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Abstract: Phase separation phenomena in high-entropy alloys (HEAs) have attracted much attention
since their discovery, but little attention has been given to the dynamics of the deformation mecha-
nism of this kind of HEA during uniaxial tension, which limits their widespread and practical utility.
In this work, molecular dynamics simulation was used to study the effect of phase separation on the
mechanical properties of an HEA under uniaxial tensile loading. Moreover, the associated deforma-
tion behavior of the Co–Cr–Cu–Fe–Ni HEA was investigated at the nanoscale. Models with Cu-rich
grain boundaries or grains were constructed. The results showed that Cu-rich grain boundaries or
grains lowered the strength of the Co–Cr–Cu–Fe–Ni HEA, and Cu-rich grain boundaries significantly
reduced ductility. This change of mechanical properties was closely associated with a deformation
behavior. Furthermore, the deformation behavior was affected by the critical resolved shear stress
of Cu-rich and Cu-depleted regions and the uneven stress distribution caused by phase separation.
In addition, dislocation slipping and grain boundary sliding were the main mechanisms of plastic
deformation in the Co–Cr–Cu–Fe–Ni HEA.

Keywords: high-entropy alloys; phase separation; mechanical behaviors; molecular dynamics
simulation

1. Introduction

High-entropy alloys (HEAs) contain multiple principal (or major) elements, commonly
five or more, in equimolar or near-equimolar ratios, differently from conventional alloys.
While the configurational entropy of an alloy increases with the increasing number of
alloying elements, multiple principal elements of an HEA lead to high entropy of mixing
that thus suppresses the formation of intermetallic compounds [1–3]. Therefore, stable
solid solution phases, such as face-centered cubic (FCC) phase, body-centered cubic (BCC)
phase, and hexagonal close-packed (HCP) phase can be obtained [4,5]. Meanwhile, HEAs
have been shown to exhibit outstanding mechanical and chemical properties, such as
high strength and hardness [1,6], exceptional ductility, as well as excellent oxidation
and corrosion resistances [7], and thus have become potential candidate materials for
many challenging industrial applications. The design and application of HEAs require a
comprehensive understanding of their properties and underlying deformation mechanisms.
Co–Cr–Cu–Fe–Ni, with a simple FCC structure [8], is the earliest discovered quinary high-
entropy alloy [9,10] and also one of the most studied high-entropy alloy systems. Al, Nb, Ti,
and Zr are specially added to improve the properties of the Co–Cr–Cu–Fe–Ni HEA [11–14].
Recently, the Co–Cr–Cu–Fe–Ni HEA system has received more and more attention because
it undergoes the interesting liquid-phase separation (LPS) phenomenon [15–19].

LPS was studied by Nakagawa in Cu–Co and Cu–Fe binary systems for the first
time [20]. Up to now, it has been observed in a variety of materials, including metals,
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polymers, and ceramics [21–23]. For metals, LPS has been reported in Cu–Co [24,25], Cu–
Fe [24,26,27], Cu–Cr [28], Cu–Nb [29], Cu–Fe–Co [24,30], Cu–Nb–Ni [31], Ag–Nb–Ni [32],
Cu–Cr–Si [33], Fe–Cu–Si [26], and other binary and ternary alloy systems. LPS in HEAs
was first discovered by Hsu et al. in 2007 with a study of the alloying behavior of Al–
Co–Cr–Cu–Ni-based HEAs after the addition of Fe, Ag, and Au [34], suggesting that it
exists not only in the binary or ternary alloy systems mentioned above but also in HEAs.
Recently, Derimow et al. investigated the solidification microstructures of equiatomic
Co–C–Cu with added Fe, Mn, Ni, V, Fe–Mn, Fe–Ni, Fe–V, Mn–Ni, Mn–V, and Ni–V to the
composition. It was found that only three of the alloys exhibited dendritic solidification (Co–
Cr–Cu–Ni, Co–Cr–Cu–Fe–Ni, and Co–Cr–Cu–Mn–Ni), while the remaining combinations
underwent stable LPS [35]. Munitz et al. suggested an additional mechanism of LPS
due to the substantially larger attractive interactions between Ni and Al compared to the
other binaries in Al–Cr–Fe–Ni–Mo0.3 HEA [36]. As for the Co–Cr–Cu–Fe–Ni HEA system,
the LPS phenomenon was found in as-cast Co–Cr–Cu–Fe0.5–Ni HEA [19]. This suggests
that LPS also exists in Co–Cr–Cu–Fe–Ni HEA. Liu et al. further investigated the LPS
phenomenon in Co–Cr–Cu–Fex–Ni HEAs. The results showed that LPS occurs when the
melt undercooling exceeds a critical undercooling. Meanwhile, many Cu-rich nanosized
grains were also observed in the Cu-rich matrix [15]. Wang et al. also verified LPS
and characterized a rapid dendritic growth phenomenon in Co–Cr–Cu–Fe–Ni HEA [17].
Guo et al. studied LPS in Co–Cr–Cu–Fe–Ni HEA by the supercooling method. The
results showed that the yield strength and elongation of equiatomic Co–Cr–Cu–Fe–Ni
alloy decreased significantly due to the inhomogeneity of the microstructure resulting
from LPS [18]. Verma et al. studied the effect of Cu on microstructure evolution and
phase formation in Co–Cr–Cux–Fe–Ni HEA systems. It was found that Cu segregated
at grain boundaries [16]. In these studies, LPS in Co–Cr–Cu–Fe–Ni HEA and its effect
on mechanical properties were studied on a macroscale. However, the effect of phase
separation on deformation behaviors was not studied. At the nanoscale, the molecular
dynamics (MD) simulation performed by Tian et al. found that partial dislocation slipping
dominate the initial plastic deformation of Co–Cr–Cu–Fe–Ni HEA [37]. Liu et al. performed
an MD study of the temperature dependence of the mechanical properties and plastic
inception of the Co–Cr–Cu–Fe–Ni high-entropy alloy [38]. However, neither of these two
MD simulations involved experimentally confirmed phase separation.

As shown by the above-mentioned studies, the relationship between composition
segregation and deformation behavior of the Co–Cr–Cu–Fe–Ni HEA at the nanoscale is still
largely unknown, and more research is needed. However, it is experimentally challenging
to directly observe the deformation behavior of the Co–Cr–Cu–Fe–Ni HEA with nanoscale
resolution, while MD simulation can provide deep insights into the atomic deformation
mechanism of the nanoscale Co–Cr–Cu–Fe–Ni HEA. In other words, MD simulation seems
to be one of the very few methods available to capture the dynamic deformation process in
the stress–strain responses of the Co–Cr–Cu–Fe–Ni HEA. In this work, MD simulation was
employed to investigate the effect of composition segregation on the deformation behavior
of the Co–Cr–Cu–Fe–Ni HEA. Additionally, the mechanical properties and deformation
mechanism of the Co–Cr–Cu–Fe–Ni HEA are discussed in detail. This theoretical investi-
gation of phase separation influence on the deformation behaviors of Co–Cr–Cu–Fe–Ni
HEA may inspire new ideas to improve its mechanical properties.

2. Simulation Method

The five-element Co–Cr–Cu–Fe–Ni interatomic potential developed by Farkas et al. [39]
was used for all the simulations by using the open-source LAMMPS code [40]. Two kinds
of atomic models, two-dimensional (2D) sheet and three-dimensional (3D) cubic nano-
crystalline samples, were constructed (presented in Figure 1). The size of the 2D HEA sheet
in FCC structure with a lattice constant of 3.62 Å [41] was 60 × 60 × 3.62 nm3, containing
1,098,730 atoms. The 2D sheet was composed of 16 randomly orientated grains built by
the Voronoi methods, except that the crystallographic orientation of the Z axis of each
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grain was along [0 0 1]. We determined 1,080,458 atoms and 13 randomly orientated grains
in the 3D cube with a length of 23.4 nm for every side. In order to achieve equiatomic
composition, Fe atoms were randomly selected and replaced with Co (Cr, Cu, Ni). The
simulations were conducted using the Nose–Hoover thermostat with the time steps of 1
femtosecond. Periodic boundary conditions were applied in all three directions.
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Figure 1. Atomistic model of the Co–Cr–Cu–Fe–Ni HEA sample with random composition distribu-
tion (RCD). (a) Images of the 2D sample and (b) the 3D sample; the atoms are colored according to
atomic type and CAN.

The equilibrium state of the HEA samples could be achieved with the following three
steps: first, the as-created Co–Cr–Cu–Fe–Ni HEA samples initially underwent energy
minimization; second, the samples were relaxed for 2 ns at the hydrostatic pressure of
5 GPa and 300 K under the NPT (constant number of atoms (N), constant pressure (P),
and constant temperature (T)) ensemble; finally, they were relaxed subsequently for 2 ns
at the hydrostatic pressure of 0 GPa and 300 K under the NPT ensemble. After reaching
equilibrium configurations, uniaxial tensile deformation along the X-direction was applied
at 300 K and constant strain rate of 4.0 × 107 s−1. In this study, the software OVITO [42]
was employed to visualize or analyze the data generated by the MD simulations. The
adaptive common-neighbor analysis (CNA) algorithm [43] was used to characterize the
local atomic structural environment, in which the green atoms indicate the FCC structure,
the blue atoms represent the BCC structure, the red atoms stand for stacking faults, and the
white atoms suggest grain boundaries or dislocation cores. Meanwhile, an atomic strain
modifier [44] was used to calculate the atomic level deformation gradient; displacement
vectors modifier indicated the glide directions of atoms in certain close-packed planes. The
local atomic strains were referenced to the relaxed samples before the tensile test.

3. Results and Discussion
3.1. Random Composition Distribution

Figure 2 shows the tensile stress–strain curves of the random composition distribution
(RCD) samples at room temperature. In the elastic stage, different grain orientations [45]
would cause the elastic modulus of the 2D-RCD sample to deviate from the value of the
3D-RCD sample. The different grain orientations and 3D grain boundary lowered the yield
strength of the 3D-RCD sample. At the plastic stage, it was seen that, compared with the 2D-
RCD sample, the strain softening resistance of the 3D-RCD sample was better. This was due
to the formation of multiple deformation paths in the 3D-RCD sample. The intersections
(Figure 3b black arrows) of these plastic slip deformation paths inhibited atoms’ sliding in
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certain close-packed planes and acted as an obstacle to dislocation motion [46], resulting in
a slow drop and small fluctuation of the flow stress of the 3D-RCD sample. As expected, the
relatively high loading rate of 4.0 × 107 s−1 due to the timescale limitations of MD, the ideal
crystal structure, and the extreme purity of the sample led to considerably higher yield
stress (in GPa) as compared to that observed in conventional tensile experiments (limited
to few hundred MPa) [47,48]. Moreover, the frequent drops and rises of the stress–strain
curves were caused by the competition between plastic deformation and strain hardening,
which were observed experimentally [47].
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Figure 3. Snapshots of the configurations of the 2D-RCD sample (a) and the 3D-RCD sample (b) at a
strain of 8%.

To better understand the deformation behavior, the microstructural evolution of the
2D-RCD sample was examined. According to the microstructure evolution visualized by
CNA and the atomic strain distribution of the 2D-RCD sample, presented in Figure 4, in
the elastic stage (0–4.7%), the strain accumulated mainly in grain boundaries (Figure 4e).

In the plastic stage, due to the different orientation of each grain, the resolved shear
stress along the slip direction of the grains, being in a favorable orientation, reached the
critical value earlier, and plastic deformation occurred. The sample began to yield, which
means that dislocations started to occur and continued along the slip planes, generating
double-layer HCP structures in the form of intrinsic stacking fault (ISF) (Figure 4 black
arrows). Dislocation slipping is accompanied by grain rotation, which is induced by grain
boundary sliding [46]. When the strain increased from 4.8% to 5.1%, the in-plane rotation
angles of grains G1 and G2 indicated in Figure 5b were approximately 2.17◦ and 0.94◦,
respectively. It indicated that dislocation slipping and grain boundary sliding dominated
the primary plastic behavior. When the surrounding grains have different orientations, the
dislocations cannot cross the grain boundaries and thus pile up at the grain boundaries [49].
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The piling up of the dislocation resulted in high stress, which caused the formation of some
slip systems in adjacent grains and other grains with favorable orientation (Figure 4c), thus
accommodating the stress and restarting the dislocation of the original grains, as seen in
Figure 4d. In this way, plastic deformation was transferred between adjacent grains and
finally spread to the entire sample.
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To further investigate the characteristics of the slip systems in the grains, we selected
the stacking faults from the 2D-RCD sample at a strain of 4.9%; only atoms of the stacking
faults are displayed in Figure 5. From the snapshot, it is evident that the activated slip
systems in the grains were <112>{111} type (Figure 5b). The reasons why the slip system
was <112>{111} rather than the common <110>{111} are as follows: on the one hand, direct
slipping along the direction of <110> (Figure 5c-b1) resulted in significant collision with the
adjacent atom A, causing large local lattice distortion and a significant increase in energy;
on the other hand, the lattice distortion caused by the distribution of component atoms
with different sizes [48] made slipping along the <110> direction more difficult. Moreover,
lattice distortion also reduces stacking fault energy (SFE) [50], which makes it easier for
a full dislocation to split into two partials with a wider stacking fault ribbon between
them [51]. Therefore, the ideal slip path was along the <112> direction, arriving at position
C first (Figure 5c-b2) and then getting to the adjacent position B (Figure 5c-b3). In a word,
the <112>{111} system was more easily activated than the <110>{111} system.

3.2. Cu-Rich Grain Boundaries

In order to investigate the effect of composition segregation on the mechanical prop-
erties under uniaxial tensile loading and the associated deformation behavior of Co–Cr–
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Cu–Fe–Ni HEA, a series of MD models were constructed by substituting Cu atoms for Co
(Cr, Cu, Fe, Ni) in specified regions (grain boundary or grain) and maintaining the desired
equiatomic composition of the whole samples. Therefore, Cu-rich and Cu-depleted regions
would separate in the samples. By means of the above method, samples with Cu-rich grain
boundaries (CRGB sample, Figure 6) and Cu-rich grains (CRG sample in Section 3.3) were
obtained. Moreover, according to the experimental data [16], the Cu content in the Cu-rich
regions was as high as 80%.
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For Cu-rich grain boundaries, the corresponding stress–strain curves of the 2D and 3D
samples are shown in Figure 7. In Figure 7a, it can be observed that, compared with the 2D-
RCD sample, the yield strength and plasticity of the 2D-CRGB sample were simultaneously
decreased at the constant strain rate of 4.0 × 107 s−1. Especially, regarding plasticity,
when the strain reached 7.4%, intergranular fracture occurred (see Figure 8c). As for the
3D-CRGB sample, its strength and flow stress obviously decreased compared with those of
the 3D-RCD sample (Figure 7b).
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Figure 8 shows the microstructure evolution and the local atomic strain distribution
of the 2D-CRGB sample. In the elastic stage (0–4.2%), the local atomic shear strain was
concentrated on grain boundaries (Figure 8a,d), similar to the elastic deformation of the
2D-RCD sample. However, differently from the 2D-RCD sample, after yielding, a small
dislocation slip within grains occurred (Figure 8b,e), and the local stress concentration
was relaxed through grain boundary cracking in the 2D-CRGB sample. The reason for
this phenomenon may be that, compared with Cu-depleted regions inside the grains, Cu-
rich regions at the grain boundaries have a low strength. Furthermore, atoms in grain
boundaries are arranged irregularly, which means they have larger potential energy than
those in grains [52]. As a result, the grain boundaries cracked before plastic deformation in
the grains could relax the local stress concentrations on the grain boundaries.

The microstructure evolution of the 3D-CRGB sample was examined. The results
showed that dislocation slip also occurred inside the grains of the 3D-CRGB sample, but
the dislocation density was lower than that of the 3D-RCD sample (Figure 9 top panel).
Moreover, the local strain was more seriously concentrated on grain boundaries in 3D-
CRGB samples (Figure 9 bottom panel), similar to what observed for the 2D samples. This
high concentration of strain on the grain boundaries was the reason for the decrease of flow
stress in the 3D-CRGB sample. When the strain reached 10%, obvious intergranular fracture
occurred in the 3D-CRGB sample (Figure 9 black arrow). The intergranular fracture started
at a strain of 7.8%, which led to a sudden decrease in the flow stress of the 3D-CRGB sample.
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3.3. Cu-Rich Grains

As shown in Figure 10, a series of Cu-rich nanograin samples were constructed.
Figure 11a shows the tensile stress–strain curves of the 2D-RCD and CRG samples. As
shown in Figure 11a, compared with the 2D-RCD sample, the strength of the 2D-CRG
samples was obviously reduced. In addition, the higher the number of Cu-rich grains, the
more obvious the decrease of the strength, indicating that the Cu-rich regions distributed in
the grains lowered the strength of the samples. This is consistent with previously reported
experimental results [18]. As for the 3D-CRG samples, their strength also decreased
compared with the 3D-RCD sample (Figure 11b).
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and 15.9%.
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We also investigated microstructure evolution and local atomic strain distribution for
the 2D-CRG samples due to their tensile deformation, presented in Figure 12. Compared
with the 2D-RCD sample, except for the 2D-CRG sample 1, the 2D-CRG samples 2–4 yielded
from Cu-rich grain, leading to plastic deformation. With the increase of deformation, the
strain seemed more concentrated on the Cu-rich regions (Figure 12 right column), different
from the local strain distribution of the 2D-RCD sample under the same strain. This was
because, compared with the Cu-depleted grains, the strength of the Cu-rich grains was
lower. In other words, the yield tended to start from the Cu-rich grain first, which led to a
decrease of the strength of the 2D-CRG samples 2–4. As for the CRG sample 1, the yield
started from the Cu-depleted grain, which was caused by the uneven stress distribution.
Therefore, compared with the 2D-CRG samples 2–4, the strength of the 2D-CRG sample 1
did not decrease significantly (Figure 11b). Detailed explanations are reported below.

In order to further reveal the origin of the deformation behavior of the 2D-CRG
samples 1–4, Schmid’s law was adopted. According to Schmid’s law [53], slip systems
in grains can only be activated if the resolved shear stresses along the slip directions in
the applied stress field are greater than the critical resolved shear stress (CRSS). Therefore,
under the condition that the slip system is known, the critical resolved shear stress τy can
be expressed as τy = µ·σy, where µ is the Schmid factor, and σy is the yield strength (GPa).

To provide a clearer description as to the calculation process of CRSS, a schematic
illustration is shown in Figure 13. First, atoms in a cube were selected from the inside of a
grain (Cu-rich or Cu-depleted), and these selected atoms were tracked during the whole
deformation process of the sample (Figure 13a). Cu-rich and Cu-depleted grains where
the dislocation slip first occurred in the sample were selected. Second, the stress-strain
curves (as shown in the top panel in Figure 14) of the selected cubes (the bottom panel in
Figure 14) were calculated to determine the yield stresses of these Cu-rich and Cu-depleted
grains. Finally, the slip directions and the slip planes of the slip systems inside the cubes
were determined (Figure 13c) to calculate the Schmid factors. Therefore, CRSS could also
be calculated. The detailed results are presented in Table 1.
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Table 1. Slip system parameters of the 2D-CRG samples 1–4.

Samples 2D-CRG Sample 1 2D-CRG Sample 2 2D-CRG Sample 3 2D-CRG Sample 4

Region Cu-
depleted Cu-rich Cu-

depleted Cu-rich Cu-
depleted Cu-rich Cu-

depleted Cu-rich

CRSS 3.01 1.32 2.26 0.7 2.58 1.1 2.26 0.9

µ 0.49 0.39 0.48 0.34 0.48 0.48 0.47 0.49

It can be clearly seen from Table 1 that the CRSS of the Cu-depleted grains was greater
than that of the Cu-rich grains. It means that the slip systems in the Cu-rich grains were
more easily activated. In other words, plastic deformations tended to occur in the Cu-rich
grains first. Therefore, all the 2D-CRG samples 2–4 yielded from Cu-rich grains (Figure 12).
According to Figure 14, the stress–strain curves of Cu-rich grains in the 2D-CRG samples
2–4 reached the yield point first, while in the 2D-CRG sample 1, those of Cu-depleted
grains yielded first. This confirmed the yield phenomenon of the 2D-CRG samples 1–4
observed in Figure 12. In addition, it can be seen from the stress–strain curves in Figure 14
that, compared with the stresses received by the Cu-rich grains, the stresses received by
the Cu-depleted grains were much higher. This uneven stress distribution made it possible
for the sample to yield from the Cu-depleted grain, as observed for the 2D-CRG sample
1 (Figure 12). This is why, compared with the 2D-CRG samples 2–4, the strength of the
2D-CRG sample 1 did not decrease significantly. The results in Table 1 also prove that
the strength of the Cu-rich regions was much lower than that of the Cu-depleted regions,
which made the macroscopic strength of the 2D-CRGB sample and 2D-CRG samples 1–4
decrease. This is consistent with the results of the tensile tests reported above (Figure 11).
Figure 15 shows the atomic snapshots of the 3D-CRG samples 1–2. It was found that the
3D-CRG samples 1–2 yield from Cu-depleted grains, as observed for the 2D-CRG sample 1.
Therefore, the decrease in strength of the 3D-CRG samples 1–2 was not as obvious as that
of the 2D-CRG samples 2–4 (Figure 11b).
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4. Conclusions

In summary, we investigated the effect of Cu-rich grain boundaries and Cu-rich grains
on the mechanical properties of the Co–Cr–Cu–Fe–Ni HEA. The associated deformation
behavior was also studied by using MD simulation. Moreover, a deformation mechanism
was presented.

Dislocation slipping and grain boundary sliding were the main deformation mech-
anisms in the Co–Cr–Cu–Fe–Ni HEA. The internal slip system of the Co–Cr–Cu–Fe–Ni
HEA appeared to be mainly of the <112>{111} type. Cu-rich grain boundaries can seriously
reduce the plasticity of the Co–Cr–Cu–Fe–Ni HEA, because they can lead to intergranular
fracture of CRGB samples. At the same time, the strength of the alloy was slightly reduced
by Cu-rich grain boundaries. Cu-rich grains can seriously reduce the strength of the Co–
Cr–Cu–Fe–Ni HEA. The larger the volume fraction of Cu-rich grains is, the more obvious
the decrease of strength. The reason is that the resolved shear stress required to start
slip systems in Cu-rich grains is much smaller than that required in Cu-depleted grains.
In other words, plastic deformation tends to occur in Cu-rich grains. Furthermore, an
uneven stress distribution was detected, where the stress on Cu-depleted grains was much
higher than that on Cu-rich grains. The mechanical properties of the Co–Cr–Cu–Fe–Ni
HEA are obviously affected by phase separation, which provides a basis for improving its
mechanical properties. This investigation can help to expand the practical application of
this kind of alloy.
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