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Computational Medicine Laboratory, Department of Electrical and Computer Engineering, University of Houston, Houston,

TX, United States

Markers from local field potentials, neurochemicals, skin conductance, and hormone

concentrations have been proposed as a means of closing the loop in Deep Brain

Stimulation (DBS) therapy for treating neuropsychiatric and movement disorders.

Developing a closed-loop DBS controller based on peripheral signals would require:

(i) the recovery of a biomarker from the source neural stimuli underlying the peripheral

signal variations; (ii) the estimation of an unobserved brain or central nervous system

related state variable from the biomarker. The state variable is application-specific. It

is emotion-related in the case of depression or post-traumatic stress disorder, and

movement-related for Parkinson’s or essential tremor. We present a method for closing

the DBS loop in neuropsychiatric disorders based on the estimation of sympathetic

arousal from skin conductance measurements. We deconvolve skin conductance via

an optimization formulation utilizing sparse recovery and obtain neural impulses from

sympathetic nerve fibers stimulating the sweat glands. We perform this deconvolution

via a two-step coordinate descent procedure that recovers the sparse neural stimuli

and estimates physiological system parameters simultaneously. We next relate an

unobserved sympathetic arousal state to the probability that these neural impulses

occur and use Bayesian filtering within an Expectation-Maximization framework for

estimation. We evaluate our method on a publicly available data-set examining the effect

of different types of stress on peripheral signal changes including body temperature, skin

conductance and heart rate. A high degree of arousal is estimated during cognitive tasks,

as are much lower levels during relaxation. The results demonstrate the ability to decode

psychological arousal from neural activity underlying skin conductance signal variations.

The complete pipeline from recovering neural stimuli to decoding an emotion-related

brain state using skin conductance presents a promising methodology for the ultimate

realization of a closed-loop DBS controller. Closed-loop DBS treatment would additionally

help reduce unnecessary power consumption and improve therapeutic gains.

Keywords: skin conductance (SC), deep brain stimulation (DBS), deconvolution analysis, arousal, state-space (SS)

representation

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00780
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00780&domain=pdf&date_stamp=2019-08-07
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rtfaghih@uh.edu
https://doi.org/10.3389/fnins.2019.00780
https://www.frontiersin.org/articles/10.3389/fnins.2019.00780/full
http://loop.frontiersin.org/people/694547/overview
http://loop.frontiersin.org/people/732176/overview
http://loop.frontiersin.org/people/190016/overview


Wickramasuriya et al. Closed-Loop DBS Using Skin Conductance

INTRODUCTION

Deep Brain Stimulation (DBS) is a type of therapy involving
the application of high frequency electrical stimulation, usually
at ∼130 Hz, to specific anatomical structures deep within the
brain (Oluigbo et al., 2012; Carron et al., 2013). While the
precise mechanics of the therapy are yet to be fully understood,
it has been hypothesized that DBS mimics the effect of ablative
lesions without causing any tissue damage (Dostrovsky and
Lozano, 2002). A second hypothesis suggests that stimulation
from the implanted electrodesmodulates electrical circuit activity
within dysfunctional brain regions (Oluigbo et al., 2012; Cleary
et al., 2015). DBS has been approved by the Food and Drug
Administration (FDA) for the treatment of Parkinson’s disease
and essential tremor in the United States. Humanitarian device
exemptions have also been granted by the FDA for the use of
DBS in the treatment of severe obsessive compulsive disorder and
dystonia (Grahn et al., 2014). Meanwhile, the therapy has also
been investigated as a treatment option for a host of othermedical
conditions including major depression (Puigdemont et al., 2012;
Merkl et al., 2013), chronic pain (Boccard et al., 2015; Lempka
et al., 2017), drug-resistant epilepsy (Vesper et al., 2007; Fisher
et al., 2010), anorexia nervosa (Lipsman et al., 2013; Wu et al.,
2013), and substance abuse (Zhou et al., 2011; Müller et al., 2013).

Commercially-available DBS systems currently function in an
open loop manner. In open-loop DBS, stimulation is delivered
continuously until manually re-adjusted. In contrast, a closed-
loop DBS (CLDBS) system automatically adjusts stimulation
parameters based on sensor feedback recorded from the patient
(Herron et al., 2017). The feedback signal is usually based on
a symptom-related biomarker (Bouthour et al., 2019). Open-
loop systems can require multiple post-operative visits in the
months following surgery (Grahn et al., 2014). During visits,
different parameters of the electrical stimulation including
frequency, amplitude, and pulse width are adjusted for improving
therapeutic benefit (Bronstein et al., 2011). Manual adjustment of
the parameters in a trial-and-error fashion is time consuming. It
is also challenging to explore the complete stimulation parameter
space during brief patient visits. Moreover, open-loop DBS
systems apply stimulation even if not strictly required. Consider,
for instance, two common movement disorders—essential
tremor and Parkinson’s disease. Motor symptoms for both
disorders include rhythmic involuntary movements (tremors). In
essential tremor, the tremors occur during volitional movement
(Plumb and Bain, 2007) and stimulation may be unnecessary
when a patient is not using an affected limb (Herron et al.,
2017). The tremors occur at rest in Parkinson’s (Chou et al.,
2011). However, motor symptoms can fluctuate continually
(Rosin et al., 2011; Little et al., 2013). Evidence suggests that
local field potential (LFP) β-band oscillations in the subthalamic
nucleus correlate with motor impairment in Parkinson’s (Little
and Brown, 2012). CLDBS systems switching on control based
on LFP threshold crossings were shown to have superior
performance in treating Parkinson’s patients and had substantial
gains in reducing stimulation time (Little et al., 2013, 2016).
The effectiveness of CLDBS over an open-loop stimulation in
Parskinson’s was also shown in non-human primates (Rosin et al.,

2011). CLDBS systems have thus arisen gradually to eliminate
part of the inefficiencies of their open-loop predecessors.

In a recent work describing a theoretical framework for the
design of a CLDBS system for treating chronic pain, Shirvalkar
et al. (2018) point out two important elements of closing the loop:
(i) the extraction of an accurate, relevant, and timely biomarker
of the underlying state variable of interest; (ii) a control-
theoretic (e.g., state-space) representation of the system relating
the biomarker to the unobserved state variable. In their specific
application, they suggest using LFPs from the somatosensory
cortex, the dorsal anterior cingulate cortex and the orbitofrontal
cortex for tracking a multidimensional pain state. Others have
similarly suggested neurochemical biomarkers, skin conductance
features, and hormone concentrations as a means of feedback
for treating a broad range of neuropsychiatric disorders (Grahn
et al., 2014; Bina and Langevin, 2018). Following the suggestion
of Shirvalkar et al. (2018), we present a proof-of-principle state-
space framework that can be used for CLDBS therapy.

DBS has recently emerged as a potentially successful treatment
option for patients diagnosed with post-traumatic stress disorder
(PTSD) (Koek et al., 2014; Langevin et al., 2016). PTSD
is a type of psychiatric disorder that can occur in patients
who have experienced traumatic or stressful events in the
past. Distressing memories or dreams often persist long after
the event (Jetly et al., 2015). Symptoms of PTSD include
changes in psychological arousal, reactivity and mood, and are
evidenced by factors such as hypervigilance and exaggerated
startle responses (American Psychiatric Association, 2013). This
state of hyperarousal or hypervigilance in PTSD has been noted
in multiple studies (Woodward et al., 2000; Risser et al., 2006;
Hellmuth et al., 2012). While the method we present here
could find broader applicability to a range of neuropsychiatric
disorders, it seems particularly suited to address PTSD with its
hyperarousal symptoms.

Bina and Langevin (2018) suggest the possibility of
monitoring skin conductance changes as a potential biomarker
in a CLDBS system for treating PTSD. Sympathetic nerve fibers
innervate the sweat glands (Low, 2012). Consequently, changes
in the conductivity of the skin owing to perspiration provide
a measure of sympathetic drive or arousal (Critchley et al.,
2002). Heightened responsivity in terms of skin conductance
has been noted in PTSD patients compared to controls (Orr
and Roth, 2000). In a three-group study of Vietnam combat
veterans with PTSD, psychiatric Vietnam combat veterans,
and psychiatric non-combat Vietnam-era veterans, McNally
et al. (1987) reported that PTSD subjects had the largest skin
conductance responses (SCRs) in response to combat-related
words. In a similar study comprising of Vietnam combat veterans
with PTSD, Vietnam combat veterans, and non-combat controls,
Goldfinger et al. (1998) reported that PTSD veterans had
the highest baseline skin conductance levels. In an affect-toned
Rorschach test conducted in the same study, arousal, as measured
by skin conductance, was highest in the PTSD group as well.
Pole (2007) also noted higher skin conductance baselines, larger
SCRs and slower skin conductance habituation in startle and
trauma-cue studies in PTSD patients in a meta-analysis study
of adults with and without PTSD. Skin conductance changes
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also occur in depression. Ward and Doerr (1986) measured skin
conductance in patients with depression, parents of firstborn
one- to three-month old infants and control subjects, and found
that depressed patients had significantly lower skin conductance
levels than the other groups. Lin et al. (2011) examined the
effects of stress and depression using a series of physiological
measures. Participants were first categorized into the normal,
low-risk and high-risk depression groups and were assigned
to one of two stress treatments. Percentage change in skin
conductance between baseline and during the stress treatment
periods were significantly dependent on and correlated positively
with depression. Both PTSD and depression are potential
candidates for DBS therapy when other treatment options have
been exhausted. Skin conductance additionally has the advantage
of being easily measured with wearable devices such as the
Empatica E4 (Koskimäki et al., 2017). Wearable devices afford
convenience, seamless integration into clothing and do not
involve the risks of surgically implanted sensors.

We develop a state-space model to track an unobserved
sympathetic arousal state from skin conductance measurements.
The relationship between arousal and skin conductance has
been attested to in multiple studies (Boucsein, 2012). Individual
SCRs are a notable feature in a skin conductance signal.
SCRs accompany psychologically arousing stimuli as the skin’s
conductivity increases momentarily. We relate arousal to the
rate at which SCRs occur. Current methods for detecting SCRs
in a skin conductance signal rely on detecting peaks above a
threshold set between 0.01 and 0.05µS (Benedek and Kaernbach,
2010). Inter-subject variability in skin conductance signals is
a known phenomena (Dawson et al., 2007). We therefore
use a deconvolution strategy for extracting the physiological
parameters related to sweat secretion for each individual and
detect neural impulses to the eccrine sweat glands that generate

the SCRs rather than relying on heuristic peak detection. The
following section describes our two-part methodology. We first
describe the deconvolution approach that utilizes its own state-
space formulation for detecting neural impulses based on sweat
diffusion and evaporation dynamics. We next describe the
state-space formulation for the CLDBS system that relates the
probability of neural impulses to a latent sympathetic arousal
state. We present our results thereafter and finally conclude with
a discussion of our results, and how our methodology could be
used in an experimental CLDBS prototype (e.g., such as in the
conceptual architecture depicted in Figure 1).

1. MATERIALS AND METHODS

1.1. Data
We use the Non-EEG Dataset for Assessment of Neurological
Status (Birjandtalab et al., 2016). The data is publicly available
through the PhysioNet database (Goldberger et al., 2000). The
data-set contains skin conductance recordings from 20 healthy
college students who were exposed to physical, emotional,
and cognitive stress during three different time periods. Skin
conductance was recorded using the wrist-worn Affectiva
Q Curve device. Skin conductance can be contaminated
by noise sources such as motion artifacts, range saturation
and amplification factor changes (Boucsein, 2012). Many of
the signals had to be discarded owing to motion artifact
contamination and noise due to bad skin contact. Hence, we only
used the data from six subjects. We re-labeled the original subject
numbers with corresponding participant numbers (Table 1). The
physical, cognitive, and emotional stress periods each lasted 5
min and were interspersed by 5 min intervals of relaxation.
Subjects were made to stand, walk and jog during the physical
stress part of the experiment. We excluded data from this portion

FIGURE 1 | A CLDBS System based on Skin Conductance Measurements. A conceptual CLDBS architecture for treating neuropsychiatric disorders based on

tracking a neural state from peripheral skin conductance measurements. Koek et al. (2014) and Langevin et al. (2016) applied stimulation to the amygdala in

treatment-refractory PTSD patients. The amygdala plays an important role in emotion processing. In particular, the basolateral nucleus of the amygdala contains cells

that are responsive to both fear acquisition and fear extinction (Lüthi and Lüscher, 2014). Koek et al. (2014) and Langevin et al. (2016) targeted this area owing to the

partially dysfunctional fear extinction mechanism for trauma-related cues in PTSD patients.
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TABLE 1 | Subject information for selected participants.

Participant Subject ID Age Gender BMI (kgm-2)

1 1 30 M 30.00

2 5 30 M 24.75

3 8 27 M 19.32

4 9 25 M 21.70

5 12 32 F 20.20

6 16 24 M 16.66

of the experiment and focus only on the psychological aspects.
The cognitive stress portion consisted of two separate tasks. In
the first task, subjects had to count backwards in 7’s beginning at
2,485 for 3 min and then perform the Stroop test for a further
2 min. In a Stroop test, a subject is shown a word denoting a
color and is asked to read it out. However, the color in which
the text is written may not necessarily correspond to what it
means. A buzzer notified subjects of any errors they made.
Emotional stress was induced by means of a horror movie clip.
The authors of the data-set noted that many of the volunteers
participating in the experiment showed a stress response that
was visible to the experiment administrator while they were just
being given instructions regarding the cognitive tasks. Hence,
they categorized the 40 s interval just prior to the counting task
and the Stroop test as a stress period.

1.2. Skin Conductance Deconvolution
Using Compressed Sensing
1.2.1. Skin Conductance Model Formulation
A skin conductance signal ySC(t) consists of two distinct parts.
The comparatively slow varying part, also known as the tonic
level, is primarily related to thermoregulation and is a function
of ambient temperature and humidity. The other part, also
known as the phasic component, fluctuates much faster and
is generated by sympathetic nerve fibers stimulating the sweat
glands. Therefore,

ySC(t) = y(t)+ yT(t), (1)

where y(t) and yT(t) represent the constituent phasic and tonic
components, respectively.

The phasic component y(t) can be extracted from ySC(t) using
an algorithm such as cvxEDA (Greco et al., 2016). The physiology
leading to the generation of the phasic component—namely the
diffusion of sweat from the sweat duct to the stratum corneum,
and its subsequent evaporation thereafter—can be modeled
using first order dynamics (Alexander et al., 2005; Benedek and
Kaernbach, 2010; Boucsein, 2012), and mathematically expressed
via the following pair of differential equations:

ẋ1(t) = −
1

τr
x1(t)+

1

τr
u(t) (diffusion) (2)

ẋ2(t) =
1

τd
x1(t)−

1

τd
x2(t) (evaporation) (3)

where x1(t) is an internal variable, x2(t) is the phasic component,
and u(t) is the neural stimuli to the sweat glands. x1(t) is related
to the amount of sweat and pressure within the sweat duct. The
phasic component consists of a series of SCRs, each of which
results from a single neural impulse burst. τr and τd are the rise
and decay times of a single SCR.

The number of SCRs in a phasic skin conductance signal is
typically much smaller than the total number of acquired data
samples. Consequently, the number of underlying neural impulse
bursts causing the SCRs is also small. This enables us to employ
a sparsity constraint when solving for u(t). We model u(t) as a
finite sum of weighted, shifted delta functions

u(t) =

N
∑

i=1

uiδ(t − 1i), (4)

where ui represents the amplitude of an impulse occurring at 1i,
and N is the number of samples in the neural stimuli signal. N is
proportional to the recording durationTd and the input sampling
frequency fu (N = Td · fu). 1i = iTu where Tu = f−1

u . ui is
positive if there is an impulse at time instance1i and 0 otherwise.
The continuous-time phasic skin conductance y(t) contaminated
by measurement noise ν(t) is

y(t) = x2(t)+ ν(t). (5)

If the signal is periodically sampled at Ty intervals to yield a total
of M measurements, we can define the equivalent discrete-time
observation yk as

yk = x2(kTy)+ νk (6)

where νk is Gaussian noise. Given all the discrete measurements
yk for k = 1, 2, . . . ,M, we would like to recover u(t) and estimate
τr and τd. We take x1(0) = 0 as an initial condition assuming that
the sweat duct is empty at the beginning. The state-space solution
for x2(kTy) leads us to (Faghih et al., 2015b)

yk = aky0 + bku+ νk, (7)

where ak = e
−

kTy
τd , bk =

[
1

(τr−τd)
(e−

kTy
τr − e

−
kTy
τd )

1
(τr−τd)

(e−
kTy−Tu

τr − e
−

kTy−Tu
τd ) 1

(τr−τd)
(e−

kTy−2Tu
τr − e

−
kTy−2Tu

τd )

· · · 1
(τr−τd)

(e−
Tu
τr − e

−
Tu
τd ) 0 · · · 0

︸ ︷︷ ︸

N−
kTy
Tu

]

and u =

[u1 u2 · · · uN]
⊤ represents a sparse vector containing all

the neural stimuli over the entire signal duration (i.e., very few of
the ui’s are non-zero). Concatenating all the measurements into a
single vector y = [y1 y2 · · · yM]⊤ we have,

y = Aτ y0 + Bτu+ ν (8)

where Aτ = [a1 a2 · · · aM]⊤, Bτ =

[b⊤1 b⊤2 · · · b⊤M]⊤, ν = [ν1 ν2 · · · νM]⊤ and y0
is the initial condition of the phasic skin conductance signal.
Here, Ty is an integer multiple of Tu.
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1.2.2. Deconvolution
We set the sampling interval for the phasic skin conductance
signal and neural stimuli to Ty = 0.5 s and Tu = 0.25 s,
respectively. Equation (8) hasM < N and represents an ill-posed
problem with multiple solutions. The sparsity constraint on u

however, makes it possible to solve the equation via compressed
sensing. An l1-norm penalization term is typically added to the
objective function to impose sparsity (Faghih, 2018).We consider
lp-norm penalization in this particular formulation. We further
constrain the rise and decay times to 0.1 ≤ τr ≤ 1.4 and
1.5 ≤ τd ≤ 6 similar to Amin and Faghih (2018, 2019). We
impose these constraints based on prior work in the literature
to ensure that the solution is identifiable and physiologically
plausible (Alexander et al., 2005; Benedek and Kaernbach, 2010;
Greco et al., 2016). Letting τ = [τr τd]

⊤, we formulate the
following constrained optimization problem based on Equation
(8) to estimate τ and u

argmin
τ , u

Cτ≤b, u≥0

J(τ , u) =
1

2
||y− Aτ y0 − Bτu||

2
2 + λ||u||

p
p, (9)

where C =

[

−1 1 0 0
0 0 −1 1

]⊤

, b =
[

−0.1 1.4 −1.5 6
]⊤

and

λ is the lp-norm regularization parameter for imposing sparsity
on u. λ is chosen to provide a balance between exploiting
sparsity and accounting for signal fluctuations (Faghih, 2018).
This optimization problem is challenging.We therefore decouple
it into two sub-problems. A coordinate descent approach can be
formulated similar to Faghih (2014, 2018), Faghih et al. (2014,
2015a,b) by solving the following sub-problems iteratively (for
l = 0, 1, 2, · · · ) until convergence:

1. u(l+1) = argmin
u

s.t. u≥0

Jλ(τ
(l), u)

2. τ
(l+1) = argmin

τ

s.t. Cτ≤b

J(τ , u(l+1))

The first step represents a sparse recovery problem with a
constrained convex optimization formulation. Many different
approaches exist to solve this. One of the popular approaches
is the iterative re-weighted least squares (IRLS) method. We
solve this sparse recovery problem using two IRLS methods
called FOCUSS+ (Murray, 2005) and GCV-FOCUSS+ (Zdunek
and Cichocki, 2008). FOCUSS+ uses a heuristic approach for
increasing λ at each IRLS step. We use FOCUSS+ for obtaining a
suitable initialization of u. GCV-FOCUSS+ uses the Generalized
Cross-Validation (GCV) technique to update λ at each step
(Golub et al., 1979). We initialize GCV-FOCUSS+ with the
result from FOCUSS+ and then run the IRLS until convergence.
We finally constrain the minimum amplitude of any detected
neural impulse to be 0.01 to reduce noisy detections. The
second step in the coordinate descent approach represents a
system identification problem with a constrained non-convex
optimization formulation. We use the interior point method to
solve this step.

The overall deconvolution algorithm begins by extracting
the phasic skin conductance component using cvxEDA (Greco

et al., 2016), then randomly initializing τ and performing the
initialization step for u using FOCUSS+. Thereafter, we proceed
with coordinate descent using GCV-FOCUSS+ and the interior
point method. We perform the deconvolution on a small 3
min segment (taken from close to the opening portion of the
experimental data we consider) of the signal to obtain the rise
and decay times. Once we obtain these parameters, we use them
to perform sparse recovery with GCV-FOCUSS+ on the entire
skin conductance signal.

1.3. Sympathetic Arousal State Estimation
The autonomic nervous system contains both a sympathetic and
a parasympathetic branch. The sympathetic branch mediates the
body’s “fight or flight" response and causes increases in blood
pressure, perspiration and heart rate (Silverthorn, 2009). As
pointed out earlier, sympathetic nerve fibers innervate the sweat
glands (Low, 2012) and consequently skin conductance provides
an index of sympathetic arousal (Critchley et al., 2002). Multiple
skin conductance features such as tonic levels, rates of SCR
appearance, SCR amplitudes and decay rates have been examined
in the context of various behavioral interventions (Dawson et al.,
2007; Boucsein, 2012). The rate at which SCRs occur has been
shown to be related to cognitive task load (Jennings, 1986; Munro
et al., 1987) and is thus a useful biomarker of autonomic arousal
(Aikins et al., 2009). Here, we describe our approach of estimating
an unobserved sympathetic arousal state based on the appearance
of neural impulses underlying SCR generation.

We develop a state-space model relating arousal to the
probability that the neural impulses occur (Wickramasuriya
et al., 2018). The model is inspired by an earlier work relating
a sequence of binary response variables to a latent cognitive
learning state (Smith et al., 2004). We first divide the time-axis
into bins of Tu duration indexed over j and assign sj = 1 or
sj = 0 based on whether or not a neural impulse occurs at the
jth time instance. Similar to Smith et al. (2004), we assume that
sympathetic arousal zj follows a random walk with time,

zj = zj−1 + ǫj ; ǫj ∼ N (0, σ 2
ǫ ). (10)

The appearance of neural impulses sj is a Bernoulli distributed
random variable with probability pj and is taken to be related to
zj via a sigmoid function (Smith et al., 2004),

log
( pj

1− pj

)

= α + zj H⇒ pj =
1

1+ e−(α+zj )
. (11)

The choice of the sigmoid function follows from the theory
of generalized linear models (McCullagh and Nelder, 1989).
Such logarithmic or exponential transformations are frequently
encountered in count or frequency type data. Assuming that a
subject’s sympathetic arousal state z0 ≈ 0 at the outset of the
experiment, α = log[p0(1 − p0)

−1] can be calculated by taking
p0 as the probability that a neural impulse occurs randomly in a
time bin for each individual (Smith et al., 2004; Wickramasuriya
et al., 2018).

Given the observations S1 : J = {s1, s2, . . . , sJ} we wish
to estimate zj ∀j. We use Bayesian filtering and Expectation-
Maximization (EM) for estimating the arousal states zj
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and recovering the unknown model parameters z0 and
σ 2

ǫ . The algorithm iterates between the E-step and M-step
until convergence.

1.3.1. Expectation Step
The E-step consists of two parts—a forward filter and a backward
smoother. The filter first calculates a state estimate zj|j using the
observations S1 : j available up to the jth time index. The backward
smoother determines a second estimate zj|J given all the available
observations S1 : J . A Gaussian approximation is made at the filter
formulation step and leads to the following equations at the lth
EM iteration (Smith et al., 2004):
Predict:

zj|j−1 = zj−1|j−1 (12)

σ 2
j|j−1 = σ 2

j−1|j−1 + σ 2(l)
ǫ (13)

Update:

zj|j = zj|j−1 + σ 2
j|j−1

[

sj −
1

1+ e−(α+zj|j )

]

(14)

σ 2
j|j =

{

1

σ 2
j|j−1

+
eα+zj|j

[

1+ eα+zj|j
]2

}−1

. (15)

One should note that zj|j appears on both sides of Equation (14)
and therefore is numerically solved using Newton’s method. We
next obtain the smoothed state and variance estimates zj|J and σ 2

j|J

as follows (Mendel, 1995):

Aj =
σ 2
j|j

σ 2
j+1|j

(16)

zj|J = zj|j +Aj

(

zj+1|J − zj+1|j

)

(17)

σ 2
j|J = σ 2

j|j +A
2
j

(

σ 2
j+1|J − σ 2

j+1|j

)

. (18)

1.3.2. Maximization Step
We maximize the complete data likelihood at the M-step to
estimate the two unknown model parameters σ 2

ǫ and z0. The
parameter updates for the (l+1)th iteration are as follows (Smith
et al., 2004):

σ 2(l+1)
ǫ =

2

J + 1

[
J

∑

j=2

(σ 2
j|J + z2j|J)−

J
∑

j=2

(Ajσj|J + zj|Jzj−1|J)

]

(19)

+
1

J + 1

[

3

2
z21|J + 2σ 2

1|J − (σ 2
J|J + z2J|J)

]

(20)

z
(l+1)
0 =

1

2
z1|J . (21)

Following a criteria similar to Smith et al. (2004), we take the
parameters to have converged once their absolute difference
between consecutive iterations does not exceed 10−8.

1.3.3. High Arousal Index
Similar to Smith et al. (2004), we calculate the probability that
sympathetic arousal state zj exceeds a specific threshold. We
name this the High Arousal Index (HAI). HAI helps express
how aroused a person is above a certain baseline. After the EM
algorithm has converged, the state zj at each time instance is
taken to be Gaussian distributed zj ∼ N (zj|J , σ

2
j|J) and we define

HAI as follows:

HAI = Pr(zj > zT), (22)

where the threshold zT is set to each subject’s median state value
across the whole experiment. Recall that the experiment acquired
data from subjects during episodes of both stress and relaxation.
The high stress induced during the experiment corresponds
to a state of high arousal and the relaxation corresponds
to low arousal. Therefore, we selected zT as the median
value as an approximation of normal arousal in between the
two extremes.

2. RESULTS

2.1. Skin Conductance Deconvolution
Figure 2 shows the skin conductance signals and deconvolution
results for the selected participants during the backward
counting task. In each sub-figure, the upper sub-panel shows
the separation of the tonic and phasic components using
cvxEDA (Greco et al., 2016). The lower sub-panel in each
sub-figure shows the corresponding neural stimuli recovered
using our deconvolution approach along with the reconstructed
signal. It is the timings of these neural impulses that are used
for estimating sympathetic arousal. Our method detects all
significant impulses though it misses a few small ones that
are comparable to noise. The number of detected impulses
and the estimated SCR rise and decay times τr and τd are
given in Table 2. Recall that these numbers are calculated based
on data acquired during the backward counting task of the
experiment. The τr and τd values estimated from this portion
of the experiment are finally used to solve for the neural
impulses over the entire signal. Also given in Table 2 are the
squared multiple correlation coefficients R2 for the participants.
R2 is an indication of goodness-of-fit and expresses how much
of the variance of the data is captured by the model. R2 is
above 0.93 for everyone indicating a good fit to the data. The
number of impulses varies considerably from person to person.
This is likely due to the fact that each participant responds
to stress uniquely, despite being exposed to the same type of
external stressor.

To further validate our deconvolution approach, we generated
a second set of synthetic data using the τ and u already estimated
for each participant. We added 25 dB SNR Gaussian noise
to corrupt this new simulated phasic skin conductance data
and performed deconvolution yet again. Figure 3 shows the
results along with the ground truth. Table 3 shows the estimated
parameters and their errors. Again, all R2 values are above 0.98
indicating a very good fit to the data.
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FIGURE 2 | Estimated deconvolution of the experimental skin conductance data. For each of the participants, (i) the upper sub-panel depicts the raw skin

conductance data (blue curve) and the separated tonic component of the skin conductance data using cvxEDA (green curve); (ii) the lower sub-panel depicts the

separated phasic component (blue stars), the estimated reconstructed signal (red curve), the estimated neural stimuli timings and amplitudes (black vertical lines).

TABLE 2 | Experimental results.

Participant τr (second) τd (second) ||u||0 R2

1 0.681 2.591 20 0.9629

2 1.398 1.568 17 0.9707

3 1.159 1.505 14 0.9868

4 0.965 1.880 8 0.9399

5 0.604 3.018 35 0.9788

6 0.663 2.617 28 0.9686

The estimated model parameters and the squares of the multiple correlation coefficients

(R2 ) for the fits of the experimental skin conductance time series.

2.2. Sympathetic Arousal State Estimation
Figure 4 shows the sympathetic arousal state estimation results.
For participant 1, arousal as measured by HAI remains above
90% during the cognitive tasks and reduces significantly during
relaxation. HAI then increases around the start of emotional
stress. Participant 2 has a similar response although the increase
in arousal at the start of emotional stress is much less. There
is also a notable, though not significantly high, increase right
in the middle of the relaxation period. The arousal profile for
participant 3 is almost identical to that of participant 1 with a

high level at the start, a significant drop during relaxation and a
moderate increase at the starting point of emotional stress.

The HAIs are somewhat different for the remaining
participants. For participant 4, arousal increases up to or above
the 90% threshold a few times during the cognitive tasks, but
does not remain high continuously. There is a significant drop
during relaxation and an increase above 90% when the horror
movie begins. HAI for participant 5 remains high during the
cognitive tasks and then drops during relaxation. There are
several notable increases during emotional stress, though none
of them increase above the 90% threshold. None of the increases
however, exceed 90% in this period. Participant 6 is closest to
participant 4 althoughHAI remains more consistently above 90%
during cognitive stress with only a slight drop in the middle.
Arousal thereafter drops during relaxation and increases above
90% for a brief period at the start of emotional stress. The
estimated arousal states zj|J also follow the general trend of the
corresponding HAIs for all participants.

3. DISCUSSION

3.1. Skin Conductance Deconvolution
Our method successfully recovers neural impulses associated
with phasic SCRs. Between-subject variability in the estimated
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FIGURE 3 | Estimated deconvolution of the simulated phasic skin conductance data in six participants. For each of the participants, (i) the upper sub-panel depicts

the simulated phasic component of the skin conductance data samples with 25 dB SNR Gaussian noise (blue stars), the estimated reconstructed signal (red curve); (ii)

the lower sub-panel depicts the estimated neural stimuli timings and amplitudes (black vertical lines) and the ground truth of the neural stimuli (red vertical lines) for

each of the participants.

TABLE 3 | Results from simulated data.

Participant τ̂r (second) τ̂d (second) ||û||0 R2 |τ̂r−τr |
τr

× 100%
|τ̂d−τd|

τd
× 100% |||u||0 − ||û||0|

1 0.664 2.627 19 0.9921 2.49 1.39 1

2 1.348 1.573 16 0.9919 3.58 0.32 1

3 1.128 1.503 11 0.9806 2.67 0.13 3

4 1.139 1.510 7 0.9891 18.03 19.68 1

5 0.5514 3.230 34 0.9936 8.71 7.02 1

6 0.650 2.672 27 0.9918 2.00 2.10 1

The estimated model parameters and the squares of the multiple correlation coefficients (R2 ) for the fits of the experimental skin conductance time series.

rise and decay times and the number of impulses is to be
noted. The tonic levels also show considerable variations from
person to person. These variations clearly highlight the need
for determining the physiological parameters τr and τd on an
individual basis rather than relying on fixed values for everyone.

Deconvolution using simulated data (Figure 3 and Table 3)
also shows that most impulses are accurately recovered. Only
impulses that are comparable to noise peaks aremissed. The error
percentages in estimating τr and τd are less than 10% for five
of the participants. Participant 4 has a much higher percentage

error. Recall that our problem formulation for estimating the
rise and decay times is not convex. Consequently, there exists
the possibility of stagnating at a local minimum. While we
attempt to mitigate this problem through multiple initializations,
and then taking the solution with the smallest squared error,
there still exists a finite possibility of stagnating at a location
other than the global minimum. The number of neural impulses
for participant 4 is also much lower than for the others.
Consequently, there are less SCRs to fit to and the result is more
error-prone.
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FIGURE 4 | Sympathetic arousal state estimation. For each of the participants, (i) the top sub-panel depicts the skin conductance signal; (ii) the 2nd sub-panel

depicts the recovered neural impulses; (iii) the 3rd sub-panel depicts the smoothed sympathetic arousal state zj|J and its confidence intervals; (iv) the 4th sub-panel

depicts the smoothed impulse occurrence probability pj|J and its confidence intervals; (v) the lower sub-panel depicts the high arousal index (HAI) with the region

above 90% probability highlighted in red. The color-coded backgrounds correspond to the instruction period for the cognitive tasks (red), the backward counting task

(green), the Stroop test (cyan) (both the counting task and the Stroop test make up the cognitive stress portion), relaxation (light brown) and emotional stress (violet).

Small green rectangles above 3rd and 4th sub-panels depict neural impulse location timings.

Each SCR, resulting from a single neural impulse, is
mathematically modeled as a bi-exponential function. Estimating
the rise and decay times of an SCR in the presence of noise is
challenging due to this sensitive exponential nature. More than
one pair of rise and decay times exist that can closely approximate
an experimental SCR shape. Results are also heavily dependent on
the removal of the tonic part. cvxEDA (Greco et al., 2016) models
the tonic part with cubic B-spline basis functions with a 10 s
knot size. Greco et al. (2016) used l2-norm penalization on the
cubic spline basis function coefficients to avoid overfitting. They
selected the regularization parameter to the penalization term

based on prior data they had analyzed. This parameter depends
on how the data is scaled in reality and how much of the tonic
part it contains. Here, we set the regularization parameter related
to the smoothness of the tonic component in cvxEDA at 0.001
instead of the 0.01 default to obtain a better separation of the
tonic and phasic components.

Our current implementation of skin conductance
deconvolution comprises of the two-step coordinate descent
algorithm described earlier. Although it performs well in terms
of accuracy, a faster implementation is necessary for a real-time
CLDBS system. The physiological parameters τr and τd usually
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remain stable over a prolonged period of time. Therefore, we
can perform only the sparse recovery procedure on windows of
incoming data after an initial parameter estimation is complete,
and thereafter estimate τr and τd in the background from
time-to-time. A faster implementation of the sparse recovery
step (e.g., using Greedy algorithms or Bayesian approaches)
could further help improve time complexity.

3.2. Sympathetic Arousal State Estimation
A general trend is to be observed in the participant arousal
levels in Figure 4. In the case of cognitive stress, the subjects’
arousal states and HAI remain almost constantly high with
the exception of participant 4. In contrast, there is only a
moderate increase that dies down at the start of the emotional
stress phase. The cognitive tasks required active engagement,
i.e., mathematical calculations and active concentration, on the
part of the participants. Meanwhile, the emotional stress period
only involved passive engagement—the subjects just had to
watch a horror movie clip without any significant cognitive
effort. The varying level of cognitive activity is a likely reason
for the difference in arousal between cognitive and emotional
stress. Birjandtalab et al. (2016) used a clip from the horror
movie entitled the “The Horde" to generate emotional stress.
It is also possible that the movie was insufficient to generate
significant emotional stress. The desired stress-generating effect
may not have been realized if, for instance, a participant had
already watched the movie. A visual inspection of the sub-
panels depicting skin conductance in Figure 4 does not show
a significant number of SCRs during emotional stress. It is
likely PTSD patients may experience more emotional rather than
cognitive stress. However, the emotions they experience may not
necessarily be those evoked in healthy subjects for the very same
stimuli. For instance, scenes of blood and dead bodies in a horror
movie may evoke traumatic memories in PTSD patients leading
to higher levels of stress. Further experimentation with a patient
population would help validate ourmethods in detecting elevated
levels of arousal in PTSD.

Sympathetic arousal information is not only encoded in
how frequently neural impulses to the sweat glands occur, but
also in the skin conductance signal amplitudes. Consequently,
the amplitude of individual SCRs are taken as indicators of
arousal (Bach et al., 2010). The tonic skin conductance level
also contains emotion-related information (Braithwaite et al.,
2013). Our current state-space formulation only considers the
rate at which neural impulses (i.e., binary events) occur. Future
work would incorporate the additional amplitude features for
estimating sympathetic arousal using augmented state-space
models that include both binary and continuous observations
(Prerau et al., 2009; Coleman et al., 2011). The addition of heart
rate could also help obtain an improved sympathetic arousal
estimate (Wickramasuriya and Faghih, 2019).

The current EM approach is also offline and therefore requires
modification if it is to be used in real-time in an experimental
CLDBS prototype. We suggest running the forward filter in
the E-step continuously and performing the full EM procedure
in the background from time to time. This is very similar to
the approach proposed for deconvolution when adapting to

the needs of real-time computation. This may also permit the
model parameters to change in adaption to disease progression
and changing environmental conditions over time. The steps
could also be run in parallel in a multicore processor. Several
smartphones are now enabled with multicore processors and
one option could be to perform the CLDBS computations on
a wearer’s phone. Another option would be to stream the
data to the internet and perform computations in the cloud.
Developing a custom hardware device to accompany the CLDBS
implant is yet another option for performing skin conductance
deconvolution and arousal state estimation in real-time.

3.3. Study Limitations
As noted earlier, many of the skin conductance recordings

were contaminated with noise and had to be discarded. In-
band motion artifacts such as those seen in the data-set usually
contaminate a signal nonlinearly. Adaptive filtering (Mathews,
1991; Zaknich, 2005) and multi-level wavelet-based thresholding
(Chen et al., 2015) are some of the options for suppressing
motion artifacts. It is likely that skin conductance will indeed be
contaminated with such artifacts in a real-world setting.We leave
the development of an accelerometer-based adaptive filter for
removing motion artifacts in skin conductance for future work.
In another work, Amin and Faghih (2018) illustrated a way of
performing concurrent deconvolution from multi-channel skin
conductance data to obtain an estimate from noisy data. They
included weights in different channels based on the standard
deviation of noise in each channel while estimating the neural
stimuli. They showed that the multi-channel approach could be
more reliable for noisy skin conductance data. Multi-channel
approach could potentially be used to achieve a more reliable
CLDBS system.Moreover, factors other than sympathetic arousal
can also influence skin conductance (e.g., body temperature,
hydration, physical activity, and electrolytes). Variations induced
by these factors may thus confound sympathetic arousal
estimates; this is a limiting factor of using skin conductance
alone. Such factors could be taken into account in a real-
world setting and their effect canceled to obtain an improved
arousal estimate. This would require an extended state-space
model incorporating body temperature and hydration levels, for
instance, as additional observations.

The present work is a proof-of-principle framework for using
skin conductance in closing the DBS loop. As skin conductance
relates to sympathetic arousal, and moreover as PTSD patients
frequently show symptoms of hyperarousal, we note the
suitability of using skin conductance as a CLDBS biomarker.
The data-set used here however, does not include any PTSD
patients and is a limitation of this study. Further investigation
is therefore necessary to validate the use of skin conductance
in an experimental CLDBS prototype for PTSD patients. Recall
that differences in skin conductance have been reported in the
literature between individuals with and without PTSD. The
coefficients of the differential equations (τ ) in Equations (2) and
(3) governing sweat secretion dynamics are determined on a per
subject basis. Thus, even if τ were significantly different between
healthy and patient populations, our deconvolutionmethodology
would still adapt to each individual. Furthermore, we only track
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a single skin conductance feature—the occurrence of neural
impulses. The α coefficient in Equation (11) is calculated from
the baseline probability of impulses on a per subject basis. The
process noise variance σ 2

ǫ in Equation (10) is also estimated for
each subject individually via the EM algorithm. Therefore, our
Bayesian filter for sympathetic arousal estimation is also able to
adapt to each individual. Although the present study did not
include data from a patient population, we would however expect
our methods to generalize to them nevertheless due to the ability
of the framework to adapt to each individual.

3.4. Effect of DBS on Skin Conductance
The neural substrates underlying skin conductance have been
examined in studies involving functional imaging, brain lesions
and direct electrical stimulation (Critchley, 2002). Mangina and
Beuzeron-Mangina (1996) applied electrical stimulation to the
limbic structures of a group of subjects with intractable epilepsy
and measured bilateral skin conductance. When the left sides
of the amygdala, posterior hippocampus, anterior hippocampus
and cingulate gyrus were stimulated, higher SCR amplitudes
on the left hand were observed compared to the right. The
reverse was also true when the right sides of the same interior
structures were stimulated. They also reported that stimulation
intensity increased SCR amplitudes. Lanteaume et al. (2006)
examined the effect of electrical stimulation of the amygdala on
self-reported emotions and SCRs in a group of patients with
drug-resistant partial epilepsy. SCR amplitudes were larger when
the stimulation caused a positive emotional change as opposed
to a negative change or no change. Our methodology does not
make use of the SCR amplitudes but rather the rates at which
they occur. Further research would be necessary to quantify the
effect on SCR rates when applying direct stimulation via a DBS
implant to the limbic structures. A correction for the effect due to
the stimulation could be incorporated into the state-space model
in this case.

3.5. Closing the DBS Loop
Developing a complete CLDBS system is a challenge. Our
approach demonstrates the ability to recover sympathetic
arousal from skin conductance measurements using state-space
methods. Neural stimuli to the sweat glands originating from the
sympathetic nerve fibers encode emotion-related information in
how frequently they fire. By relating the probability of neural
impulse occurrence to sympathetic arousal through a state-space
model, we are able to estimate a continuous state trajectory across
different episodes of relaxation and stress.

Different biomarkers have been suggested for closing the
loop in DBS therapy. Ideally, the biomarker should enable
the real-time tracking of an unobserved brain state. Here,
we investigate skin conductance as a viable alternative for
a CLDBS as a means of treating neuropsychiatric disorders
such as PTSD. While we have sought to address how to
estimate an emotion-related state trajectory from peripheral
skin conductance measurements, there remains the problem
of determining the mapping from the state variable back into
the CLDBS stimulation parameter space (i.e., the amplitude,
frequency, and width of the electrical stimuli). Determining

this mapping will enable sympathetic arousal to be controlled
in realtime. Grahn et al. (2014) proposed a novel means of
addressing this mapping problem in a CLDBS system they
developed for maintaining stable dopamine levels in rodents.
They first varied the frequency, amplitude, and pulse width of the
electrical stimulation andmeasured the corresponding dopamine
level responses for different parameter combinations. We too
could similarly vary the electrical stimulation parameters of a
DBS system while measuring skin conductance changes and
estimate the corresponding arousal levels. Grahn et al. (2014)
next characterized the dopamine responses using a combination
of 7th order polynomials and 2nd order exponentials. This
required a total of 12 model coefficients. They next trained
a neural network having the frequency, amplitude and pulse
width as the inputs and the 12 model coefficients as the outputs.
Likewise, we could train a neural network mapping stimulation
parameters to arousal responses. Thereafter, Grahn et al. (2014)
trained a second neural network having the model coefficients
as inputs and the frequency, amplitude and pulse width as
the outputs. They used this inverse model for predicting the
stimulation parameters necessary for maintaining specific extra-
cellular dopamine levels. Therefore, a CLDBS system utilizing
our method for arousal estimation could utilize a similar neural
network characterizing the inverse relationship back into the
stimulation parameter space in its feedback path.

A simpler option would be to use on/off control instead of
adjusting the stimulation parameters in a continuous manner.
Herron et al. (2017) developed an on/off CLDBS controller for
a patient suffering from tremor. The controller applied electrical
stimulation when β-band power recorded from invasively
acquired electroencephalography (EEG) dropped below a certain
(manually-tuned) threshold, and switched it off when the power
exceeded yet another threshold. Preliminary on/off control could
be applied in the case of neuropsychiatric disorders too, for
instance when sudden angry outbursts or bouts of depression
as detected by abnormally elevated or diminished arousal
levels occur.

Wewish to point out that not all elevated arousal levels need to
be controlled (e.g. high arousal levels due to positive excitement).
When proposing a CLDBS framework for the treatment of
chronic pain, Shirvalkar et al. (2018) too noted that they did not
wish to avoid all feelings of pain per se, as pain itself provides a
warning of potential tissue damage. Therefore, a fully closed-loop
system for the treatment of neuropsychiatric disorders should
be able to recognize the positive–negative aspect of emotion as
well. This positive–negative or pleasure–displeasure dimension
is known by the term emotional valence (Russell, 1980). The
CLDBS would ideally need to estimate a vector zj containing
both arousal and valence. Emotional valence information can be
decoded using physiological signals such as scalp EEG, heart rate,
electromyography and skin conductance (Koelstra et al., 2012;
Soleymani et al., 2012). Stimulation can then be turned on, for
instance, only if high arousal is detected and valence is negative.

Finally a control algorithm is necessary in the CLDBS feedback
loop when progressing beyond preliminary on/off stimulation.
Our state estimation approach relies on a rate of neural firing.
Azgomi et al. (2019) developed a fuzzy feedback controller
based on the rate of SCR appearances for increasing arousal
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during relaxation and decreasing it during periods of cognitive
stress. The controller was based on the model proposed in
Wickramasuriya et al. (2018) and can directly be used with the
method presented here. In a review of CLDBS therapy, Carron
et al. (2013) mention two different other works, namely those
by Grant and Lowery (2013) and Pasillas-Lépine et al. (2013),
that propose a control mechanism based on the rate of neural
firing for estimating a state variable. Pasillas-Lépine et al. (2013)
proposed a proportional control based on the firing rates of
the subthalamic nucleus and global pallidus. Grant and Lowery
(2013) developed a similar CLDBS controller based on β-band
oscillations in LFPs. An adaptation of one of these methods could
also be used for developing a control law for regulating emotion
based on peripheral skin conductance measurements.

3.6. Conclusion
DBS has met with success in treating a host of disease conditions
where other therapeutic measures have been exhausted. CLDBS
systems have been proposed as the future of DBS due to their
inherent advantages over the previous generation of open-
loop systems. Closing the DBS loop is a challenge. In this
work, we present a method for estimating sympathetic arousal
from skin conductance measurements as a potential mechanism
that could be deployed within a CLDBS system for treating
neuropsychiatric disorders. The methodology consists of two
parts: (i) the deconvolution of phasic skin conductance to obtain
the neural impulses that generate SCRs; (ii) a state-space model
for tracking sympathetic arousal based on the frequency at
which the SCRs appear. Results are demonstrated on a publicly
available data-set. We finally discuss possibilities for developing
a controller that could map the state estimates back into the
stimulation parameter space for automated closed-loop control.
While we mention PTSD as an example scenario here, our
approach could be generalized to other disease conditions where

any type of impulse-like or pulsatile signal is a biomarker. For
instance, if neural spiking or pulsatile cortisol secretions are
clinically-relevant features for a particular disease condition,
then the Bayesian filter described here could also be used as
part of closing the loop. Additionally, the methods presented
here are personalized, i.e., the model parameters are estimated
for each individual. Differences in skin conductance have been
reported in the literature between healthy subjects and patients
with anorexia nervosa (Tchanturia et al., 2007) and depression
(Ward and Doerr, 1986). If skin conductance biomarkers can
be determined for each of these conditions (based on SCR
amplitudes, rates of SCR occurrence, skin conductance levels
etc.), then an extended state-space model could be developed
to track a symptom-related neural state that incorporates both
binary and continuous-valued observations (Prerau et al., 2009;
Coleman et al., 2011).
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