 cm), P4 (10–15 cm), P5 (15–22 cm), and P6
(22–30 cm)) and five stages of seed tagged from day of pollination (S1 (0–2 DAP), S2 (3–4 DAP), S3
(5–10 DAP), S4 (11–20 DAP), and S5 (21–29 DAP)) development. For clustering we used average log
signal values (log10 for Arabidopsis and log2 for rice) for three biological replicates of each sample
after normalisation of raw data (Tables S2 and S3). The colour scale for log signal values is shown at
the bottom.

In general, some OsGLP genes only expressed in certain tissues or developmental stages while
others showed high expressions during all developmental stages and in different tissues. For example,
the expressions of OsGLP3-3 and OsGLP8-2 were restricted to seed development stages (S1–S5).
OsGLP8-14 was preferentially expressed during panicle development stages P1 to P6, while the
expression of OsGLP9-3 was restricted to stigma. The expressions of OsGLP3-6, OsGLP3-7 and
OsGLP8-10 were exhibited preferentially in vegetative tissues and the stages of panicle and seed
development. These genes may perform specific roles in these tissues/organs or developmental
stages. It should be noted that some GLP genes including OsGLP5-2, OsGLP2-4, and OsGLP8-13,
were expressed at high levels in almost all developmental stages, suggestive of their broad role
in plant development. Similar analysis was performed for AtGLP genes (Figure 3B). Additionally,
some of the GLP genes, such as AtGLP3-9, AtGLP3-8, and AtGLP1-2, were highly expressed during all
developmental stages, while the expressions of AtGLP5-3, AtGLP5-15, and AtGLP1-7 were lower during
almost all developmental stages. The high expressions of AtGLP3-5 and AtGLP5-10 in stages 8, 9, and
10 of seed development supported their role in seed development. Interestingly, a close relationship
between gene expression profiles and their clustering in the chromosomes was found. For example,
the tandem duplicated gene such as OsGLP2-1 to OsGLP2-3 from chromosome 2 expressed at low level,
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while most OsGLP genes from one cluster of chromosome 8 such as OsGLP8-2, OsGLP8-3, OsGLP8-4,
OsGLP8-7, OsGLP8-10, and OsGLP8-11 showed high expression in seed. The AtGLP cluster from
chromosome 1 showed high expression in root, while most of the AtGLP genes from one cluster of
chromosome 3 expressed mainly in seed. In addition, the segmentally duplicated genes AtGLP1-6 and
AtGLP5-1 showed similar expression during the studied Arabidopsis developmental stage.

Moreover, massively parallel signature sequencing (MPSS) data was analysed to quantify the
expression of GLP genes in rice (Table S4) and Arabidopsis (Table S5). Signature tags were found for
22 GLP genes in rice, while there were only 15 identified in Arabidopsis. The expression profiles of
GLP genes obtained from MPSS data agreed largely with microarray data.

2.5. Differential Expression of GLP Genes during Abiotic Stress

We analysed the differential expression of GLP genes of rice seedlings under different abiotic
stresses (desiccation, salt, cold, and heavy metals) with microarray data of GSE6901 [35] and
GSE25206 [36] (Figure 4; Table S6). OsGLP3-7, OsGLP4-1, and OsGLP8-12 were down-regulated
under desiccation, salt and cold stress, while OsGLP3-6 was up-regulated during these three stresses
(Figure 4A). OsGLP8-4, OsGLP8-10, OsGLP8-7, and OsGLP8-11 were down-regulated under desiccation
and salt stress, but up-regulated or unchanged under cold stress. Similarly, OsGLP2-4, OsGLP3-3, and
OsGLP3-6 were up-regulated under desiccation and salt stress and nearly unchanged under cold stress.
These results showed that cold stress did not affect the expression of OsGLP genes significantly. Besides,
11 OsGLP genes were differentially expressed by more than 2-fold under at least one of heavy metal
stresses (Figure 4B). Overall, the expressions of the OsGLP genes in the largest cluster on chromosome 8
and that of OsGLP4-1 on chromosome 4, were significantly regulated under various abiotic stresses
(desiccation, salt, cold, and heavy metals) in rice. The differential expressions of representative GLP
genes was also confirmed by qRT-PCR analysis (Figure 4C,D). Although the accurate fold changes of
some genes obtained by microarray or qRT-PCR were slightly different, the variation tendencies of all
the examined genes were identical. These results indicated that minimal variation in the expression
data and high consistency between the results were obtained using these two techniques.Similarly,
Arabidopsis microarray data in response to different abiotic stresses (cold, osmotic stress, salt, drought,
genotoxic, oxidative, UV-B, wound, and heat) in root was retrieved from AtGenExpress (Figure 5,
Table S7). Seven members in the tandem cluster of chromosome 5 might be involved in response to
abiotic stresses (AtGLP5-3, AtGLP5-4, AtGLP5-7, AtGLP5-8, AtGLP5-6, AtGLP5-10, and AtGLP5-14),
which were differently regulated under various abiotic stresses. Besides, the genes in tandem cluster
on chromosome 1 (AtGLP1-4 and AtGLP1-5) were up-regulated under certain abiotic stress. AtGLP4-1
was up-regulated under cold stress, but down-regulated under osmotic and salt stresses. AtGLP3-7 and
AtGLP3-8 were also down-regulated under osmotic and salt stresses, and AtGLP3-7 was up-regulated
under UV-B and wound stresses.

Some GLP genes have been implicated in various abiotic stress responses in plants [3,16,21]. For
example, different expressions of GLP genes in response to salt in barley [37], cold in Arabidopsis [38],
and heavy metals in rice [39] have been reported. It has been shown that GLPs possess SOD activity, this
generates H2O2, which plays an important role in defending against various stresses [40]. For example,
the overexpression of rice germin-like protein1 in tobacco hyper-accumulates H2O2 and reinforces the
cell wall components, and consequently increased tolerance against biotic and abiotic stresses [41].
Some GLPs involved in antioxidant defence and detoxification were identified as Cu-IMAC-binding
proteins [39], and Cu stress could decrease the expression of certain GLP genes, such as a GLP subfamily
with a three member precursor in the Cu-tolerant plant Elsholtzia splendens [42]. The present study
showed that the larger cluster of OsGLP genes on chromosome 8 and the single OsGLP gene on
chromosome 4 in rice may be involved in abiotic stresses, similar to the cluster of AtGLP genes on
chromosome 5. Arabidopsis has lost large amounts of sequence through deletion [43], while the
tandem duplicates expanded in response to environmental stresses [44]. These “hotspot” OsGLP genes
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related to abiotic stress may be kept by Arabidopsis during natural selection. These genes have also
been shown to be involved to biotic stress, which will be discussed below.
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Figure 4. Differential expressions of rice GLP genes in response to various abiotic stresses. Hierarchical
clustering of rice GLP genes showing significantly different expressions under at least one abiotic stress
condition (A) or heavy metals (B) is shown. The log2 fold change of GLP gene expressions (Table S6) in
treated samples compared with mock-treated control sample was used for clustering. The colour scale
for log2 fold change values is shown at the bottom; (C,D) Real-time PCR analysis of random selected
genes to validate their differential expression during various abiotic stress conditions. The mRNA
levels for each gene in different tissue samples were calculated relative to its expression in control
seedlings. The green colour represents downregulation, black signifies no change in expression, and
red shows upregulation. The error bars represent standard deviation. DS, desiccation stress; SS, salt
stress; CS, cold stress.
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Figure 5. Microarray-based expression profile of Arabidopsis GLP genes under various abiotic stress
conditions. Heat maps show the log10 fold changes of Arabidopsis GLP gene expressions in root tissues
under different abiotic stress conditions such as salt, drought, osmotic, cold, heat, oxidative, genotoxic,
wounding, and UV/B stress. Microarray data (Table S7) was obtained for different time points and
stresses viz. 12 and 24 h for root tissues and analysed with respect to the control. Relative signal
values are represented by the colour bar shown at the bottom of heat map; green colour represents
downregulation, black signifies no change in expression, and red shows up-regulation.

2.6. Differential Expression of GLP Genes during Biotic Stress

It has been shown that the expression of certain GLP genes is increased after infection with
pathogens, feed of insects, or chemical application, indicating that GLPs may be involved in plant
defence responses [25,27,45]. Rice blast is one of the most serious and widespread diseases caused
by Magnaporthe grisea [25], and Striga hermonthica is a hemiparasitic weed that can infect cereals [46].
To study the effect of biotic stresses on the expressions of GLP genes in rice, the OsGLP gene responses
to M. grise and two varieties of S. hermonthica (Nipponbare and IAC165) were analysed using GSE7256
and GSE10373 respectively [46,47]. A total of nine GLP genes were differentially expressed under M.
grisea infection (Figure 6, Table S8). To be specific, four OsGLP genes on chromosome 8 (OsGLP8-7,
OsGLP8-10, OsGLP8-11, and OsGLP8-12) were up-regulated. Besides, OsGLP2-1, OsGLP3-3, OsGLP3-7,
and OsGLP12-1 were up-regulated, and OsGLP3-6 was down-regulated. As regards S. hermonthica
infection, 8 GLP genes were differentially expressed by more than 2-fold under infection with the
Nipponbare variety, while the expression of 6 genes changed after exposure to the IAC165 variety.
Among them, the expression of three OsGLP genes on chromosome 8 (OsGLP8-7, OsGLP8-10 and
OsGLP8-11) and OsGLP4-1 were significantly up-regulated, while OsGLP8-3 was down-regulated in
response to both two varieties. These results indicated that the tandem duplicated OsGLP genes on
chromosome 8 might be involved in disease resistance. Previous studies have reported that these
genes provide quantitative disease resistance as a quantitative trait loci (QTL) [25]. What is noteworthy
is that the expression of OsGLP4-1 was significant induced under S. hermonthica infection but not
regulated under M. grisea challenging. Interestingly, both the expressions of OsGLP1-5 and OsGLP5-2,
located in segmentally duplicated regions, were slightly down-regulated under M. grisea infection.
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Figure 6. Differential expressions of rice GLP genes in response to various biotic stress conditions.
Hierarchical clustering of GLP genes showing significant differential expressions in at least one
condition is shown. The log2 fold change of GLP gene expressions (Table S8) in treated sample
compared with a mock-treated control sample was used for clustering. The colour scale for log2 fold
change values is shown at the bottom. The green colour represents downregulation, black signifies no
change in expression, and red shows upregulation. Dpi, days of post-inoculation.

AtGLP genes that respond to pathogens (Pseudomonas and Phytophthora) and elicitors [flagellin
frgment 22 (Flg22), lipopolysaccharides (LPS), harpin (HrpZ), glutathione S-transferases (GST)
and GST-necrosis-inducing phytophthora protein 1 (GST-NPP1)] were analysed using microarray
data [48–51]. The expressions of 8 AtGLP genes were significantly changed under various biotic
stress conditions (Figure 7, Table S9). Among them, AtGLP3-8 and AtGLP5-1 were significantly
down-regulated under both pathogen and elicitor treatments, while AtGLP1-2 and AtGLP4-1 were
significantly up-regulated. No disease resistance QTL region was found in Arabidopsis.

The influence of plant defence by GLPs is likely related to their SOD activity [23,27,52]. Superoxide
produced by NADPH oxidase or peroxidases in response to pathogen attack is predicted to be
dis-mutated to H2O2 by the GLPs, accounting for the accumulation of H2O2 [41]. H2O2 is an important
component of plant defence responses, such as cell wall structure protein stiffening and lignification,
as well as papillae formation [53]. In previous studies, GLP genes located on chromosome 8 in rice
were reported to be the key disease-resistance genes [18,25]. Their orthologous GLP members in barley
and grapevine are also implicated in basal defence responses [23,27], which suggests that the resistance
conferred by the OsGLP genes on chromosome 8 is via a broad-spectrum, basal mechanism conserved
among the Gramineae. Natural selection may have preserved a cluster of OsGLP genes on chromosome
8 to provide a stepwise, flexible defence response to pathogen invasion.
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Figure 7. Differential expressions of Arabidopsis GLP genes in response to various biotic stress
conditions. Heat maps show the log10 fold changes of Arabidopsis GLP gene expressions in leaf tissues
under different biotic stress conditions such as Pseudomonas, Phytophthora, and elicitors. Microarray
data of Arabidopsis leaves (Table S9) was obtained for different pathogens or elicitors and analysed
with respect to the control samples. The colour scale for log10 fold change values are represented
by the colour bar shown at the bottom of the heat map; the green colour represents downregulation,
black signifies no change in expression, and red shows upregulation.

2.7. cis-Regulatory Elements in the Promoter of GLP Genes

Conserved regulatory elements in GLP promoter sequences have been reported to be responsive
to environmental stresses and growth factors [21,54]. Here, the promoter analysis was performed
for GLP genes whose promoter sequences (–2.0 kb) were available in the RGAP and TAIR genome
database (Table S10). Eight abiotic/biotic stress-induced GLP genes (four from rice and four from
Arabidopsis) were randomly selected to compare with sets of two housekeeping promoters (Actin and
γ-tubulin2) (Figure 8). A total of eight stress and developmental-related cis-elements were selected
for promoter analysis, including ABA responsive element (ABRE), anaerobic response element (ARE),
low temperature responsive element (LTR), myb-binding site (MBS), heat shock element (HSE),
endosperm expression (GCN4), TC-rich repeat responsible for defence, and stress (TC-RICH) and
wounding and pathogen response (W-BOX). We found that each GLP gene examined in the analysis
contained at least four regulatory elements in their promoter regions, while only three regulatory
elements were found in Actin promoter and five were found in γ-tubulin2 promoter (Figure 8).
Compared with the two housekeeping promoters, two stress-related cis-elements (W-BOX and ARE)
were only found among the promoter regions of GLP genes, and each GLP gene contained at least
one of the two cis-elements. Six regulatory elements were found in the 2 kb upstream region of
OsGLP3-6 which was commonly up-regulated during cold, drought, salt, and different heavy metal
stresses, while AtGLP5-1, which contained seven regulatory elements, was down-regulated in both
Pseudomonas and Phytophthora biotic stress. Although the promoter regions of OsGLP8-3 and OsGLP8-4
contained many stress-related cis-elements, both genes were down-regulated under abiotic and biotic
stress. The cis-element GCN4, which is essential for endosperm-specific expression, was identified in
three genes (OsGLP3-6, AtGLP5-1, and AtGLP5-3). These three genes were highly expressed under
developmental conditions. Besides, TC-RICH cis-element has been identified in the promoter region
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of five GLP genes, suggesting that they might play important roles in response to stress conditions
(Figure 8).
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Figure 8. Promoter analysis of eight stress-induced GLP genes and two housekeeping genes (Actin and
Gamma-tubulin2). Stress-related cis-elements of the −2 Kb 5′ upstream region of ten genes are shown.
cis-Elements in the sense-strand are indicated above the line, and those in the complementary-strand
are below the line.

2.8. Subcellular Localisation and Enzyme Activity of OsGLPs

Considering OsGLP genes on chromosome 8 and 4 were sensitive to various stresses, two genes on
chromosome 8 (OsGLP8-7 and OsGLP8-11) and one gene on chromosome 4 (OsGLP4-1) were randomly
selected to study their subcellular localisations and enzyme activity. Fusion proteins of OsGLP4-1,
OsGLP8-7, and OsGLP8-11 with C-terminal green fluorescent proteins (GFP) or a triple FLAG tag
(3× FLAG) were detected by transient expression in the heterologous plant, Nicotiana benthamiana.
The results showed that the control vector (35S–GFP) was distributed throughout the whole cell
including cell nucleus, cytoplasm and plasma membrane, and cell wall, while the fusion proteins
of OsGLP4-1, OsGLP8-7, and OsGLP8-11 were only distributed in the cell wall (Figure 9, Figure S1).
To further confirm this result, the target N. benthamiana was plasmolysed, and no fluorescence remained
in the cell plasmalemma. Meanwhile, the three fusion proteins of OsGLP::FLAG were detected in vitro
immunoblotting and through SOD activity analysis (Figure 10). These OsGLP fusion proteins showed
a band ~160 kDa (without boiling) (Figure 10A) or ~30 kDa (boiling) (Figure 10B). In the SOD activity
assay, all these three proteins showed SOD activity. A cell-wall-associated GLP in rice was found to
be enriched in sub-epidermal cells [17]. Both gene silencing in epidermal cells of N. attenuata and
transgenic ectopic expression studies in soybean indicated that the expression of GLP genes in the cell
wall is related to abiotic and biotic stress [55,56]. GLP gene expression has been shown to increase
within plant cells during plant interactions with pathogenic microflora, inducing an “oxidative burst”
response [24]. GLPs could transform superoxide to H2O2 and CO2, as well as reinforce the cell wall
through protein coupling and glycosylation [10].
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Figure 9. Subcellular localisation of OsGLPs::GFP in Nicotiana benthamiana via Agrobacterium tumefaciens
transformation. Agrobacterium-infiltrated N. benthamiana leaves expressing the OsGLPs::GFP and
35S–GFP fusion proteins driven by the CaMV35S promoter. Green fluorescent protein (GFP)
fluorescence and differential interference contrast images and visible/GFP merged images are shown
from left to right. Scale bar = 25 µm.Int. J. Mol. Sci. 2016, 17, 1622 12 of 17 
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Figure 10. Biochemical characterization of the OsGLP::FLAG proteins production in Nicotiana benthamiana.
Lane 1, OsGLP8-7::FLAG; Lane 2, OsGLP4-1::FLAG; Lane 3, OsGLP8-11::FLAG; Lane 4, negative control
(proteins extracted from wild type N. benthamiana); M, molecular size marker. (A) Immunodetection of
recombinant proteins using FLAG-specific antibody in total protein extracts. Samples were loaded
without prior boiling; (B) Protein extracts separated as in (A) were loaded after boiling; (C) Protein
extracts separated as in (A) were assayed for SOD activity.

3. Materials and Methods

3.1. Identification of GLPs in Arabidopsis and Rice

To identify GLPs in Arabidopsis and rice, a hidden Markov model (HMM) search was performed
using the TAIR 10 (http://arabidopsis.org) and RGAP 7 (http://rice.plantbiology.msu.edu/) databases
(E-value ≤ 1 × 10−10). All putative GLPs identified were subjected to Pfam (http://Pfam.sanger.ac.uk/)

http://arabidopsis.org
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to verify the presence of cupin_1 domain (PF00190). The putative GLPs containing a cupin_1 domain
were furtherly confirmed by SMART (http://smart.embl-heidelberg.de/).

3.2. Chromosomal Organisation and Phylogenetic Analysis

Chromosome localizations of GLP genes were analysed by the MapInspect software [57]. The GLP
genes separated by a maximum of five genes were identified as tandem duplicated genes. Multiple
sequence alignment was performed using MAFFT [58]. Phylogenetic analyses were conducted using
Bayesian inference (BI) implemented in MrBayes [59] through the server at CIPRES Science Gateway
(http://www.phylo.org/). Four independent runs were performed with four differentially heated
Metropolis-coupled Monte Carlo Markov chains for 2 × 106 million generations starting from a
random tree, and model parameters were estimated during the analysis. After that, 100 trees were
sampled from each run to determine the final consensus tree and posterior probabilities for each
clade. The gene structure schematic diagrams were drawn using GSDS (Gene Structure Display Server;
http://gsds1.cbi.pku.edu.cn/).

3.3. Promoter Analysis

To identify the various cis-acting regulatory elements in promoters of GLP genes, 2000 base
pairs upstream of the CDS were extracted from TAIR 10 and RGAP 7 databases. The upstream
sequence was subsequently scanned in the PLACE software [60] to analyse the presence of various
cis-regulatory elements.

3.4. Expression Analysis Using the MPSS and Microarray Data

Expression profiles were obtained from the Arabidopsis and rice MPSS project websites
(http://mpss.udel.edu/). MPSS data from 22 mRNA libraries representing 18 different tissues/organs
of rice, and 17 mRNA libraries representing 9 different tissue/organs of Arabidopsis, were used for
the analysis. The expression profile of Arabidopsis GLP genes from microarray data was analysed
by AtGenExpress [61]. The samples for these microarray experiments included root tissues under
abiotic stress conditions (salt, drought, osmotic, cold, heat, oxidative, genotoxic, wounding, and
UV/B), leaf tissues under biotic stress conditions (challenging by Pseudomonas and Phytophthora),
and tissues/organs with different developmental stages [61]. Fold changes at the transcript level
were calculated by comparing with controls. For the developmental stage data of Arabidopsis, heat
maps were generated based on log10 transformed Affymetrix values, and hierarchical clustering
analysis was performed using the MeV software package [62]. For rice GLP genes, the expression
profiles from Affymetrix GeneChip rice genome arrays [63] were used, including GSE6893 (various
stages of development), GSE7951 (stigma and ovary of rice), GSE6901 (rice seedling under cold, salt,
or drought stress conditions), GSE25206 (root tissue of rice under heavy metals stress conditions),
GSE7256 (seedling infected by M. grisea), and GSE10373 (root tissue of two rice cultivars infected
by S. hermonthica). Among them, the developmental stages of GSE6893 covered root of 7-day old
seedling, mature leaf (collected before pollination), young leaf, shoot apical meristem (SD-7-day old
seedling), six stages of panicle (i.e., P1 (0–3 cm panicle), P2 (3–5 cm panicle), P3 (5–10 cm panicle), P4
(10–15 cm panicle), P5 (15–22 cm panicle), and P6 (22–30 cm panicle)), and five stages of seed tagged
from day of pollination (DAP) (i.e., S1 (0–2 DAP), S2 (3–4 DAP), S3 (5–10 DAP), S4 (11–20 DAP), and S5
(21–29 DAP)). The expression profiles of rice were graphically presented in a heat map based on log2
fold change after value normalisation using R software (R Development Core Team, Vienna, Austria).

3.5. Plant Material and Stress Treatment for qRT-PCR Analysis

Seeds of rice cultivar (O. sativa “Nipponbare”) were germinated in the hydroponic system.
The seedlings were grown in Yoshida medium [64] in a growth chamber at 28 ± 1 ◦C under a 16-h
light/8-h dark photoperiod. After 7 days, various stress treatments were administered to seedlings
viz. salinity stress (200 mM NaCl for 3 h), dehydration (dried between folds of tissue paper for 3 h),

http://smart.embl-heidelberg.de/
http://www.phylo.org/
http://gsds1.cbi.pku.edu.cn/
http://mpss.udel.edu/
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cold stress (4 ◦C for 3 h), or heavy metal stress (100 µM Cr6+/100 µM As5+/100 µM Cd2+/100 µM
Pb2+ solutions for 24 h). After treatment, seedlings were cut, weighed, and frozen in liquid nitrogen
until further use. Total RNA was extracted using the RNA simple Total RNA Kit (Tiangen Biotech,
Beijing, China) according to the manufacturer’s instructions, treated with DNase I, and then converted
to cDNA using PrimeScript RT Master Mix (TaKaRa, Dalian, China). To verify the expression pattern
of GLP genes obtained from microarray data, qRT-PCR was performed using randomly selected genes
from OsGLP genes sensitive to abiotic stresses. Same tissues were used in qRT-PCR and microarray
analysis. Primers were designed in the 3’UTR unique regions of each selected genes using Primer3
software (Tables S11–S13). Each primer was checked for its specificity using BLAST. Three biological
replicates of each sample were used for qRT-PCR analysis. To normalise variance among samples,
actin was used as the endogenous control. The relative gene expression levels of each target gene were
calculated using the ∆∆Ct method [65].

3.6. Gene Cloning of OsGLPs and Transient Expression

The open reading frame region (without stop codon) of OsGLP4-1, OsGLP8-7, and OsGLP8-11
was amplified using designed primers (Tables S12 and S13). PCR products were then cloned into the
PHB-GFP or 1306-3FLAG vector using the ClonExpress one-step cloning kit (Vazyme, Piscataway, NJ,
USA) to obtain OsGLP::GFP or 1306-3FLAG fusion vector with the CaMV35S promoter. Then, these
OsGLP::GFP or OsGLP::FLAG fusion vectors were transformed into Agrobacterium tumefaciens strain
GV3101 by the freeze thaw method [66]. Transformed A. tumefaciens strains were cultivated overnight
in 20 mL cultures at 25 ◦C. Then the cultures was diluted (OD600 = 0.5) and infiltrated into leaves of
N. benthamiana with a 1 mL needleless syringe.

3.7. Subcellular Localization of OsGLPS

After 3 days post-inoculation, OsGLP::GFP fusion proteins in N. benthamiana leaves mentioned
above were imaged using confocal microscopy (LSM5Pascal; Carl Zeiss, Wetzlar, Germany). Leaves
were plasmolysed by incubation in 30% sucrose for 1 h. Leaf sections were mounted on microscope
slides in plasmolysis solution.

3.8. Biochemical Analysis in vitro OsGLPs

The OsGLP::FLAG fusion proteins were extracted from ~1 g of N. benthamiana leaves [10].
An in-gel SOD activity assay was performed according to the method of Beauchamp and Fridovich [67].
For immune detection, the fusion proteins were detected essentially as described in Rietz et al. [10].

4. Conclusions

The present study examined the GLP gene family in rice and Arabidopsis. We provided an
updated annotation and nomenclature for the GLP family and identified several developmental
stage-specific, abiotic and biotic stress-responsive GLP genes. Tandem duplication of GLP genes and
the presence of different stress-related cis-regulatory elements in the promoter were also analysed.
In addition, SOD enzyme activity and subcellular location analysis indicated that the random selected
OsGLP genes on chromosome 8 and 4 of rice were expressed in the cell wall with SOD activity.
It is worth mentioning that evidence of altered expression of GLP genes in response to stress is not
enough to claim their role for stress tolerance which may be just an indirect consequence of the stress.
Thus, more experiments such as studying the stress tolerance of GLP mutants are necessary to explore
their role in response to stress.
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