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ABSTRACT

The recently developed Hi-C technique has been
widely applied to map genome-wide chromatin in-
teractions. However, current methods for analyzing
diploid Hi-C data cannot fully distinguish between
homologous chromosomes. Consequently, the exist-
ing diploid Hi-C analyses are based on sparse and
inaccurate allele-specific contact matrices, which
might lead to incorrect modeling of diploid genome
architecture. Here we present ASHIC, a hierarchical
Bayesian framework to model allele-specific chro-
matin organizations in diploid genomes. We de-
veloped two models under the Bayesian frame-
work: the Poisson-multinomial (ASHIC-PM) model
and the zero-inflated Poisson-multinomial (ASHIC-
ZIPM) model. The proposed ASHIC methods im-
pute allele-specific contact maps from diploid Hi-C
data and simultaneously infer allelic 3D structures.
Through simulation studies, we demonstrated that
ASHIC methods outperformed existing approaches,
especially under low coverage and low SNP density
conditions. Additionally, in the analyses of diploid
Hi-C datasets in mouse and human, our ASHIC-
ZIPM method produced fine-resolution diploid chro-
matin maps and 3D structures and provided insights
into the allelic chromatin organizations and func-
tions. To summarize, our work provides a statisti-
cally rigorous framework for investigating fine-scale
allele-specific chromatin conformations. The ASHIC
software is publicly available at https://github.com/
wmalab/ASHIC.

INTRODUCTION

The three-dimensional (3D) organization of chromatin in
the nucleus plays an essential role in gene regulation (1).
The recently developed chromosome conformation capture
coupled with high-throughput sequencing (Hi-C) technique
(2–4) and its variants (5–7) have been widely applied to map

genome-wide chromatin interactions and to elucidate the
principles of spatial genome architecture. The Hi-C experi-
ment yields a genome-wide chromatin contact matrix; each
entry (i, j) in the matrix represents the contact frequency
between two loci i and j in the genome. The mapping and
subsequent analyses of genome-wide Hi-C contact matri-
ces in various organisms have demonstrated that the gene
expression is tightly regulated by chromatin interactions at
multiple scales ranging from active/inactive chromosomal
compartments and sub-compartments (2,6), to topologi-
cally associating domains (TADs) (8), and fine-scale chro-
matin loops (5,6).

One hindrance of current Hi-C data analysis is the lack
of allele-specific modeling for diploid genomes. Most mam-
malian genomes are diploid, in which the genome contains
two sets of each chromosome––a maternal and a paternal
copy. Hence, a chromatin contact observed between two ge-
nomic loci in the reference (haploid) genome may corre-
spond to four distinct yet indistinguishable chromatin in-
teractions in the diploid genome. For example, a chromatin
contact mapped to a loci pair (i, j) on the same chromo-
some in the reference genome could be either an intra-
chromosomal contact (mi, mj) on the maternal allele, or an
intra-chromosomal contact (pi, pj) on the paternal allele, or
inter-homologous contacts (mi, pj) or (pi, mj) (Figure 1A).
However, the majority of existing Hi-C analyses on diploid
genomes do not distinguish between homologous chromo-
somes. As a result, current analyses are based on an aggre-
gated contact matrix generated with mixed signals of mater-
nal and paternal chromatin contacts, which could result in
the false identification of significant chromatin interactions
and an inaccurate understanding of the diploid genome ar-
chitecture. Therefore, statistical methods for rigorous and
accurate modeling of diploid Hi-C data are needed to facil-
itate elucidation of the mechanisms of chromatin organiza-
tion and gene regulation.

Recently, several methods have been developed to ob-
tain allele-specific chromatin contact matrices and/or al-
lelic 3D structures from diploid Hi-C data (6,9–14). These
methods use heterozygous single nucleotide polymorphisms
(SNPs) to identify the allele identity of chromatin interac-
tions. Specifically, a Hi-C contact is a mate pair with two
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Figure 1. Overview of allele-specific modeling of diploid Hi-C data. (A)
Diploid contact (i, j) is a combination of four distinct allele-specific con-
tacts (mi, mj), (mi, pj), (pi, mj) and (pi, pj). (B) Reconstruction of allele-
specific diploid contact matrix. (C) Observed allele-specific contacts be-
tween bins i and j can be decomposed into observed allele-certain con-
tacts CO

i j , observed allele-ambiguous contacts CX
i j . We aim to decompose

CX
i j and infer the hidden contacts CH

i j , and impute the true allele-specific
contacts Ti j . (D) Illustration of the hierarchical Bayesian ASHIC-ZIPM
model.

read ends representing the two interacting chromatin frag-
ments. If a read end overlaps with SNPs for which the allele
identity can be determined, we term it an allele-certain read.
For example, a read containing maternal-specific SNP(s) is
assigned to the maternal allele; similarly a read containing
paternal-specific SNP(s) is assigned to the paternal allele. In
addition, reads without SNPs are allele-ambiguous reads.
Based on the allele identity of the paired ends, we can then
categorize diploid Hi-C contacts into three groups: both-
end allele-certain contacts, one-end allele-ambiguous con-
tacts, and both-end allele-ambiguous contacts.

Without a statistically rigorous allele inference method,
many previous studies applied either an ‘allele-certain’
or a ‘mate-rescue’ strategy to reconstruct the allele-
specific contact maps in diploid genomes. In the allele-
certain approach, only both-end allele-certain contacts are
used (6,11). However, the both-end allele-certain contacts
only account for a small portion of the total chromatin con-
tacts (Supplementary Table S1). For example, in the patski
(BL6×Spretus) cell line of which the SNP density is approxi-

mately 1 per 75 bp, the proportion of both-end allele-certain
contacts in a typical Hi-C dataset is about 35.6%. Whereas,
in the human GM12878 cell line of which the SNP density
is ∼1 per 1700 bp, the both-end allele-certain proportion
drops to 0.14%. Consequently, the diploid contact matrices
obtained by such an allele-certain approach is often sparse
and of low resolution.

To overcome the low-coverage issue of the allele-certain
approach, several diploid Hi-C studies adopted a straight-
forward mate-rescue strategy to infer the allele iden-
tity of one-end allele-ambiguous contacts, i.e., the allele-
ambiguous end of such contact is assigned to the same al-
lele as its mate-end (10,12,15). This mate-rescue method at-
tempts to recover one-end allele-ambiguous contacts, which
varies approximately from 5.7% (in the case of GM12878
cells) to 43.3% (in the case of patski cells) of the to-
tal contacts (Supplementary Table S1). However, one-end
allele-ambiguous contacts are all assumed to be intra-
chromosomal contacts in the results of the mate-rescue
approach. Such false assumption would lead to inaccu-
rate contact maps, especially in the regions where inter-
chromosomal interactions are observed across chromoso-
mal territories.

Since the mate-rescue method fails to infer inter-
chromosomal interactions from one-end allele-ambiguous
contacts, Tan et al. (13) proposed an iterative two-stage im-
putation algorithm Dip-C for modeling single-cell diploid
Hi-C data. In the first imputation stage, one-end allele-
ambiguous contacts are phased using an ad hoc vot-
ing procedure by their neighborhood on the contact ma-
trix. In the second imputation stage, the assignment of
allele-ambiguous contacts is refined by the 3D structures.
The Dip-C method can be viewed as an advanced mate-
rescue method, as it leverages additional information from
both contact matrices and 3D structures to infer allele-
ambiguous contacts. However, the Dip-C method is specif-
ically designed for single-cell Hi-C data therefore may not
adapt well to bulk Hi-C data. Moreover, Dip-C uses a de-
terministic voting strategy to assign allele-ambiguous con-
tacts, which does not provide a probabilistic model of all
possible allele origins.

One common drawback of the allele-certain and mate-
rescue methods is that they do not utilize both-end allele-
ambiguous contacts, which represent a substantial pro-
portion of the total diploid contacts, ranging from 21.1%
(patski) to 94.1% (GM12878) (Supplementary Table S1).
Inferring the allele identity of both-end allele-ambiguous
contacts remains a significant challenge. To date, few meth-
ods have been developed to address this problem. The Dip-
C method (13) attempts to impute only inter-chromosomal
rather than intra-chromosomal both-end allele-ambiguous
contacts. Thus, it does not produce a fully imputed diploid
contact map. In addition, our previously proposed Poisson-
Gamma model (9) imputes both one-end and both-end
allele-ambiguous contacts, and estimates the diploid con-
tact matrices by an iterative expectation-maximization
(EM) algorithm. However, the Poisson-Gamma method
does not predict 3D structures nor use the structures to as-
sist the assignment of allele-ambiguous contacts. As a re-
sult, it might not work robustly in fine-resolution analyses.
Furthermore, Cauer et al. (14) developed diploid-PASTIS,
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an extension of the PASTIS model (16), to infer the diploid
chromatin structures. Diploid Hi-C contacts are modeled
as Poisson variables, and the optimal diploid structures are
solved by maximizing the likelihood function with addi-
tional structural constraints. The diploid-PASTIS method
is specifically designed to model diploid 3D structures, but
does not infer allele-ambiguous contacts to impute diploid
contact matrices.

To tackle the aforementioned challenges, we developed a
hierarchical Bayesian framework for allele-specific diploid
Hi-C modeling, named ASHIC. Briefly, allele-specific con-
tact counts are modeled as Poisson-multinomial random
variables (referred as the ASHIC-PM model) and diploid
contact matrices and 3D structures are estimated via an
EM algorithm. In addition, to overcome the sparsity is-
sue of diploid Hi-C contact maps, we proposed a zero-
inflated version of the ASHIC-PM method, namely the
zero-inflated Poisson-multinomial model (in short, ASHIC-
ZIPM). Both ASHIC models can completely dissect all
diploid Hi-C contacts into allele-specific contact maps,
while simultaneously reconstruct 3D homologous chromo-
somal structures. To the best of our knowledge, our ASHIC
methods are the first methods that fully impute all allele-
ambiguous contacts and infer both the diploid contact ma-
trices and allelic 3D structures.

We thoroughly evaluated our methods through a series
of simulation studies and demonstrated that our ASHIC
methods outperformed existing allele-certain and mate-
rescue approaches in various settings of sequencing cover-
age, SNP density, and homologous structural similarity. We
also applied the ASHIC-ZIPM method to two published
diploid Hi-C datasets (6,15). First, using the mouse patski
data (15), we successfully confirmed that the predicted
diploid contact maps and 3D structures of the homolo-
gous X chromosomes exhibited distinct chromatin con-
formations, where the inactive X demonstrated the bipar-
tite superdomains (9). Furthermore, we studied fine-scale
chromatin organizations of the imprinted H19/Igf2 region
at 10 kb resolution and revealed distinct parental-specific
chromatin interactions anchored at H19 and Igf2. With
the fully imputed diploid contact matrices, we uncovered
a maternal-specific sub-TAD organization at the H19/Igf2
imprinting region. Second, using the human GM12878 data
(6), we further confirmed the maternal-specific sub-TAD
structure and parental-specific chromatin interactions at the
human H19/IGF2 imprinting locus. Our ASHIC-imputed
allele-specific contacts maps were consistent with the pre-
viously published chromatin interaction analysis by paired-
end tag sequencing (ChIA-PET) results (17).

MATERIALS AND METHODS

Notations of allele-specific chromatin contacts in diploid
genomes

Let m and p denote a homologous chromosomal pair with
same length n in a diploid genome. To construct the diploid
Hi-C contact frequency matrix, we partition the chromo-
somes into fixed-size non-overlapping bins and count chro-
matin contacts observed between each bin pair. In the
diploid setting, chromatin contacts between the bins i and j
can result from four distinct events: (mi, mj), (pi, pj), (mi, pj),

or (pi, mj), where (mi, mj) and (pi, pj) are intra-chromosomal
contacts on chromosome m and p, respectively, and (mi, pj)
and (pi, mj) are inter-chromosomal contacts between the ho-
mologous chromosomes (Figure 1A). Therefore, the aggre-
gated contact frequency Tij between the bins i and j can be
calculated as follows: Ti j = ∑

η

∑
θ Tηi θ j , where Tηi θ j is the

unknown true allele-specific contact frequency between ηi
(bin i on chromosome η) and θ j (bin j on chromosome θ )
that we aim to estimate, η, θ ∈ {m, p}, 1 ≤ i, j ≤ n (Fig-
ure 1B).

Using heterozygous SNPs, we can classify single-end
reads into three categories: reads containing allele-m-
specific SNPs, reads containing allele-p-specific SNPs, and
reads containing no SNPs. We refer to the first two cat-
egories as allele-certain reads while the last category as
allele-ambiguous reads. Furthermore, since Hi-C contacts
are paired-end reads, each end of the mated pair can either
be allele-certain or allele-ambiguous. Let Cηi θ j indicate the
frequency of both-end allele-certain contacts between the
bins ηi and θ j. In addition, we specify Cηi θ

∗
j

to be the con-
tact frequency between ηi and θ j where the allele identity
of ηi is known but the allele identity of θ j is unknown. In
other words, one end of the Hi-C contact is from θ j; how-
ever, the read does not overlap with any SNPs. Therefore
the allele identity of θ j remains unknown. Similarly, we use
Cη∗

i θ j when the allele identity of ηi is unknown and Cη∗
i θ∗

j

when the allele identity of both ends are unknown. Hence,
the true allele-specific contact frequency Tηi θ j equals to the
sum of the following four components:

Tηi θ j = Cηi θ j + Cηi θ
∗
j
+ Cη∗

i θ j + Cη∗
i θ∗

j
(1)

In diploid Hi-C data, we cannot directly observe Cηi m∗
j

and Cηi p∗
j

since the read end mapped to the bin j is allele-
ambiguous and hence, it cannot be distinguished between
mj and pj. As a result, the observed Hi-C contacts contain
the following types of allele-ambiguous contacts:

Cηi xj = Cηi m∗
j
+ Cηi p∗

j

Cxi θ j = Cm∗
i θ j + Cp∗

i θ j

Cxi xj = Cm∗
i m∗

j
+ Cm∗

i p∗
j
+ Cp∗

i m∗
j
+ Cp∗

i p∗
j

(2)

where x indicates that the allele identity of a read end is
unknown. We refer to Cηi xj and Cxi θ j as one-end allele-
ambiguous contacts and Cxi xj as both-end allele-ambiguous
contacts (Figure 1C).

In summary, we define CO = {Cηi θ j } as the observed
allele-specific contact frequencies, CX = {Cηi xj , Cxi θ j , Cxi xj }
as the observed allele-ambiguous contact frequencies (LHS
in Equation 2), and CH = {Cηi θ

∗
j
, Cη∗

i θ j , Cη∗
i θ∗

j
} as the un-

observed (hidden) allele-specific contact frequencies (RHS
in Equation 2). Our goal is to decompose CX and infer
CH in order to impute the true allele-specific frequencies
T = {Tηi θ j } by Equation (1) (Figure 1C).

Hierarchical Bayesian modeling of diploid chromatin contact
maps and 3D structures

To model diploid Hi-C data, we propose a hierarchi-
cal Bayesian modeling framework for imputing the allele-
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specific chromatin contacts and reconstructing the allelic
3D structures. Specifically, we model the generation of
allele-specific contacts with either a Poisson-multinomial
process (the ASHIC-PM model) or a zero-inflated Poisson-
multinomial process (the ASHIC-ZIPM model) for the in-
ference of diploid contact matrices and 3D structures. The
ASHIC-ZIPM model is a zero-inflated version of ASHIC-
PM and it explicitly accounts for the excessive zeros ob-
served in Hi-C contact matrices.

Here, we describe ASHIC-ZIPM, the zero-inflated ver-
sion of our hierarchical Bayesian model and the corre-
sponding EM algorithm for model fitting. The details
for the ASHIC-PM model are available in Supplementary
Methods.

Modeling true allele-specific contact frequencies from diploid
3D structures. We adopt the coarse-grained polymer
model (18) to represent the chromosomal structures. Each
bin in the genome is represented as a bead in the 3D space,
and each chromosome can be viewed as a chain of beads.
Specifically, we denote Xm and X p to be the 3D coordi-
nates of the homologous chromosomes m and p, respec-
tively, where Xm, X p ∈ R3×n . Let xηi and xθ j to be the 3D
coordinates of beads ηi and θ j, respectively, where η, θ ∈
{m, p}. According to polymer physics (16,19), the contact
frequency Tηi θ j between ηi and θ j is inversely correlated
with their spatial distance dηi θ j , following a power-law decay
function. That is, Tηi θ j ∝ dα

ηi θ j
, where α < 0 is the exponent

of the distance-decay function, and dηi θ j = ‖xηi − xθ j ‖2 is
the Euclidean distance between beads ηi and θ j.

Similar to the PASTIS method (16), we model the true
allele-specific contact frequency Tηi θ j as a Poisson random
variable, Tηi θ j ∼ Poisson(ληi θ j = βdα

ηi θ j
), where β is a scaling

factor (the ASHIC-PM model, Supplementary Methods).
Furthermore, to account for the excessive zeros in Hi-C
contact matrices, we propose to use a zero-inflated Poisson
(ZIP) distribution to model the contact counts (the ASHIC-
ZIPM model) (Figure 1D).

In the ASHIC-ZIPM model, we assume that Tηi θ j follows
a ZIP distribution.

Tηi θ j | Zηi θ j ∼ ZIP(ληi θ j = βdα
ηi θ j

, Zηi θ j ) (3)

Different from the ASHIC-PM model, here we intro-
duce Zηi θ j , a latent binary variable to indicate whether
Tηi θ j is generated from the Poisson state (Zηi θ j = 1, Tηi θ j ∼
Poisson(ληi θ j )) or the missing state (Zηi θ j = 0, Tηi θ j = 0).

Furthermore, we assume that Zηi θ j follows a Bernoulli
prior with a success probability γηi θ j .

Zηi θ j ∼ Bernoulli(γηi θ j ) (4)

For intra-chromosomal contacts (where η = θ ), γηi θ j is a
function of the corresponding genomic distance. For inter-
chromosomal contacts (η 	= θ ), γηi θ j is set to a constant.

In other words, the true allele-specific contact frequency
Tηi θ j is a mixture of two states. In the Poisson state
(with probability γηi θ j ), Tηi θ j follows a Poisson distribution;
whereas in the missing state (with probability 1 − γηi θ j ),
Tηi θ j = 0. The γηi θ j parameter acts as a weight between the
Poisson and missing states. Note that when all latent vari-
ables Z = {Zηi θ j } are equal to 1, the ASHIC-ZIPM model

reduces to the ASHIC-PM model. Hence, ASHIC-PM is a
special case of ASHIC-ZIPM.

Modeling allele-identifiable probability and allele-ambiguous
contact counts. As discussed above, we cannot directly ob-
serve the allele identity of all diploid Hi-C contacts. We
use qi to denote the allele-identifiable probability of bin i
in the genome, i.e. if a single-end read is mapped to bin
i, the probability that the read overlaps with SNP(s) (and
therefore can be distinguished between alleles m and p) is
qi. Consequently, assuming that bins i and j are indepen-
dent, the probabilities that a paired-end contact between the
bins i and j is both-ends allele-certain (qij), one-end allele-
ambiguous at bin i (qī j ), one-end allele-ambiguous at bin j
(qi j̄ ), and both-end allele-ambiguous (qī j̄ ) can be calculated
as follows:

qi j = qi q j qi j̄ = qi (1 − q j )
qī j = (1 − qi )q j qī j̄ = (1 − qi )(1 − q j )

(5)

Recall in Equation (1), the true allele-specific contact fre-
quency Tηi θ j can be expressed as the sum of one observed
allele-certain contact frequency Cηi θ j and three unobserved
hidden allele-specific contact frequencies Cηi θ

∗
j
, Cη∗

i θ j , Cη∗
i θ∗

j
.

We assume that the decomposed allele-specific contact fre-
quencies follow a multinomial distribution.

Cηi θ j ,Cηi θ
∗
j
, Cη∗

i θ j , Cη∗
i θ∗

j
| Tηi θ j

∼ Multinomial
(
Tηi θ j , {qi j , qi j̄ , qī j , qī j̄ }

) (6)

Based on the above assumptions, we derive that
Cηi θ j , Cηi θ

∗
j
, Cη∗

i θ j , Cη∗
i θ∗

j
given Zηi θ j are mutually condi-

tional independent ZIP random variables. Consequently,
we demonstrate that the observed allele-ambiguous contact
frequencies Cηi xj , Cxi θ j , and Cxi xj are ZIP random variables
and mutually conditional independent given Z(Supplemen-
tary Methods).

Cηi xj | Zηi m j , Zηi p j ∼ ZIP

⎛
⎝qi j̄

∑
θ ′

Zηi θ
′
j
ληi θ

′
j
, Zηi xj

⎞
⎠

Cxi θ j | Zmi θ j , Zpi θ j ∼ ZIP

⎛
⎝qī j

∑
η′

Zη′
i θ j

λη′
i θ j

, Zxi θ j

⎞
⎠

Cxi xj | Zmi m j , Zmi p j , Zpi m j , Zpi p j ∼ ZIP

⎛
⎝qī j̄

∑
η′ ,θ ′

Zη′
i θ

′
j
λη′

i θ
′
j
, Zxi xj

⎞
⎠ (7)

where Zηi xj := Zηi m j or Zηi p j , i.e., Zηi xj = 1 if Zηi m j = 1
or Zηi p j = 1. Similarly, we denote Zxi θ j := Zmi θ j or Zpi θ j ,
Zxi xj := Zmi m j or Zmi p j or Zpi m j or Zpi p j .

Incorporating bias factors. Real Hi-C data contains var-
ious types of systematic biases. Similar to the ICE
method (20), we assume that the bias of observing contacts
between bins ηi and θ j can be factorized as the product of
the bias factors bηi and bθ j of the two bins, respectively.
Hence, we can incorporate bias factors into the ASHIC-
ZIPM model as follows:

Tηi θ j | Zηi θ j ∼ ZIP(bηi bθ j ληi θ j , Zηi θ j ) (8)

Our ASHIC software provides an option to estimate the
bias factors from real diploid Hi-C data and to incorporate
them into our model (Supplementary Methods).
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Estimating allele-specific chromatin structures and contact
frequencies via EM algorithm

We design an EM algorithm to simultaneously infer 3D
structures and estimate model parameters. The EM algo-
rithm for the ASHIC-ZIPM model is briefly outlined be-
low. Details of the EM algorithms for both ASHIC-PM and
ASHIC-ZIPM are available in Supplementary Methods.

In the ASHIC-ZIPM model, the parameter space con-
tains the homologous chromosome structures Xm ∈ R3×n

and X p ∈ R3×n , the distance-decay exponent α, the scaling
factor β, the hyper parameter γ = {γηi θ j } (for the Bernoulli
prior distribution of the Poisson state latent variables Z =
{Zηi θ j }), and the allele-identifiable probabilities q = {qk}, 1
≤ k ≤ n. Note that in Equation (3), the ZIP parameter ληi θ j

is a function of α, β, Xm and X p. Here, we fix α and β in or-
der to obtain a unique solution for Xm and X p. Specifically,
we use true estimate of α in simulations and set α = −3 in
real data. We set β = 1 in both cases.

From the diploid Hi-C data, we can directly observe the
allele-certain contacts CO and the allele-ambiguous con-
tacts CX. The unobserved latent variables include the hid-
den allele-specific contacts CH and the Poisson state latent
variables Z. The goal of the EM algorithm is to find the
maximum likelihood estimate (MLE) of the model param-
eters, reconstruct the allele-specific 3D structures Xm and
X p, and impute the true allele-specific contacts T.

The complete likelihood of the observed data {CO, CX}
and the unobserved latent variables {CH, Z} is

Lc =L
(
Xm, X p, γ , q | CO, CX, CH, Z

)
=p (Z | γ ) p

(
CH | Z, Xm, X p, q

)
p

(
CO | Z, Xm, X p, q

)
p

(
CX | CH) (9)

To solve the MLE of the marginal likelihood of observed
data {CO, CX}, we propose an EM algorithm which applies
the following two steps iteratively:

• Expectation step (E-step):
Q = Q

(
Xm, X p, γ , q; Xm

(t), X p
(t), γ (t), q(t)

) =
ECH ,Z|CO,CX,Xm

(t),X p
(t),γ (t),q(t) (logLc)

• Maximization step (M-step):
Xm

(t+1), X p
(t+1), γ (t+1), q(t+1) = arg max

Xm,X p,γ ,q
Q

The pseudocode and detailed steps of the EM algo-
rithm are available in Supplementary Methods. In partic-
ular, while estimating the homologous structures Xm and
X p, we develop an inter-homologous optimization strategy.
Briefly, we first estimate Xm and X p separately, then esti-
mate the relative position between the two homologs to im-
prove the final structure prediction (Supplementary Meth-
ods). The 3D coordinates of each initial structure were ran-
domly sampled from a unit cube. We first applied the multi-
dimensional scaling method (16,21) to obtain a draft struc-
ture, and then used the draft structure as the starting point
for the ASHIC models.

We implement both ASHIC-PM and ASHIC-ZIPM
methods in Python. The software can be accessed publicly
at https://github.com/wmalab/ASHIC.

Simulation settings

Simulating allele-specific chromatin contacts from homolo-
gous X chromosome structures. First, We considered the
homologous X chromosomes as the ground truth and simu-
lated diploid Hi-C datasets as described below. We assumed
that the allele-specific chromatin contact frequencies follow
the ASHIC-ZIPM model. The true model parameters αm,
αp, β, γ and q were estimated from two published datasets
on human GM12878 cells: the predicted X chromosome
structures from single-cell Hi-C data by Tan et al. (13), and
the allele-specific contact matrices from in situ bulk Hi-C
data by Rao et al. (6), both at 100 kb resolution (Supple-
mentary Methods, Supplementary Table S2).

At the default setting, we generated 10 simulated allele-
specific Hi-C datasets with the scale factor β = 100%β̂
and the average allele-identifiable probability q = 0.5. Sub-
sequently, we kept other parameters fixed and generated
10 additional datasets for each of the decreased β values
(50%β̂, 20%β̂, and 10%β̂), and another 10 datasets for each
of the decreased q̄ values (0.25, 0.1 and 0.05). In total,
70 diploid Hi-C datasets were generated in this simulation
study. For each simulated dataset, we ran 10 random ini-
tializations and chose the result with the highest observed
log-likelihood for performance evaluation and subsequent
analyses.

Simulating allele-specific chromatin contacts from identical
chromosome structures. To study the effect of structural
differences on the performance of our methods, we de-
ployed a challenging simulation setting where we simu-
lated diploid Hi-C datasets using two identical chromosome
structures. Briefly, we duplicated the paternal (inactive) X
chromosome structure X p predicted by Tan et al. (13) as
the pseudo-maternal structure. Then we used the two iden-
tical chromatin structures as the ground truth and simulated
diploid Hi-C datasets in a similar manner as previously de-
scribed.

The relative position of these two identical structures was
determined by a reversed structural superposition proce-
dure. Using the original homologous structures Xm and X p,
we calculated the optimal translation vector v and rota-
tion matrix R using the Kabsch algorithm (22), such that
the root-mean-square deviation (RMSD) between X̃m =
R(Xm − v) and X p was minimized. Then we duplicated X p

and reversed the superposition of X p by X̃ p = R−1 X p + v.
The resulting identical structures X̃ p and X p was served as
the pseudo-homologous chromosome structures in which
the relative position between X̃ p and X p remained approx-
imately the same as the original homologous pair Xm and
X p.

Real Hi-C data processing and analysis

We used two diploid Hi-C datasets in our study (Sup-
plementary Table S2). First, allelic mapping results of
the wild-type patski Hi-C dataset published by Bonora
et al. (15) were downloaded from GEO (GSE107282).
Second, the raw sequencing reads of the GM12878 Hi-C
dataset published by Rao et al. (6) were downloaded from
GEO (GSE63525) and the allele-specific mapping was per-

https://github.com/wmalab/ASHIC
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formed using HiC-Pro (23). Briefly, HiC-Pro aligned reads
to a masked reference genome where all SNP sites are N-
masked. Then reads overlap with SNP sites were assigned to
either maternal or paternal allele based on the nucleotide at
the SNP position. Reads that do not overlap with any SNPs
were labeled as allele-ambiguous. Reads with conflicting al-
lele assignment or unexpected allele at SNP sites were dis-
carded. For each genomic region, we ran 20 random initial-
izations with the ASHIC-ZIPM model and chose the one
with the highest likelihood for subsequent analyses.

Convergence and running time

The convergence of the EM algorithm is defined as the rel-
ative increase of log-likelihood between two consecutive it-
erations is <10−4. We tested our ASHIC software using a
single core on an Intel E5-2683v4 processor with 8GB mem-
ory allocation. In a typical simulation setting, two X chro-
mosomes were partitioned into 3000+ bins at 100 kb reso-
lution. With the default sequencing coverage (β = 100%β̂)
and SNP density (q = 0.5) setting, both ASHIC-ZIPM and
ASHIC-PM converged within 20 iterations (2 h). Lower
coverage or lower SNP density requires more iterations. For
example, when q reduced to 0.05, the EM algorithm of
ASHIC-ZIPM took about 50 iterations (8 h) to converge.
When β decreased to 10%β̂, the EM algorithm of ASHIC-
ZIPM underwent ∼90 iterations (20 h) to converge.

Evaluation metrics

We used the following evaluation metrics in the simulation
studies: the recovery rate (RR) for measuring the propor-
tion of diploid Hi-C contacts recovered by each method,
the imputation error rate (IER) and the stratum adjusted
correlation coefficient (SCC) (24) for measuring the accu-
racy of imputed diploid contact matrices, the distance error
rate (DER) and homologous distance error rate (HDER)
for measuring the accuracy of predicted allelic 3D struc-
tures. Additionally, we calculated the recall, precision and
F1 score to evaluate the allele-specific chromatin interac-
tions identified from imputed diploid contact matrices. In
the real data analysis of mouse X chromosomes, we used
the bipartite index (BI) (9) to measure the bipartition orga-
nization of the inactive X chromosome, and calculated the
radius of gyration (Rg) to measure the compactness of both
X chromosomes. The detailed definitions of these evalua-
tion metrics can be found in Supplementary Methods.

RESULTS

Simulation studies on homologous X chromosomes

Default simulation setting. We first evaluated the perfor-
mance of the proposed ASHIC methods on simulated
diploid Hi-C datasets of the homologous X chromosomes
in human GM12878 cells. Of the two X chromosomes, the
active X chromosome (denoted as Xa) is the maternal copy
and the inactive X chromosome (denoted as Xi) is the pa-
ternal copy. We considered the 3D structures of Xa and Xi
published by Tan et al. (13) as the ground truth and gener-
ated 10 simulated diploid Hi-C datasets at 100-kb resolution

Figure 2. Evaluation on simulated homologous X chromosome (Xa/Xi)
data. (A) Stratum-adjusted correlation coefficients (SCCs) and (B) and
Pearson’s correlation coefficients (PCCs) between the imputed diploid
contact matrices and the true contact matrices. The PCC curves are
smoothened using the locally weighted LOESS method. (C) Distance er-
ror rates between the predicted allelic 3D structures and the true structures.
(D) F1 scores of the identified allele-specific chromatin interactions.

(see Materials and Methods). Each simulated dataset con-
tained two intra-chromosomal contact matrices, one for Xa
and one for Xi, as well as one inter-chromosomal contact
matrix between Xa and Xi.

We compared our ASHIC-ZIPM and ASHIC-PM meth-
ods with two commonly used approaches for analyzing
diploid Hi-C data. The first approach is the allele-certain
method that uses only both-end allele-certain contacts
(6,11). The second approach is the mate-rescue method
that combines both-end allele-certain contacts with one-
end allele-ambiguous contacts by assigning the allele-
ambiguous read-end to the same allele as the allele-certain
mate-end (10,12,15).

To evaluate the imputation of diploid Hi-C contact
maps, we first calculated the proportion of allele-specific
contacts recovered by each method (Supplementary Table
S3). At the default sequencing coverage (β = 100%β̂) and
SNP density (q = 0.5) setting, the allele-certain and mate-
rescue approaches recovered evidently smaller proportion
of diploid chromatin contacts (25.65% and 75.55%, respec-
tively) compared to the ASHIC-ZIPM and ASHIC-PM
methods that were able to recover all one-end and both-end
allele-ambiguous reads, thereby achieving 100% full recov-
ery rate.

Next, we sought to assess the accuracy of the imputed
allele-specific contact matrices. Recent studies have demon-
strated that the genomic distance dependence and sequenc-
ing depth have confounding effects on measuring the sim-
ilarity between Hi-C contact matrices (24). To account
for these confounding factors, we computed the stratum
adjusted correlation coefficient (SCC) using the HiCRep
package (24) to measure the similarity between the im-
puted contact matrices and true matrices (Figure 2A). We
observed that the imputed diploid matrices obtained by
ASHIC-ZIPM and ASHIC-PM had near-perfect SCC val-
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ues of 0.9997 and 0.9996, respectively; whereas mate-rescue
and allele-certain methods demonstrated lower SCC values
of 0.9733 and 0.8100, respectively. ASHIC-ZIPM showed a
significantly higher SCC values than ASHIC-PM (P-value
= 2.53 × 10−3, one-sided paired Wilcoxon signed-rank test).
In addition, ASHIC-ZIPM performed significantly better
than the allele-certain and mate-rescue methods (P-values
= 2.53 × 10−3, one-sided paired Wilcoxon signed-rank
tests). Note that P = 2.53 × 10−3 is the smallest possible
P-value given the sample size.

The SCC statistic is a weighted average of the Pearson’s
correlation coefficients (PCCs) across different genomic dis-
tances (24). To breakdown the effect of genomic distance,
we computed the PCCs between the imputed contact ma-
trices and the true matrices at different genomic distances
(Figure 2B). As expected, the PCC values decreased as the
genomic distance increased for all four methods. We ob-
served that the ASHIC-ZIPM and ASHIC-PM methods
demonstrated similar PCC values across all genomic dis-
tances. In addition, the ASHIC-ZIPM and ASHIC-PM
methods outperformed the allele-certain and mate-rescue
approaches by large margin, especially at large genomic dis-
tances. Taken together, the SCC and PCC results showed
that our ASHIC methods can accurately impute allele-
specific contact matrices. Moreover, the imputation accu-
racy outperformed the allele-certain and mate-rescue ap-
proaches, especially for long-range contacts.

In addition to imputing diploid Hi-C contact matrices,
the ASHIC-ZIPM and ASHIC-PM methods also predict
allele-specific 3D structures. To evaluate the accuracy of the
predicted allelic structures, we calculated the distance error
rates between the predicted structures and the ground truth
(Figure 2C). We observed that ASHIC-ZIPM yielded sig-
nificantly lower distance error rates and thereby, more ac-
curate allelic 3D structures than those obtained by ASHIC-
PM (P-value = 2.53 × 10−3, one-sided paired Wilcoxon
signed-rank test).

Furthermore, we investigated whether the imputed
diploid contact matrices can facilitate the detection of
allele-specific chromatin interactions. First, we called sig-
nificant interactions using the Fit-Hi-C package (25) on the
true diploid contact matrices. We subsequently defined the
maternal-specific interactions as the interactions that were
called only from the true maternal matrix but not from
the paternal matrix. The paternal-specific interactions were
defined accordingly. The final set of true allele-specific in-
teractions was defined as the union of both monoallelic
sets, which contained 9061.5 interactions on average (Sup-
plementary Table S5). Following the same procedure, we
then identified the allele-specific interactions from the im-
puted diploid contact matrices resulting from the four meth-
ods, separately. We evaluated the identified allele-specific
interactions from each method using three metrics: preci-
sion, recall, and their harmonic mean F1 score (Figure 2D,
Supplementary Figure S1). ASHIC-ZIPM and ASHIC-PM
maintained the highest F1 scores of 0.9867 and 0.9853, re-
spectively. In addition, ASHIC-ZIPM significantly outper-
formed mate-rescue (F1 = 0.8940) and allele-certain (F1 =
0.6024) in terms of the F1 scores (P-values = 2.53 × 10−3,
one-sided paired Wilcoxon signed-rank tests). The low F1
scores of the mate-rescue and allele-certain methods were

primarily contributed by their low recall rates (Supplemen-
tary Figure S1), which was a result of their low recovery
rates of allele-ambiguous contacts (Supplementary Table
S3).

Collectively, our comparisons have demonstrated that
the proposed ASHIC-ZIPM and ASHIC-PM methods
outperformed the existing mate-rescue and allele-certain
approaches with respect to the recovery rate of allele-
ambiguous contacts, the accuracy of imputed diploid con-
tact matrices and predicted allelic 3D structures, and the
ability to facilitate the detection of allele-specific chromatin
loops. In addition, ASHIC-ZIPM demonstrated a better
performance overall than that of ASHIC-PM, especially in
the prediction of allelic 3D structures. To further evaluate
the performance of these methods under different circum-
stances, we conducted a series of additional simulation ex-
periments by adjusting three major factors: sequencing cov-
erage, SNP density, and homologous structural similarity.

Performance on low sequencing coverage data. The se-
quencing coverage of Hi-C contact matrices is a major fac-
tor that can affect the performance of the diploid Hi-C
methods. An observed zero entry in the Hi-C contact matrix
can be either a ‘true’ zero as a result of no physical contact
between the pair of chromatin fragments, or a ‘missing’ zero
as a result of insufficient sequencing coverage. Lower se-
quencing depth of Hi-C experiments yields lower-coverage
and sparse contact matrices that containing excessive ‘miss-
ing’ zeros. As a result, it becomes more challenging to dis-
tinguish the ‘true’ zeros from the ‘missing’ zeros.

While generating the simulation datasets, the scale factor
β controls the coverage of simulated contact matrices. We
estimated β̂ from the published Hi-C data by Rao et al. (6)
(Supplementary Methods). At the default β = 100%β̂ set-
ting, the simulated Hi-C map contained about 4.9 million
contacts from the homologous X chromosomes. To evaluate
the performance of our methods on lower-coverage data,
we fixed the SNP density q = 0.5 and gradually decreased
the value of β from 100%β̂ to 50%β̂, 20%β̂, and 10%β̂,
resulting in 2.5, 1.0 and 0.5 million contacts, respectively.
We then repeated the assessments of the ASHIC-ZIPM,
ASHIC-PM, mate-rescue, and allele-certain methods with
these low-coverage simulation datasets.

As shown in Figure 3A, ASHIC-ZIPM and ASHIC-PM
maintained the highest SCC values across all coverage lev-
els. When the sequencing coverage decreased from 100%β̂

to 10%β̂, the SCC values for both methods only dropped by
0.28%. On the other hand, when sequencing coverage low-
ered, the SCC values decreased evidently for mate-rescue
and allele-certain by 1.80% and 10.38%, respectively. These
results suggested that our ASHIC methods can robustly and
accurately infer allele-specific contact matrices under low
sequencing coverage conditions.

Additionally, we observed that ASHIC-ZIPM produced
more accurate 3D structures with smaller distance error
rates than those produced by ASHIC-PM across all se-
quencing coverage levels (Figure 3B). The improvements of
the distance error rates were significant at coverage levels
100%β̂, 50%β̂ and 20%β̂ (P-values = 2.53 × 10−3, 2.53 ×
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Figure 3. ASHIC-ZIPM accurately imputes diploid contact maps and 3D structures on low-coverage Xa/Xi simulation data. (A) SCCs between the
imputed diploid contact matrices and the true contact matrices, (B) Distance error rates between the predicted allelic 3D structures and the true structures,
and (C) F1 scores of the identified allele-specific chromatin interactions at different sequencing coverage β levels.

10−3, 6.26 × 10−3, respectively, one-sided paired Wilcoxon
signed-rank tests).

When the sequencing coverage decreased from 100%β̂ to
10%β̂, the true set of allele-specific interactions decreased
from 9061.5 to 2136.4 interactions (Supplementary Table
S5, Supplementary Methods). As shown in Figure 3C, when
the coverage decreased from 100%β̂ to 10%β̂, the ability
of the allele-certain method to detect allele-specific inter-
actions was highly impacted as its F1 scores dropped by
35.17% from 0.6024 to 0.3906. The decrease of F1 score
for mate-rescue was less severe, about 8.90% from 0.8940 to
0.8144. The ASHIC methods consistently delivered robust
results against coverage changes (ASHIC-ZIPM: �F1 =
1.26%, ASHIC-PM: �F1 = 1.14%), and maintained high
F1 score even at the lowest 10%β̂ level (ASHIC-ZIPM:
0.9743, ASHIC-PM: 0.9740). The decay in F1 scores for the
allele-certain and mate-rescue methods was primarily con-
tributed by their low recall rates (Supplementary Figure S1).

Taken together, our results demonstrated that the ASHIC
methods significantly outperformed other methods in low
sequencing coverage conditions, resulted in more accurately
imputed matrices and benefited the detection of allele-
specific interactions on low-coverage data. In particular, we
observed that ASHIC-ZIPM had better performance than
ASHIC-PM under low coverage conditions. This is ow-
ing to the fact that in our ASHIC-ZIPM model, the Pois-
son state probabilities γγγ act as weights between the ‘true’
and ‘missing’ zeros. When the sequencing coverage low-
ered, the observed diploid matrices contained additional
‘missing’ zeros. The zero-inflated model explicitly adjusted
the estimation of γγγ to model these ‘missing’ zeros, thereby
achieving better model fitting results. Consistent with our
expectations, the estimated values of γγγ became smaller as
coverage decreased, which demonstrated its ability to ac-
count for the additional ‘missing’ zeros (Supplementary
Figure S2).

Performance on low SNP density data. In addition to the
sequencing coverage, the SNP density is another major fac-
tor affecting the performance of the diploid Hi-C meth-
ods. The SNP density varies across different species and
cell lines. For example, the F1 mouse cross (BL6×Spretus)
has a relatively high SNP density of approximately 1 SNP
per 75 bp. On average, a 70-bp sequence read has a

60% chance overlapping with SNP(s), thus being allele-
identifiable. Whereas the GM12878 cell line has a low SNP
density about 1 for every 1700 bp, which is corresponding
to an average allele-identifiable probability of 0.04 (Sup-
plementary Table S1). To evaluate the performance of our
methods on low-SNP-density data, we fixed the coverage
level at 100%β̂ and then gradually decreased q, the aver-
age allele-identifiable probability, from 0.5 which mimics the
BL6×Spretus cross, to 0.25, 0.1 and 0.05, where the smallest
value mimics the GM12878 cells.

When the SNP density was low, fewer both-end allele-
certain contacts but higher number of one-end allele-
ambiguous and both-end allele-ambiguous contacts were
observed. Consequently, as the average allele-identifiable
probability q decreased from 0.5 to 0.05, the recovery rates
dropped dramatically from 25.65% to 0.25% for allele-
certain and from 75.55% to 9.82% for mate-rescue (Sup-
plementary Table S3). In contrast, our ASHIC methods
were able to recover all allele-ambiguous reads at the low-
est q = 0.05 setting. Among the recovered contacts, 15.95%
for ASHIC-ZIPM and 17.60% for ASHIC-PM were incor-
rectly imputed (Supplementary Table S4).

Consistent with the high recovery rates and low impu-
tation error rates, the SCC values also demonstrated ro-
bust and accurate imputation of diploid contact matrices
by the ASHIC methods at low SNP density settings (Fig-
ure 4A). When the average allele-identifiable probability q
decreased from 0.5 to 0.05, the SCC values dropped sig-
nificantly from 0.8100 to 0.3959 for allele-certain and from
0.9733 to 0.8719 for mate-rescue, respectively. In contrast,
the SCC values remained high at 0.9941 and 0.9922 for
ASHIC-ZIPM and ASHIC-PM, respectively, at the low-
est q = 0.05 setting. Moreover, ASHIC-ZIPM significantly
outperformed ASHIC-PM at the lowest SNP density level
(P-value = 8.30 × 10−3, one-sided paired Wilcoxon signed-
rank test). The difference between our ASHIC methods and
other methods was also observed on the PCC plot at the
lowest SNP density, particularly for long genomic distances
(Supplementary Figure S3). Furthermore, when comparing
the predicted allelic 3D structures with the ground truth,
ASHIC-ZIPM outperformed ASHIC-PM significantly at
all SNP density levels (P-values = 2.53 × 10−3, 4.67 ×
10−3, 3.46 × 10−3, 2.53 × 10−3, for q = 0.5, 0.25, 0.1, 0.05,
respectively, one-sided paired Wilcoxon signed-rank tests)
(Figure 4B).
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Figure 4. ASHIC-ZIPM accurately imputes diploid contact maps and 3D structures on low-SNP-density Xa/Xi simulation data. (A) SCCs between the
imputed diploid contact matrices and the true contact matrices, (B) Distance error rates between the predicted allelic 3D structures and the true structures,
and (C) F1 scores of the identified allele-specific chromatin interactions at different SNP density q levels.

Next, we questioned whether the ability to detect allele-
specific chromatin interactions was impacted by low SNP
density levels. Adjusting the average allele-identifiable prob-
ability did not affect the underlying true diploid contact
matrices. As a result, the true set of allele-specific interac-
tions remained the same at different SNP density settings
(Supplementary Table S5, β = 100%β̂). As shown in Fig-
ure 4C, low SNP density severely impacted the allele-certain
and mate-rescue methods. The F1 scores of allele-certain
dropped from 0.6024 to 0.0039, recovering only 17.8 out
of 9061.5 true allele-specific interactions. Similarly, the F1
score of mate-rescue dropped from 0.8940 to 0.3666. In con-
trast, when SNP density lowered, the F1 score of our meth-
ods decreased only slightly––3.62% for ASHIC-ZIPM and
4.26% for ASHIC-PM. In addition, our ASHIC methods
outperformed the other methods by a notable margin. We
observed that decreasing SNP density increased the margin
between ASHIC-ZIPM and other methods. Taken together,
our results demonstrated that the ASHIC-ZIPM method
significantly exceeded other methods with high robustness
in low SNP density situations.

Simulation studies on identical chromosomal structures

In the aforementioned simulation settings, we took the ho-
mologous X chromosomes in GM12878 cells as the ground
truth, where Xa and Xi have drastically dissimilar struc-
tures. Unlike the X chromosomes, homologous autosomes
often have similar 3D shapes. Imputing diploid Hi-C con-
tact matrices and allelic structures from homologs with sim-
ilar structures is a more challenging problem than the one
from homologs with different structures. To evaluate our
methods in such situation, we duplicated the paternal/Xi
structure as the pseudo-maternal structure to build an iden-
tical homologous structure pair (see Methods). We then
generated simulation datasets and evaluated our methods
at different coverage and SNP density settings, similarly as
previously described.

Performance on low sequencing coverage data. As demon-
strated in previous homologous structure simulations, our
ASHIC methods maintained high accuracy of imputed
diploid contact matrices at low sequencing coverage set-
tings (Figure 5A). The SCC values were all above 0.9949
for ASHIC-ZIPM and above 0.9938 for ASHIC-PM at var-

Figure 5. ASHIC-ZIPM accurately imputes diploid contact maps and 3D
structures on low-coverage identical-homolog simulation data. (A) SCCs
between the imputed diploid contact matrices and the true contact ma-
trices, (B) Distance error rates between the predicted allelic 3D structures
and the true structures, (C) Homologous distance error rates between the
predicted maternal and paternal 3D structures and (D) F1 scores of the
identified bi-allelic interactions at various sequencing coverage β levels.

ious sequencing coverage levels. On the other hand, the SCC
values of mate-rescue demonstrated a minor decline from
0.9778 to 0.9664 when the coverage decreased from 100%β̂

to 10%β̂. The allele-certain method was the most impacted,
as its SCC values declined by 7.46% from 0.8362 to 0.7738
when the coverage level dropped from 100%β̂ to 10%β̂.

We then evaluated the accuracy of the allelic 3D struc-
tures predicted by our ASHIC methods. Overall, ASHIC-
ZIPM generated more accurate structures with smaller dis-
tance error rates than the ones predicted by ASHIC-PM
across all coverage levels (Figure 5B). The improvements
were significant at 100%β̂, 50%β̂, and 10%β̂ levels (P-values
= 2.53 × 10−3, 1.42 × 10−2, 2.53 × 10−3, one-sided paired
Wilcoxon signed-rank tests).

In addition to comparing the predicted allelic structures
against the ground truth structures, we further calculated
the homologous distance error rate between the predicted
maternal and paternal structures (Figure 5C). For both
ASHIC-ZIPM and ASHIC-PM methods, the average ho-
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Figure 6. ASHIC-ZIPM accurately imputes diploid contact maps and
3D structures on low-SNP-density identical-homolog simulation data. (A)
SCCs between the imputed diploid contact matrices and the true contact
matrices, (B) distance error rates between the predicted allelic 3D struc-
tures and the true structures, (C) homologous distance error rates between
the predicted maternal and paternal 3D structures and (D) F1 scores of the
identified bi-allelic interactions at different SNP density q levels.

mologous distance error rates were smaller than 0.08, sug-
gesting that both models produced homologous structures
with very similar shapes. Furthermore, the ASHIC-ZIPM
model had significantly lower homologous distance error
rates than ASHIC-PM, at sequencing coverage 100%β̂ and
10%β̂ levels (P-values = 2.53 × 10−3, one-sided paired
Wilcoxon signed-rank tests). These results further con-
firmed that ASHIC-ZIPM predicted more accurate allelic
3D structures than the structures predicted by ASHIC-PM.

Next, we investigated the effects of low sequencing cov-
erage on the detection of chromatin interactions when the
homologous structures were identical. Similar to the case of
different homologous structures, we applied Fit-Hi-C (25)
to call significant interactions on the two allele-specific
contact matrices separately. Given that the two ground
truth homologous structures were identical, we defined the
true integration set as the bi-allelic interactions shared by
both maternal and paternal chromosomes (Supplementary
Methods). When the coverage dropped from 100%β̂ to
10%β̂, the number of interactions in the true set decreased
by 81.48% from 4103.1 to 759.9 (Supplementary Table S6).
As shown in Figure 5D, the allele-certain method was the
most impacted by the sequencing coverage changes, where
its F1 scores decreased by 31.23% from 0.6127 to 0.4214 as
the coverage dropped from 100%β̂ to 10%β̂. The F1 score
of mate-rescue decreased to a less extend, by 7.37% from
0.9075 to 0.8406. Whereas our ASHIC-ZIPM and ASHIC-
PM methods demonstrated consistent high F1 scores of
0.9351 and 0.9296, respectively, even under the lowest cov-
erage 10%β̂ setting.

Performance on low SNP density data. When the SNP den-
sity lowered, we observed an overall decreasing trend in the
SCC values for all four methods (Figure 6A). The allele-
certain and mate-rescue methods were greatly impacted by

the low SNP density. When the average allele-identifiable
probability q decreased from 0.5 to 0.05, the SCC values
dropped significantly by 46.52% from 0.8362 to 0.4472 for
allele-certain and by 9.16% from 0.9778 to 0.8883 for mate-
rescue. Again, our ASHIC methods maintained robustly
high accuracy of the imputed contact matrices; the SCC
values decreased only by 0.45% from 0.9996 to 0.9950 for
ASHIC-ZIPM and by 2.38% from 0.9988 to 0.9750 for
ASHIC-PM when q decreased from 0.5 to 0.05. The visi-
ble difference between ASHIC-ZIPM and ASHIC-PM at
the lowest SNP density level q = 0.05 was also supported
by the PCC measures, where ASHIC-ZIPM outperformed
ASHIC-PM by an evidently large margin of PCCs within
genomic distance of 100 Mb (Supplementary Figure S3).

In terms of structural accuracy, ASHIC-ZIPM also out-
performed ASHIC-PM with significantly smaller distance
error rates across all SNP density levels (P-values = 2.53
× 10−3, one-sided paired Wilcoxon signed-rank tests) (Fig-
ure 6B). Furthermore, the allelic structures predicted by
ASHIC-ZIPM demonstrated significantly smaller homol-
ogous distance error rates than the ones predicted by
ASHIC-PM (P-values = 2.53 × 10−3, at all four q levels,
one-sided paired Wilcoxon signed-rank tests) (Figure 6C).

In addition to achieving the highest imputation accuracy
of the diploid contact matrices and 3D structures, ASHIC-
ZIPM also demonstrated the best performance with respect
to the detection of biallelic chromatin interactions under
low SNP density conditions (Figure 6D). When the aver-
age allele-identifiable probability q decreased from 0.5 to
0.05, the F1 values dropped by 99.43% for allele-certain,
62.49% for mate-rescue, and 8.32% for ASHIC-PM. The
ASHIC-ZIPM model showed the smallest decline in F1
scores, merely 1.70% from 0.9814 to 0.9647. Moreover, we
observed that ASHIC-ZIPM significantly outperformed all
other methods by a large margin across all SNP density
levels (P-values = 2.53 × 10−3, one-sided paired Wilcoxon
signed-rank tests)

Taken together, we demonstrated that our ASHIC meth-
ods significantly outperformed the allele-certain and mate-
rescue methods under low SNP density conditions when
the homologous structures have identical shapes. In addi-
tion, ASHIC-ZIPM evidently outperformed the ASHIC-
PM model by a large margin, especially at the lowest SNP
density level.

ASHIC reconstructs the bipartite structure of the mouse in-
active X chromosome

The X chromosomes in mammalian females is a repre-
sentative example of homologous structural difference. In
contrast to males having only one X chromosome, the fe-
males have two X chromosomes. To compensate for the
dosage imbalance of X-linked genes between females and
males, one X chromosomes in female cells is randomly
silenced through the X chromosome inactivation (XCI)
mechanism (26). To study the structural differences between
the active X (Xa) and inactive X (Xi) chromosomes, we ap-
plied ASHIC-ZIPM to a published diploid Hi-C data gen-
erated from wild-type patski (BL6×Spretus) cells (15). The
patski cell line has completely skewed XCI such that the ma-
ternal BL6 X is always inactive while the paternal Spretus
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Figure 7. Bipartite organization of the inactive X chromosome in mouse
patski cells. (A) ASHIC-ZIPM-imputed allele-specific Hi-C contact matri-
ces of Xi and Xa are shown at 500 kb resolution. The Xi shows a bipar-
tite structure of two superdomains connected by a hinge region (Dxz4),
indicated by an arrow. Gray strips indicate low mappability regions. (B)
Chromosome-wise bipartite index (BI) values for Xi (brown) and Xa (blue)
at 500 kb (left), 100 kb (middle) and 50 kb (right) resolutions. The Xi curve
shows an evident peak at the hinge region (yellow). (C) The Xi structures
predicted by ASHIC-ZIPM at 500, 100 and 50 kb resolutions. The first
superdomain (centromeric region) is shown in orange, and the second su-
perdomain (distal region) is shown in brown. The hinge region (Dxz4) is
marked by a yellow ball. The 3D structures are interpolated and smoothed
by the Akima interpolator in SciPy. (D) Box plots of the radius of gyra-
tion for the Xi (brown) and Xa (blue) structures at 500, 100 and 50 kb
resolutions.

X is always active. Several Hi-C studies conducted on the
patski cells have demonstrated that the maternal Xi and pa-
ternal Xa chromosomes exhibit distinct morphology and
chromatin contact profiles (9,15). Specifically, Xi shows a
clear bipartite structure, where the entire chromosome is
densely packed into two superdomains. The hinge region
between the two superdomains contains the macrosatellite
repeat locus Dxz4 and represents a nucleolus-associated do-
main (6,9,11,15).

To study the bipartite organization of Xi, we applied our
ASHIC-ZIPM model to the patski Hi-C data and recon-
structed the diploid contact maps and 3D structures of Xa
and Xi at various resolutions (500, 100 and 50 kb). As
shown in Figure 7A, the contact map of Xa demonstrated
a clear plaid pattern representing the alternating A/B com-
partments. In contrast, Xi was clearly separated into two
superdomains by a hinge region containing Dxz4. We
observed frequent intra-superdomain contacts but sparse
inter-superdomain contacts on Xi. In addition, we calcu-
lated the bipartite index (BI) (9) (Supplementary Methods)
for both X chromosomes (Figure 7B). At all three reso-
lutions, we observed an evident BI peak at the hinge re-
gion (Dxz4) on Xi, confirming the existence of bipartite
organization on Xi. In contrast, the BI values were rather
flat across the entire Xa, indicating the absence of bipar-
tite structure. These observations demonstrated that our
ASHIC-ZIPM method can produce robust and consistent
diploid contact maps across different resolutions.

In addition to the existence of two superdomains in the
Xi contact map, we also observed that the predicted Xi
structures preserved the bipartite conformation across all
three resolutions (Figure 7C). The two superdomains were
clearly separated in space, as each superdomain occupied
half of the sphere and there were minimal interactions be-
tween them. In addition, the hinge region (Dxz4) connect-
ing the two superdomains was located towards the periph-
ery of the Xi structure, which is consistent with previous
DNA-FISH results (9). While the previously published Xa
and Xi structures were at 1 Mb (9) and 500 kb (14) reso-
lutions, our method produced chromosomal structures at
50 kb resolution and successfully confirmed the bipartite
organization of Xi.

With regards to the overall morphology of the chromo-
somal structures, we observed that Xi exhibited a more con-
densed structure than Xa, which is consistent with the fact
that Xi is almost entirely silenced. In particular, we cal-
culated the radius of gyration (Rg, Supplementary Meth-
ods) (27) to measure the compactness of the X chromo-
somes (Figure 7D). Across all three resolutions, Xi consis-
tently showed a significantly lower Rg value than Xa, indi-
cating that Xi was more tightly packed (P-values = 4.43 ×
10−5, one-sided paired Wilcoxon signed-rank tests).

To assess the reproducibility of the inferred allelic con-
tact maps and 3D structures, we randomly split the X chro-
mosome data into two pseudo-replicates and performed
ASHIC-ZIPM analysis on each one separately. At 500 kb
resolution, the imputed allelic contact matrices were highly
similar with SCC values of 0.9632 (Xi) and 0.9691 (Xa)
between the two pseudo-replicates (Supplementary Figure
S4). Additionally, the allelic 3D structures estimated from
the pseudo-replicates were well aligned with similar global
architecture. Moreover, similar results at 100 kb resolution
further confirmed the reproducibility of the ASHIC method
(Supplementary Figure S5).

Collectively, the results obtained on the patski Hi-C data
demonstrated that our ASHIC-ZIPM method can accu-
rately and robustly detect distinct allele-specific chromatin
organizations of Xa and Xi at fine resolution.

ASHIC reveals differential allele-specific chromatin organi-
zation at the mouse H19/Igf2 imprinting region

Imprinting is an epigenetic mechanism that causes a subset
of genes to express exclusively on one allele in diploid cells.
The expression of imprinted genes is controlled by parental-
specific epigenetic modifications, such as DNA methylation,
at the imprinting control regions. One well-studied example
is the H19/Igf2 imprinting region. In the mouse genome,
the paternally expressed Igf2 gene is located approximately
80 kb upstream (telomeric side) from the long non-coding
RNA H19 that is expressed only on the maternal allele.
These two genes demonstrate opposite allele-specific ex-
pression yet share a common set of enhancers located
downstream of H19 (29–31). It has been shown that the
parent-specific expression pattern of H19 and Igf2 is con-
trolled by the H19 differentially methylated region (H19-
DMR) located 2 kb upstream from H19 (32). The H19-
DMR is methylated only on the paternal allele, and there-
fore exhibits methylation-sensitive CCCTC-binding factor
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(CTCF) binding. On the maternal allele, the unmethylated
H19-DMR recruits CTCF bindings and therefore blocking
the interactions between the enhancers and Igf2. As a re-
sult, Igf2 remains unexpressed, while H19 can still access
the enhancers and thus is activated. Whereas on the pater-
nal allele, the methylated H19-DMR inhibits CTCF bind-
ings. Consequently, Igf2 can access the enhancers and being
activated; while the H19 silencing is likely caused by spread-
ing of methylation from H19-DMR (33).

It has been widely speculated that CTCF attains
enhancer-blocking insulation function via the formation of
chromatin loops (34). Using diploid Hi-C contact maps of
human GM12878 cells at 25 kb resolution, Rao et al. (6)
examined the H19/IGF2 imprinting region and identified
parental-specific chromatin loops between the H19/IGF2
cluster and a distal region which was referred to as the
H19/Igf2 Distal Anchor Domain (HIDAD). The HIDAD-
H19 loop was present exclusively on maternal allele; in con-
trast, the HIDAD-IGF2 loop appeared only on the paternal
allele. Additionally, Llères et al. (35) performed a diploid
4C-seq study on the mouse ESCs and showed that H19-
DMR interacted significantly more with the mouse homo-
logue of HIDAD (mHIDAD) on maternal allele compared
to the interactions on the paternal allele. They subsequently
performed 3D DNA-FISH experiments and confirmed that
the distances between mHIDAD and H19 were significantly
shorter on the maternal allele than the distances on the pa-
ternal allele.

Although the aforementioned 4C-seq study (35) and sev-
eral other 3C studies (36–38) have been conducted in the
H19/Igf2 imprinting region, diploid Hi-C studies are still
restricted to a rather coarse resolution due to the limita-
tions of low SNP density and insufficient sequencing cover-
age. To bridge this gap and provide a holistic view of chro-
matin structures on the imprinted H19/Igf2 region, we ap-
plied our ASHIC-ZIPM method to the published diploid
Hi-C data in mouse patski cells (15), and generated fine-
scale allele-specific contact maps and 3D structures of a 5-
Mb region (chr7: 140–145 Mb) around the H19/Igf2 im-
printing region at 10 kb resolution.

First, we constructed a differential contact map using log-
fold-change values between the imputed maternal and pa-
ternal contacts (Figure 8A). Along with the contact map, we
also visualized the allelic CTCF ChIP-seq data (15). Con-
sistent with previous studies (39,40), we observed a clear
maternal-specific CTCF binding at the H19-DMR locus.
Additionally, a few bi-allelic CTCF binding clusters were
observed at mHIDAD, near the Syt8 and Lsp1 genes, and
at the telomeric side of Igf2. As shown in Figure 8A, the
contacts between mHIDAD and H19 were enriched on
the maternal allele (box 1), whereas the contacts between
mHIDAD and Igf2 were enriched on the paternal allele
(box 2). In addition to the contacts between mHIDAD and
H19/Igf2, H19 and Igf2 demonstrated differential contact
preferences to the bi-allelic CTCF clusters near Syt8 and
Lsp1 (boxes 3 and 4). To further characterize the parental-
specific chromatin interactions, we identified chromatin
loops with genomic distance of 30–500 kb from the im-
puted allelic contact maps using Fit-Hi-C (25) with a strict
FDR threshold (q-value < 10−5). The identified chromatin
loops were mostly anchored to the CTCF binding clusters

(Figure 8A). We further categorized these chromatin loops
into bi-allelic loops that were shared between the two al-
leles, or monoallelic loops that are either maternal-specific
or paternal-specific. Consistent with the differential contact
map, chromatin loops anchored at H19 and Igf2 were pri-
marily parental-specific. We observed a distinct pattern of
maternal-specific chromatin loops between mHIDAD and
H19 and paternal-specific chromatin loops between mHI-
DAD and Igf2. Besides mHIDAD, the region containing bi-
allelic CTCF binding clusters near the Syt8 and Lsp1 genes
also demonstrated parental-specific chromatin interactions
with H19 and Igf2. Specifically, these CTCF clusters inter-
acted preferentially with H19 on the maternal allele and
with Igf2 on the paternal allele. These observations are con-
sistent with the previous 4C-seq results in mouse ESCs (35).

Besides the differential contact map, we also examined
the allele-specific chromatin conformations using the pre-
dicted allelic 3D structures (Figure 8B). The overall chro-
matin organizations of the H19/Igf2 imprinting region ap-
peared to be similar between the two alleles. However, the
relative spatial position among mHIDAD, H19, and Igf2
demonstrated parental-specific differences. From the 3D
structures, we observed that mHIDAD was spatially close
to H19 on the maternal allele, presumably forming a chro-
matin loop. In addition, we observed that Igf2 was much
closer to mHIDAD on paternal structure than on the ma-
ternal structure.

For the quantitative comparison, we calculated the pair-
wise Euclidean distances of mHIDAD, H19, and Igf2 on
the maternal and paternal structures predicted by ASHIC-
ZIPM from 20 random initializations. As shown in Fig-
ure 8C, the distance between mHIDAD and H19 was sig-
nificantly smaller on the maternal structure than that on
the paternal structure (P-value = 4.43 × 10−5, one-sided
Wilcoxon paired signed-rank test), which is consistent with
the previous DNA-FISH data (35). In contrast, the distance
between mHIDAD and Igf2 was significantly larger on ma-
ternal allele (P-value = 4.43 × 10−5, one-sided Wilcoxon
paired signed-rank test), which is consistent with the ob-
servation of paternal-specific HIDAD-IGF2 loop in human
GM12878 cells (6). No significant difference of the distance
between H19 and Igf2 was detected on our predicted al-
lelic structures. These observations demonstrated that our
method can stably predict fine-scale 3D structures that re-
flect the distinct parental-specific chromatin conformations.

ASHIC-imputed diploid contact maps uncover the maternal-
specific sub-TAD organization at the mouse H19/Igf2 locus

In addition to the formation of chromatin loops, CTCF
also participates in the establishment of higher-order chro-
matin structures such as topologically-associating domains
(TADs). TADs are sub-megabase genomic regions contain-
ing frequent local chromatin interactions, whereas TAD
boundaries result in physical insulation between neighbor-
ing domains (8). It has been observed that CTCF bindings
are often enriched at TAD boundaries and play an impor-
tant role in TAD formation (6,8). Since the genome is or-
ganized in a hierarchical manner, smaller domains called
sub-TADs are often observed within the large TADs. Un-
like TADs that are mostly invariant between cell types, sub-
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Figure 8. Allele-specific chromatin organizations of the H19/Igf2 imprinting region in mouse patski cells. (A) Differential contact map between the ASHIC-
ZIPM-imputed maternal and paternal contacts at 10 kb resolution. Contact counts are normalized separately on each allele to account for the potential
mapping bias towards the reference genome. The red vs blue color key indicates maternal versus paternal enrichment. Four allelicly enriched chromatin
interacting regions are labeled in boxes 1–4. Maternal-specific CTCF peak (pink) and bi-allelic CTCF binding clusters (yellow) are highlighted. Chromatin
loops are called using Fit-Hi-C (25) and categorized into maternal-specific (red), paternal-specific (blue) and bi-allelic (gray). Only loops anchored at H19
or Igf2 are displayed. (B) Allelic 3D structures of the H19/Igf2 imprinting region predicted by ASHIC-ZIPM at 10 kb resolution. The maternal (red) and
paternal (blue) structures are overall similar, but the relative spatial positions of mHIDAD (blue), H19 (yellow), and Igf2 (orange) are evidently different.
(C) Box plots of pairwise Euclidean distances between H19-Igf2 (left), mHIDAD-H19 (middle), and mHIDAD-Igf2 (right). (D) Allelic Hi-C contact maps
at 10 kb resolution (top panel: maternal allele, red color key; bottom panel: paternal allele, blue color key). Maternal-specific (red), paternal-specific (blue),
and bi-allelic (gray) chromatin loops are called using Fit-Hi-C (25). A local minimum of the insulation score (IS) is marked by an asterisk. Positive and
negative directionality index (DI) values (8) are shown in red and blue, respectively. (Sub-)TAD domains derived from IS and DI measures are labeled as
triangles on the contact maps, and dashed lines indicate (sub-)TAD boundaries. Panels (A) and (D) are drawn using pyGenomeTracks (28).

TADs are more variable and play a pivotal role in medi-
ating cell-type-specific gene regulation (41,42). Based on
the presence of monoallelic CTCF bindings at H19-DMR,
Llères et al. (35) proposed a novel parental-specific sub-
TAD model for the regulation of imprinting at H19/Igf2 lo-
cus. Supported by allelic 4C-seq and DNA-FISH data, they
speculated that several bi-allelic CTCF binding sites form a
first layer of TAD on both alleles. In addition, the maternal-
specific CTCF binding around H19-DMR hijacks the first
layer of TAD and consequently creates an additional layer
of sub-TAD on the maternal allele.

To verify this hypothesis, we calculated the insulation
score (IS) (43) and directionality index (DI) (8) using TAD-
tool (44) to search for possible (sub-)TAD boundaries
around the H19/Igf2 imprinting region. Overall we ob-
served similar IS values on both alleles, except at the H19-

DMR locus (Figure 8D, Supplementary Figure S6). Specif-
ically, we observed a local minimum of IS values at H19-
DMR only on the maternal allele indicating a potential
presence of a sub-TAD boundary at H19-DMR. Consis-
tently, the DI values suggested similar (sub-)TAD pattern
(Figure 8D). We observed strong positive DIs at mHIDAD
on both alleles, indicating that mHIDAD is highly biased
towards interacting with its downstream loci and serves
as a starting position of a TAD. On the other hand, the
telomeric-side flanking region of Igf2 demonstrated nega-
tive DIs on both alleles, indicating a likely ending bound-
ary of a TAD. Furthermore, a negative DI region around
H19-DMR appeared only on the maternal allele, suggest-
ing H19-DMR has a higher tendency to interact with its
upstream loci, possibly indicating an ending position for a
maternal-specific sub-TAD.
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Figure 9. Allele-specific Hi-C chromatin maps and ChIA-PET loops in human GM12878 cells. ASHIC-imputed allelic contact maps are shown at 10 kb
resolution (top panel: maternal allele, red color key; bottom panel: paternal allele, blue color key). Phased ChIA-PET loops and SNPs with haplotype-
biased ChIA-PET bindings are obtained from Tang et al. (17). (A) H19/IGF2 imprinting region. Maternal-enriched and paternal-enriched chromatin
interacting regions are labeled in red and blue boxes, respectively. Vertical dashed lines indicate (sub-)TAD boundaries. (B) Allelic long-range enhancer-
promoter interactions at LOC374443, CLEC2D and CLECL1 genes. Blue box indicates the paternal-enriched chromatin interacting region. The distal
enhancer associated with paternal-biased RNAPII-mediated ChIA-PET loops is highlighted in blue. Both panels are drawn using pyGenomeTracks
(28).

Both the IS and DI measurements suggested that
H19/Igf2 is embedded within a TAD demarcated by two
main boundaries: one near mHIDAD and the other one at
the telomeric side of Igf2. The locations of the two bound-
aries were in good agreement between both alleles. How-
ever, the (sub-)TAD organization within this TAD region
undergoes drastic parental-specific changes. Specifically, we
observed a sub-TAD boundary at H19-DMR locus ex-
clusively on the maternal allele. The TAD and sub-TAD
boundaries mentioned above were all located at CTCF
binding clusters. We further examined the allelic chromatin
loops within this imprinting region (Figure 8D). On the ma-
ternal allele, chromatin loops were mostly confined to the
mHIDAD-H19 sub-TAD. Whereas on the paternal allele,
we observed several chromatin loops connecting the cen-
tromeric side of H19-DMR with Igf2, indicating the ab-
sence of insulation at H19-DMR. These observations of
allelic chromatin loops are consistent with the parental-
specific (sub-)TAD structures.

Taken together, these results supported the hypothesis
that the maternal-specific CTCF binding at H19-DMR
forms a chromatin loop with the CTCF binding sites at
mHIDAD. This mHIDAD-H19 loop creates an additional
layer of sub-TAD inside the original mHIDAD-Igf2 TAD.
The maternal-specific mHIDAD-H19 sub-TAD organiza-
tion mediates the insulation between the centromeric side
of H19-DMR and Igf2, and thereby leading to the silenc-
ing of Igf2 on the maternal allele.

ASHIC-imputed allelic chromatin contacts are consistent
with phased ChIA-PET loops in human GM12878 cells

Besides Hi-C, ChIA-PET is another popular technique for
detecting genome-wide chromatin interactions (45). ChIA-
PET incorporates chromatin immunoprecipitation-based
enrichment and focuses on the mapping of chromatin in-
teractions mediated by a specific protein of interest. Apply-
ing an advanced long-read ChIA-PET strategy, Tang et al.
(17) comprehensively mapped the functional chromatin in-
teractions mediated by CTCF and RNA polymerase II
(RNAPII) with haplotype specificity in human cell lines. To
further assess our method, we applied ASHIC-ZIPM to the
published Hi-C data in human GM12878 cells (6), and com-
pared the imputed allelic chromatin maps with the phased
ChIA-PET data published by Tang et al. (17).

We first looked at a 4-Mb region (chr11: 1–5 Mb) around
the H19/IGF2 imprinting locus and generated allelic con-
tact maps and structures at 10 kb resolution (Figure 9A).
Compared to the 25-kb-resolution mate-rescued Hi-C maps
reported by Rao et al. (6), our ASHIC-imputed allelic con-
tact maps showed much higher coverage and finer inter-
action patterns. Similar to the mouse H19/Igf2 region,
the human H19/IGF2 imprinting region also exhibited
a maternal-specific sub-TAD organization. The sub-TAD
boundary located at H19-DMR and was enriched with
maternal-specific CTCF bindings. In addition, we observed
maternal-specific chromatin contacts between H19-DMR
and several loci (including HIDAD) at the telomeric side
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(red boxes), which was in high correspondence with the
maternal-biased ChIA-PET loops mediated by CTCF. On
the paternal allele, we observed enriched chromatin con-
tacts between IGF2 and the aforementioned telomeric-side
loci (blue boxes), which was consistent with our observa-
tions with the mouse Igf2 homolog. We did not observe
the corresponding paternal-biased CTCF ChIA-PET loops,
probably due to the absence of SNPs at the IGF2 locus.

In addition to CTCF-mediated parental-specific chro-
matin loops, our approach also revealed RNAPII-mediated
allelic chromatin interactions. For example, we studied
another 4-Mb region (chr12: 8–12 Mbp) containing the
LOC374443, CLEC2D and CLECL1 multi-gene complex.
Previously, Tang et al. (17) discovered paternally biased
RNAPII-mediated interactions between this paternally ex-
pressed multi-gene complex and its distal enhancer (300 kb
apart). Consistently, our ASHIC-imputed allelic contact
maps showed paternal-enriched long-range contacts (blue
box) between the distal enhancer and the promoters of the
three genes, as shown in Figure 9B.

Collectively, these results demonstrated that our ASHIC
method is capable of imputing diploid chromatin maps in
low-SNP-density cells such as GM12878 and the ASHIC-
imputed allelic contacts are in high correspondence with the
phased ChIA-PET data.

DISCUSSION

In this work, we proposed a hierarchical Bayesian frame-
work for imputing allele-specific contacts and reconstruct-
ing allelic 3D structures from diploid Hi-C data. We devel-
oped two models under this Bayesian framework: ASHIC-
PM and ASHIC-ZIPM. To the best of our knowledge, our
ASHIC methods are the first methods that produce fully
decomposed diploid Hi-C contact matrices as well as the
allelic 3D structures.

Unlike the existing allele-certain and mate-rescue ap-
proaches, our ASHIC methods utilize all diploid Hi-C
contacts, including both-end allele-ambiguous contacts. As
a result, ASHIC methods exceeded the allele-certain and
mate-rescue methods, in terms of producing more accurate
diploid matrices and structures as well as facilitating better
detection of allele-specific chromatin interactions. We also
conducted a series of simulation experiments and evaluated
how the performance of our methods was impacted by var-
ious factors, including sequencing coverage, SNP density,
and homologous structural similarity. Overall, our mod-
els significantly outperformed other methods, especially un-
der low sequencing coverage and low SNP density condi-
tions. The ability of the ASHIC methods in inferring allele-
ambiguous contacts at low-SNP-density setting is critical
for analyses in diploid human cells such as GM12878, where
the existing mate-rescue method (6) was only able to res-
cue 5.86% of total diploid contacts (Supplementary Table
S1).

In our simulation studies, we did not compare the ASHIC
methods with the recently published Dip-C method by Tan
et al. (13) as their method was specifically designed for
single-cell Hi-C data. Another reason was that Dip-C does
not impute intra-chromosomal both-end allele-ambiguous
contacts. Therefore we expect that its performance would

be close to the mate-rescue method. In addition, our ear-
lier work of the Poisson-Gamma model (9) imputes diploid
contact counts based on genomic distances rather than the
spatial distances derived from 3D structures, and therefore
is not computationally stable on fine-resolution (such as
100 kb) or low-coverage Hi-C data. Lastly, the newly devel-
oped diploid-PASTIS method by Cauer et al. (14) predicts
only the allelic 3D structures rather than the diploid contact
matrices. Therefore, we did not evaluate the diploid-PASTIS
method in our simulations as most of our evaluation metrics
were based on imputed contact matrices.

The main advantage of the ASHIC-ZIPM model over
the ASHIC-PM model is that ASHIC-ZIPM explicitly ac-
counts for the excessive zeros in Hi-C matrices, by mod-
eling the probabilities whether each observed zero count
is a ‘true’ zero or a ‘missing’ zero. As a result, we ob-
served that the ASHIC-ZIPM model consistently outper-
formed the ASHIC-PM model in all simulation settings.
While the performance of the two models were often sim-
ilar, the improvements of ASHIC-ZIPM over ASHIC-PM
became more evident when the SNP density decreased. In
addition, the differences between the ASHIC-ZIPM and
ASHIC-PM models were particularly noticeable under the
more challenging simulation setting of identical homolo-
gous structures. This is owing to the fact that when SNP
density was low, only few allele-certain contacts were ob-
served. The ASHIC-PM model uses the allele-certain con-
tacts to initialize the EM algorithm and treats all zeros as
‘true’ zeros, thereby producing less optimal results. In con-
trast, ASHIC-ZIPM explicitly adjusts the weights between
‘true’ and ‘missing’ zeros and thereby archiving more accu-
rate models.

Hi-C contact counts could be over-dispersed, thus a Neg-
ative Binomial (NB) model may provide a better fit than a
Poisson model. However, our ASHIC models leverage on
two nice properties of the Poisson distribution: the out-
comes from a Poisson-multinomial hierarchical model are
Poisson variables; and the sum of Poisson variables is also
a Poisson variable (Supplementary Methods). If we adapt a
NB model, we will no longer have such a neat and tractable
hierarchical model and as a result the model fitting will
become computationally expensive. In addition, we would
like to point out that the ZIP model can account for over-
dispersion to some extent by fitting a mixture of Poisson
state and the zero (missing) state. Furthermore, the ASHIC
methods use the spatial distance rather than the genomic
distance between the contacting pair as the Poisson or ZIP
parameter, therefore could be less impacted by the over-
dispersion.

We demonstrated the applications of our ASHIC-ZIPM
method in the mouse patski cells and in the human
GM12878 cells. Previous studies predicted allelic X chro-
mosome structures at 1 Mb (9) and 500 kb (14) resolutions.
In contrast, our method utilized all diploid contacts and
produced finer-scale allelic structures of the entire X chro-
mosomes at 50-kb resolution. Our results further confirmed
the existence of the bipartite structure of Xi. The ability
to impute all allele-ambiguous contacts is particularly im-
portant when zooming into local imprinting regions. Since
imprinting regions are often small, fine-resolution allelic
contact maps and 3D structures are required for an in-



e123 Nucleic Acids Research, 2020, Vol. 48, No. 21 PAGE 16 OF 17

depth study. With our ASHIC-ZIPM model, we produced
the first 10-kb-resolution diploid Hi-C contact maps of the
mouse H19/Igf2 imprinting region, and revealed the ex-
istence of the maternal-specific sub-TAD organization at
H19-DMR. This sub-TAD formation creates an insula-
tion between H19 and Igf2 that likely prevents the activa-
tion of Igf2 on the maternal allele. Our study of the hu-
man H19/IGF2 imprinting region further confirmed this
parental-specific chromatin organization. Furthermore, the
ASHIC-imputed diploid Hi-C maps offered an informative
view of the (sub-)TAD organizations on the imprinting re-
gion, whereas the previous 4C-seq study (35) was restricted
to only few anchor regions.

Currently, only a few limitations can be attributed to our
ASHIC methods. First, our methods provide chromosome-
wide modeling of diploid Hi-C data. One possible future ex-
tension is to build a genome-wide model by incorporating
an additional estimation step in the EM algorithm to model
the relative position of multiple homologous chromosomes.
We could further parallelize the optimization procedures
for each homologous chromosome pair to speed up the
genome-wide modeling. Second, our model is specifically
designed for diploid genomes. Extending the model to poly-
ploid or aneuploid genomes remains a challenging prob-
lem. Lastly, the computational efficiency of our EM algo-
rithm, especially the structure estimation step, could be fur-
ther improved. One possible solution is to adapt an iterative
modeling strategy similar to (13,27), starting with coarse-
resolution modeling and gradually refining the structures
to finer resolutions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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