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Quantum technologies rely on the ability to coherently transfer information encoded in quantum states
along quantum channels. Decoherence induced by the environment sets limits on the efficiency of any
quantum-enhanced protocol. Generally, the longer a quantum channel is the worse its capacity is. We show
that for non-Markovian quantum channels this is not always true: surprisingly the capacity of a longer
channel can be greater than of a shorter one. We introduce a general theoretical framework linking
non-Markovianity to the capacities of quantum channels and demonstrate how harnessing
non-Markovianity may improve the efficiency of quantum information processing and communication.

T
he description of quantum systems interacting with their environment is the central objective of the theory
of open quantum systems1. During the last few years there has been an increasing interest in open quantum
systems with memory, also known as non-Markovian open quantum systems2–12, due to both fundamental

and applicative reasons. From a fundamental point of view the study of quantum systems interacting with
structured environments, while presenting considerable difficulties from a theoretical point of view, is of crucial
importance for the realistic description of a variety of physical systems such as photonic band gap materials,
quantum biological systems and complex quantum networks, solid state systems (e.g., SQUIDs and Josephson
junctions), and ultracold gases. From an applicative point of view, the increasing ability in reservoir engineering
techniques paves the way to new methods of decoherence control based on the manipulation and modification of
properties of the environment such as its frequency spectrum13–15.

Non-Markovianity is a multifaceted and complex phenomenon that cannot be simply grasped by looking at
specific instances and cannot be generally traced back to a single unique feature of the environment. Several
measures of non-Markovianity have been introduced, based on distinguishability of quantum states as measured
by trace distance3 or fidelity4, semigroup property5 or divisibility6 of the dynamical map, Fisher information7, or
quantum mutual information8. In general these measures or witnesses do not coincide and examples of differ-
ences between them have been reported even for simple open quantum systems16. This is an obvious consequence
of the fact that reservoir memory may have different effects on different dynamical properties that one may want
to harness for certain specific purposes. Rather than being a problematic aspect, we believe that this richness and
variety constitutes the power of non-Markovian open quantum systems.

Very recently the role of structured environments and non-Markovianity in quantum metrology17, quantum
key distribution18, quantum teleportation19, entanglement generation20, optimal control21, and quantum bio-
logy22,23, has started to be investigated, showing with increasing evidence that non-Markovian quantum channels
may be advantageous compared to Markovian ones. However, to date there is no general theory linking non-
Markovian dynamics with an increase in the efficiency of quantum information processing and communica-
tion24. This is exactly the scope of this Letter. Our main result is the identification of specific features of
non-Markovianity that lead to an increase in the capacities of quantum channels compared to the corresponding
Markovian ones. We emphasize the overlooked connection between the data processing inequality and the
divisibility of the dynamical map, and explore this relation to reveal the key signature of non-Markovianity.
Our approach establishes a link between the reservoir memory effects and the variation in the entropy of the
system and of the environment, paving the way to a description of reservoir memory in terms of information flow
and exchange between the system and the environment.
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Results
Quantum capacities. The general scenario typical of quantum
information processing and communication sees Alice and Bob at
the opposite ends of a quantum channel, the former sending
information (classical or quantum) and the latter receiving it. The
maximum amount of information that can be reliably transmitted
along a noisy quantum channel is known as the channel capacity. In
this Letter we will be concerned with two types of capacities, the
entanglement-assisted classical capacity Cea and the quantum
capacity Q25. The first quantity sets a bound on the amount of
classical information that can be transmitted along a quantum
channel when one allows Alice and Bob to share an unlimited
amount of entanglement. It is defined in terms of the quantum
mutual information I(r, Wt) between the input and the output of
the channel

Cea Wtð Þ~ sup
r

I r,Wtð Þ, ð1Þ

where I(r, Wt) 5 S(r) 1 S(Wtr) 2 S(r, Wt), with S(r) 5 2tr(r ln r)
the von Neumann entropy of the input state, S(Wtr) the entropy of
the output state and S r,Wtð Þ~S ~Wtr

� �
the entropy exchange, i.e., the

entropy at the output of the complementary channel ~Wt
25. We

indicate with Wt the dynamical map describing the quantum
evolution of a generic open quantum system. The dynamical map
defines a family of quantum channels for t $ 0, such that W0~II. If r
is the initial state of the system, then Wtr defines the state at time t
that tells us for how long the quantum state, encoding classical or
quantum information, is subjected to environmental noise. In
experimental implementations of quantum protocols, e.g. with
trapped ion systems, t is the duration of the experiment and it is
obviously connected to the length of the channel, i.e. the length of an
optical fiber in optical systems. The quantum capacity Q, on the other
hand, gives the limit to the rate at which quantum information can be
reliably sent down a quantum channel. For single use of the channel,
it is defined in terms of the coherent information Ic(r,Wt) as follows27

Q Wtð Þ~ sup
r

Ic r,Wtð Þ, ð2Þ

with Ic(r, Wt) 5 S(Wtr) 2 S(r, Wt). More in general, the quantum
channel capacity is defined as Q Wtð Þ~limn?? maxrn

Ic rn,W6n
t

� �� ��
n,

where rn is the density matrix describing the sequence of states sent
through the channel and the maximum is performed over all input
states of n successive channel uses25. We note that, contrarily to the
entanglement-assisted classical capacity, the quantum channel
capacity is in general not additive. However, for degradable
channels28, the general definition coincides with Eq. (2), and
additivity holds.

Capacity-based non-Markovianity measures. One of the central
results of quantum information theory is the quantum data
processing inequality29 which, intuitively, says that processing
quantum information reduces the amount of correlations between
input and output. More precisely, given the quantum channels E1,
E12, and their concatenation E2~E12E1, we have Ic r,E2ð ÞƒIc r,E1ð Þ.
For divisible channels Wt 5 Wt,sWs, with s # t, the data processing
inequality implies Ic(r, Wt) # Ic(r, Ws). A similar inequality holds for
the mutual information, i.e. I(r, Wt) # I(r, Ws). As a consequence, for
divisible quantum channels, both the entanglement-assisted classical
capacity Cea(Wt) and the quantum capacity Q(Wt) decrease
monotonically with time. There exist, however, physical dynamical
maps that cannot be written as concatenation of two completely
positive trace preserving (CPTP) channels Wt,s and Ws. For these
systems, the coherent information and the mutual information
may not simply decrease monotonically in time. Here we claim
that this very concept is at the basis of the information theoretic
approach to non-Markovianity.

It is worth stressing that throughout the paper we discuss non-
Markovian dynamics as arising from the interaction between the
system and a physical environment with certain spectral features.
However, we assume that the channel Wt is memoryless in the sense
of the definition typically used in quantum information theory26.
More precisely, one should remember that when describing informa-
tion transmission one considers not just the dynamics of a single
system, but of sequences of systems each interacting with the envir-
onment. Here we assume that the environment acts identically and
independently on each element of the sequence, so in this sense the
channel is memoryless. However, we assume that the dynamics of
each system in the sequence is non-Markovian due to non-negligible
system-environment correlations. In this typical open quantum sys-
tems scenario we associate the dynamical non-Markovianity to res-
ervoir memory effects1.

All existing measures of non-Markovianity3–8 are based on non-
monotonic behaviour of certain quantities occurring when the divis-
ibility property is violated. Following the same line of reasoning, we
define here two new measures of non-Markovianity based on the
non-monotonic behavior of the quantum and entanglement-assisted
classical capacities,

N Q~

ð
dQ Wtð Þ

dt w0

dQ Wtð Þ
dt

dt, ð3Þ

and

N C~

ð
dCea

dt Wtð Þw0

dCea Wtð Þ
dt

dt, ð4Þ

where the integrals above are extended to all time intervals over
which dQ/dt and dCea/dt are positive.

Our new measures allow for the interpretation of reservoir mem-
ory effects in terms of back flow of the maximum amount of
quantum (classical) accessible information on the initial state, after
the state has been subjected to a noisy channel for a certain time.
Remarkably, since both coherent information and quantum mutual
information connect the entropy of the open quantum system S(Wtr)
(hence its information content) to the variation in entropy of the
environment S(r, Wt), our measures effectively describe reservoir
memory in terms of exchange of information, or information flow,
between system and environment. This is not the case for the other
non-Markovianity measures3–7 where a link between information on
the system and on the environment does not exist.

It it worth noting that the two measures of non-Markovianity
introduced above, in general, do not coincide even for degradable
channels and in fact they distinguish between two different types of
resources, being related to revivals of correlations which can be used
to transfer either classical information or quantum information
down a quantum channel.

Generally, non-Markovianity measures quantify a property of the
dynamical map and are, therefore, defined by optimizing over all
initial states of the system. This optimization problem makes it vir-
tually impossible to evaluate (even numerically) their value for more
than 2 qubits. As the effects of decoherence notably increase dramat-
ically for increasing qubits numbers n, it is crucial to be able to
evaluate the advantages of non-Markovianity for any n. A very
important feature of N Q and N C is that, due to the additivity of Q
(for degradable channels) and Cea, they satisfy the property
N Q W6n

t

� �
~nN Q Wtð Þ, which allows us to calculate straightfor-

wardly the non-Markovianity measure of n qubits in identical uncor-
related environments from the non-Markovianity measure of a
single qubit.

An analysis of non-Markovianity in the framework of resource
theory is beyond the scope of this Letter. However, we claim here that
non-Markovianity can be a resource in the sense that it may allow
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tasks (reliably transmitting information for longer distances) that are
impossible in its absence. We take here a more physical approach
than the general information theoretic one. We indeed start from the
assumption that every quantum system interacts with a physical
environment, whose characteristics depend on the specific physical
context considered. The presence of the environment is unavoidable,
but it is possible to modify some of its properties, e.g. its frequency
spectrum, by means of reservoir engineering techniques. In this con-
text Markovian dynamics, i.e., exponential decay of population or
coherences, is always an approximation of the exact dynamics. Such
an approximation, nonetheless, describes accurately the time evolu-
tion on a coarse grained time-scale, for certain open quantum
systems. By means of reservoir engineering we can induce non-
Markovianity in time scales or distances appreciable in the experi-
ments. More precisely, in this way one can change an otherwise
Markovian dynamics into a non-Markovian one and, as a con-
sequence, find better conditions for quantum communication pur-
poses as measured by channel capacities.

Markovian dynamical maps, characterized by constant positive
decoherence rates, generally lead to irretrievable deterioration of
the channel capacity as the length of the channel increases. On the
contrary non-Markovian dynamical maps charactertized by time-
dependent decoherence rates may lead to (i) increase of the channel
capacities for a given channel length, (ii) revivals of the channel
capacities, hence increasing the values of channel lengths over which
the capacities are non zero, (iii) length-independent finite-capacity
channels (residual channel capacity), i.e., channels for which the
quantum and/or entanglement-assisted classical capacity remains
unchanged and positive, after a certain threshold length.

In order to compare Markovian and non-Markovian channel
capacities a few important remarks are in order. In the spirit of
reservoir engineering, when we talk of Markovian dynamical map
corresponding to a non-Markovian one, we mean the map obtained
for values of the system and environment characteristic parameters
such that reservoir memory effects are negligible after a short initial
time scale. This is the regime in which a coarse grained time-
evolution would be correctly describe by a Markovian dynamical
semigroup. Often this Markovian regime requires a weak system-
reservoir coupling assumption. Hence, the coherences are initially
maintained for longer compared to the non-Markovian regime in
which the coupling is stronger. However, they always inevitably
decay exponentially while in the non-Markovian case, due to res-
ervoir memory effect, phenomena (i)–(iii) may occur. Hence there
will often be a threshold after which the channel capacities in the
non-Markovian regime are higher than in the corresponding
Markovian regime.

It is worth noticing, however, that dynamical maps arising from a
microscopic description do not necessarily admit a Markovian limit
for all values of the parameters. This, e.g., occurs in some of the
examples considered below. Hence, generally, our focus will be on
showing how reservoir engineering allows to improve quantum com-
munication protocols, pointing out if and when this is connected to
information back flow as indicated by N Q=0 or N C=0.

In the following we will illustrate these points by looking at three
exemplary types of exact, and therefore non-Markovian, quantum
channels: the dephasing channel, the amplitude damping channel in
a Lorentzian environment and the amplitude damping channel in a
photonic band gap.

Example 1 - pure dephasing. Let us begin by considering the
dephasing channel for a qubit described by a master equation with

dissipator Ltr~
1
2

c tð Þ szrsz{rð Þ, with c(t) the time-dependent

decoherence rate. The density matrix evolves in time according to
the equations rij(t) 5 rije2C(t) and rii(t) 5 rii,

where C tð Þ~
ðt

0
c t’ð Þdt’, and rij are the density matrix elements of

the initial state r.
Note that c(t) needs not be positive. If c(t) $ 0, then the channel is

divisible.
The dephasing channel is degradable for all admissible c(t), i.e.

whenever C(t) $ 0. This simplifies the calculations of the quantum
capacity. Indeed, we find that Q takes a simple analytical formulae28,
i.e., QD(t) 5 1 2 H2[(1 1 e2C(t))/2], with H2[.] the binary Shannon

entropy. Since 2 _Q
D

tð Þ~{c tð Þe{C tð Þ log2 1ze{C tð Þ
� �.

1{e{C tð Þ
� �h i

the measureN Q is non-vanishing if and only if c(t) , 0, i.e., whenever
the dynamical map is non-divisible. A similar calculation for the entan-
glement-assisted classical capacity shows that CD

ea tð Þ~1zQD tð Þ. It
follows immediately thatN Q~N C . For dephasing channels all known
measures of non-Markovianity vanish if and only if the channel is
divisible.

In Fig. 1 we show the behavior of the quantum channel capacity QD

as a function of time or, equivalently, of the channel length for the
exact model of dephasing of Ref. 30, with Ohmic reservoir spectrum
of the form J vð Þ~cM v=vcð Þse{v=vc , with vc the cutoff frequency,
cM the coupling constant, and s the Ohmicity parameter. For zero
temperature bosonic environments the dynamical map WD

t is divis-
ible if and only if 0 , s # 231. We can change the non-Markovian
character of the channel by changing the Ohmicity paramter s. This
can be experimentally implemented, e.g., with impurities in ultracold
atomic gases as demonstrated in Ref. 32.

Note that in this system the dynamics does not admit a Markovian
limit for s $ 1 as, in this case, the dephasing rate c(t) vanishes for
vct?1. On the contrary, for 0 , s , 1, after a time of the order of
v{1

c , the dephasing rate reaches a constant positive value and the
coherences start decaying exponentially. In Fig. 1 we compare the
non-Markovian dynamics obtained for s 5 3 (blue line) to the case s
5 1 where the system behaves in a Markovian way for vct . 1 (red
line). We see here that, for longer times the non-Markovian case is
preferable over the Markovian one and that the latter leads to
vanishing Qd. We highlight two important features of the non-
Markovian character of the quantum channel, namely, the non-
monotonicity of QD, which initially decreases with time but then
starts increasing again after a certain threshold value of time or
channel length, and the existence of residual quantum channel capa-
city. The connection between stationary coherences leading to chan-
nel capacity trapping and non-Markovianity has been discussed in
Ref. 33.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
QD

ωCt

Figure 1 | Quantum channel capacity QD as a function of time for a super-
Ohmic reservoir spectrum with s 5 3 and cM/vc 5 0.1 (solid blue line)
and a sub-Ohmic reservoir with s 5 0.1 and cM/vc 5 0.5 (red line). The

blue dashed line shows the long time asymptotic value of QD in the super-

Ohmic case.
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The dephasing model here discussed can be implemented experi-
mentally in the context of ultracold atomic gases. In Ref.34 the pure
dephasing master equation is derived starting from a microscopic
system-environment model describing cold atoms in superlattices
(open system) immersed in a harmonically trapped Bose-Einstein
condensate (BEC) acting as an environment. Collisions between the
BEC atoms and the atoms in the optical lattice lead to decoherence
phenomena that, under certain conditions, can be described as pure
dephasing. More precisely purely dephasing dynamics occurs when
the BEC can be considered homogeneous (shallow harmonic trap)
and weakly interacting, and when tunnelling between the two wells
forming the double-well potential of the super-lattice is neglected.
Non-Markovianity in this model has been studied in Ref. 32 where it
has been shown that by changing the BEC scattering length and the
dimensionality of the gas one can engineer different types of both
Markovian and non-Markovian environments. Generally increasing
the BEC scattering length, i.e., the strength of interactions within the
BEC, leads to an increase in non-Markovianity of the system. The low
frequency part of the spectrum in this system is of the Ohmic form
with s 5 1 1 D for weakly interacting gases, with D the dimension-
ality of the BEC34. Since here s $ 2 always, in this system we will
always observe the onset of stationary coherences leading to the
channel capacity trapping observed in Fig. 1.

Example 2 - amplitude damping. The second example we consider
is the qubit amplitude damping channel WA

t rð Þ described by

WA
t rð Þ~ 1{ G tð Þj j2r22 G tð Þr12

G� tð Þr�12 G tð Þj j2r22

 !
, ð5Þ

where G(t) satisfies the non-local equation _G tð Þ~

{

ðt

0
f t{t’ð ÞG t’ð Þdt’ with initial condition G(0) 5 1, and f(t) is

the reservoir correlation function which is related via Fourier
transform to the spectral density J(v). This model describes the
dissipative interaction between a two-level system and a zero-
temperature bosonic reservoir, leading to an exact master equation
of the form1

_r~{
is tð Þ

2
szs{,r½ �zc tð Þ s{rsz{

1
2

szs{,rf g
	 


, ð6Þ

with s tð Þ~{2= _G tð Þ
�

G tð Þ
� �

and c tð Þ~{2< _G tð Þ
�

G tð Þ
� �

the
time-dependent Lamb shift and decay rate, respectively, and s6

the spin inversion operators.

The amplitude damping channel is degradable for G tð Þj j2w 1
2

,

while for G tð Þj j2ƒ 1
2

is anti-degradable with zero quantum capacity.

The states optimizing Ic(r, Wt) and I(r, Wt) are now time-dependent,
but the optimization problem is still solvable. One finds35,36 the fol-
lowing formulae for the entanglement assisted capacity
CA

ea : ~Cea WA
t

� �
CA

ea~ max
p[ 0,1½ �

H2 pð ÞzH2 G tð Þj j2p
� �

{H2 1{ G tð Þj j2
� �

p
� �� �

, ð7Þ

and the quantum capacity QA : ~Q WA
t

� �
QA~ max

p[ 0,1½ �
H2 G tð Þj j2p
� �

{H2 1{ G tð Þj j2
� �

p
� �� �

, ð8Þ

for G tð Þj j2w 1
2

(otherwise Q WA
t

� �
:0).

Lorentzian Spectrum. We begin by considering a Lorenztian spec-
trum of the form J(v) 5 cMl2/2p[(v 2 vc)2 1 l2], with l the width
of the Lorentzian, vc its peak frequency, and cM an effective coupling

constant. In the resonant case d 5 v0 2 vc 5 0, with v0 the qubit
frequency, the function G(t) takes a simple form

G tð Þ~e{t=2 cosh Vt=2ð Þz 1=Vð Þsinh Vt=2ð Þ½ �, ð9Þ

with V~
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1{2R
p

, R 5 cM/l, and t 5 lt. In the weak coupling
regime, i.e. for 2R # 1, G(t) is monotonically decreasing, whereas
in the strong coupling regime, 2R . 1, G(t) is oscillating so there are

periods when
d
dt

G tð Þj j is positive. It is straightforward to show that

c(t) $ 0 for 2R # 1, while it can take temporarily negative values for
2R . 1. In the latter case the dynamical map is not divisible.
However, due to the fact that the amplitude damping channel is
anti-degradable for 2jG(t)j2 , 1, from a quantum information pro-
cessing point of view, only revivals that occur in the region 2jG(t)j2 .

1 are important.
This example is very useful to illustrate the subtleties of the com-

parison between the Markovian and the non-Markovian regimes. To
reduce the non-Markovian character of the map we can use two
strategies (or more generally a combination of them). The first and
obvious one is to consider the limit l=cM?1, corresponding to a flat
and weakly coupled spectrum. If we compare this Markovian regime,
for vct?1, to the non-Markovian one obtained when l=cM=1, we
will find that generally the channel capacities are higher in the
Markovian case. This is, however, obvious. The more we reduce
the coupling with the environment, the better is the resulting channel
for quantum communication purposes. A more interesting situation
occurs if we assume that we cannot change l/cM but we can instead
change the detuning d. In this case, the more detuned is the system,
the longer the qubit populations tend to oscillate. As a consequence
non-Markovianity can increase for increasing detunings, leading to
better and better values of the quantum channel capacity, as shown in
Fig. 2. More precisely the increased values of Q(t) for increased
detunings are due to both a reduction in the amount of information
lost into the environment (smaller effective coupling to the envir-
onment) and to an increase in the information backflow as indicated
by the appearance of new oscillations. In this sense non-
Markovianity, describing information backflow, certainly plays a
role in the behaviour of the quantum channel capacity displayed in
Fig. 2.

It is interesting to highlight the differences between the entangle-
ment-assisted capacity CA

ea and the quantum capacity QA in the
amplitude damping model here considered. In Fig. 3 we plot CA

ea

5 10 15 200

0.2

0.4

0.6

0.8

1

 

 

NQ = 0QA

λt

NQ = 2.47

NQ = 4.09

NQ = 4.68

Figure 2 | Quantum channel capacity QA as a function of time for the
exact amplitude damping model with Lorentzian reservoir spectrum,
with l/cM 5 0.06 and detuning parameters d/l5 3 (turquoise line), 5 (red
line), 6 (green line), and 8 (dark blue line).
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and QA for two different values of R in the strong (R 5 10) and ultra-
strong (R 5 100) coupling regimes. For these values of parameters
the dynamical map is always non-divisible and, hence, all the prev-
iously introduced non-Markovianity measures3,5–9 are non-zero.
However, in Fig. 3 we see that, while Cea always exhibits revivals,
i.e.N C=0, QA decreases monotonically eventually vanishing for R 5

10, where N Q~0. Revivals of N Q occurs only in the ultra-strong
coupling regime. This example shows the difference between the two
capacity-based measures introduced in this Letter. The careful reader
will not be surprised by this result. We should expect indeed that the
transmission of quantum information along a quantum channel is
more sensitive to noise than the transmission of classical information
(although assisted by entanglement shared between Alice and Bob).

Photonic Band Gap. Also the second example of amplitude damping
channel stems, as the previous one, from an exact microscopic model
of an open quantum system. The environment is a bosonic zero
temperature three-dimensional periodic dielectric with isotropic
photon dispersion relation. In this ideal photonic crystals, a photonic
band gap is the frequency range over which the local density of
electromagnetic states and the decay rate of the atomic population
of the excited state vanish. Near the band gap edges the density of
states becomes singular, the atom-field interaction becomes strong,
and one can expect modifications to the spontaneous emission decay.
We consider the model described in Ref. 37. In this case the function
jG(t)j2 depends on two relevant parameters, the detuning d 5 v0 2

ve from the band gap edge frequency ve and the parameter b defined

as b3=2~v
7=2
0 d2

�
6p 0�hc3 with 0 the Coulomb constant and d the

atomic dipole moment. Population trapping is a general feature of
this model. The farther the atomic transition frequency is from ve

and inside the gap, the higher is the fraction of initial state population
which is trapped in the excited state for t R ‘. This in turn gives rise
to stationary values of the quantum and classical capacities as we can
see for QA in Fig. 4. The opposite regime is when the qubit frequency
falls outside the gap and far from the edge ve, in which case a fast
Markovian exponential decay typical of atomic spontaneous emis-
sion occurs and the channel capacities vanish very rapidly. Here it is
clear that, for this system, increasing non-Markovianity one obtains
better an better values of channel capacities because of the increas-
ingly effective population trapping, as shown in Fig. 4.

We conclude noticing that for amplitude damping channels the
non-Markovianity measures associated to Q and Cea, defined in Eqs.
(3)–(4), are not simply related. In general QA

ƒCA
ea, and the entangle-

ment-assisted classical capacity shows similar features to the ones that
we have seen for the quantum capacity. Finally, we note that, for the
amplitude damping channel, there exist values of parameters for
which the non-Markovianity measures of Refs. 3,6 are non zero, but
stillN Q~0, proving that these measures in general are not equivalent.

Discussion
In the quest for realistic large scale implementations of quantum
devices for quantum technologies one of the major existing chal-
lenges is the identification of ways to increase both the distance over
which quantum information is reliably transferred and distributed,
and the coherence times of quantum information processing. The
results presented in this article demonstrate that careful manipula-
tion of the environmental properties based on the exploitation of
environmental memory effects and non-Markovianity can be gen-
erally used to induce revivals of classical and quantum capacities as
well as for engineering distance (or time)-independent values of
these quantities. This means that, in certain situations, reservoir
memory effects may be exploited to improve realistic error correc-
tion schemes working for any channel length. In this sense our results
prove that non-Markovianity is a new and yet unexplored resource
for quantum technologies, with the potential to pave the way to real-
scale quantum-enhanced devices.

Methods
Dephasing Channel: Dynamical map and its capacity. The dephasing channel
(dynamical map) WD

t for a qubit is described by the local in time master equation

d
dt

WD
t ~LD

t W
D
t , WD

0 ~ , ð10Þ

with the following local generator

LD
t r~

1
2

c tð Þ szrsz{rð Þ, ð11Þ

and time-dependent dephasing rate c(t).
This generator, and the corresponding master equation, can be derived exactly

from the following microscopic Hamiltonian description of system (noisy channel)
plus environment

H~v0szz
X

k

vka{kakz
X

k

sz gkakzg�k a{k

� �
,
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Figure 3 | Quantum channel capacity QA and entanglement-assisted
classical capacity Cea as a function of time for the exact amplitude
damping model with Lorentzian reservoir spectrum with d 5 0, in the
strong R 5 10 (blue solid and dashed lines) and ultra-strong R 5 100 (red
solid and dashed lines).
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Figure 4 | f Quantum channel capacity QA as a function of time for the
exact amplitude damping model in a photonic band gap. The detuning

parameters are (v0 2 ve)/b 5 24 (red line), -1 (blue line), and 0 (green

line).
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with v0 the qubit frequency, vk the frequencies of the reservoir modes, ak a{
k

� �
the

annihilation (creation) operators of the bosonic environment and gk the coupling
constant between each reservoir mode and the qubit. In the continuum limitX

k
gkj j2?

ð
dvJ vð Þd vk{vð Þ, where J(v) is the reservoir spectral density.

The action of the dynamical map WD
t on a qubit is described by the following

formula

WD
t rð Þ~ r11 r12e{C tð Þ

r21e{C tð Þ r22

 !
, ð12Þ

where rij are the density matrix elements of the initial state r. One easily finds the

operator-sum representation WD
t rð Þ~

X2

i~1
Ki tð ÞrK{

i tð Þ with the time-dependent

Kraus operators: K1 tð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1ze{C tð Þ

2

r
II and K2 tð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{e{C tð Þ

2

r
sz , where

C tð Þ~
ðt

0
c tð Þdt. While c(t) may temporarily attain negative values, complete posi-

tivity of the dynamical map imposes that C(t) $ 0. We note in passing that the usual
Markovian quantum channel for pure dephasing can be written in terms of Kraus
operators having the same operatorial form as those reported above, provided one
replaces C(t) with cMt.

Using the Kraus operators one can write the complementary map, needed to
calculate both the coherent information and the entropy exchange which appears in
the definition of the mutual information of the channel, as follows:

fWD
t rð Þ~ 1

2
1ze{C tð Þ
� �

1j iE 1h jz 1{e{C tð Þ
� �

2j iE 2h j
h i

z
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{e{2C tð Þ

p
Tr rszð Þ 1j iE 2h jz 2j iE 1h j

� �
:

The dephasing channel is degradable for all values of C(t), which simplifies the
calculations of the quantum capacity. In this case, indeed, we find that the state
optimizing the coherent information in the definition of the quantum capacity does
not depend either on time or on the specific properties of the environmental spec-
trum. Having this in mind one can show that Q takes the following simple analytical
formula

QD tð Þ~1{H2
1ze{C tð Þ

2

	 

, ð13Þ

with H2(.) the binary Shannon entropy. Since

d
dt

QD tð Þ~{
1
2

c tð Þe{C tð Þ log2
1ze{C tð Þ

1{e{C tð Þ ð14Þ

the measureN Q has nonzero value if and only if c(t) , 0, i.e., whenever the dynamical
map Wt is not divisible.

Amplitude damping channel: Dynamical map and its capacity. The amplitude
damping channel WA

t is described by the exact local generator given in Eq. (6). The
local generator and corresponding master equation can be derived exactly by the
following microscopic Hamiltonian model describing a two-state system interacting
with a bosonic quantum reservoir at zero temperature1

H~v0szz
X

k

vka{
kakz

X
k

gkakszzg�k a{
ks{

� �
: ð15Þ

The generator of the Markovian amplitude damping channel has the same form of
Eq.(6), provided that one replaces the time dependent coefficients s(t) and c(t) with
positive constant values sM and cM. It is worth noticing that Markovian quantum
channels are always approximations of exact (and therefore non-Markovian) ones,
hence they generally describe only a restricted number of physical systems and
processes for which these approximations are valid.

The Kraus representationWA
t rð Þ~

X2

i~1
Ki tð ÞrK{

i tð Þ for the amplitude damping

channel is given by K1~
1 0
0 G tð Þ

	 

and K2~

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ G tð Þj j2

q
0 0

 !
which gives us

a complementary map defined by:fWA
t rð Þ~ 1{ 1{ G tð Þj j2

� �
r22

� �
1j iE 1h j

z 1{ G tð Þj j2
� �

r22 2j iE 2h j

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ G tð Þj j2

q
r12 1j iE 2h jzr21 2j iE 1h j
� �

:

From the expression of the complementary map one obtains the entanglement
assisted and quantum channel capacities of Eqs. (7)–(8).

If the reservoir spectral density has a Lorenztian shape, i.e. J(v) 5 cMl2/2p[(v 2

vc)2 1 l2], then the function G(t) takes the form

G tð Þ~e{
l{idð Þt

2 cosh
Vt
2

	 

z

l{id
V

sinh
Vt
2

	 
� �
, ð16Þ

with

V~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2{2idl{4w2

p
,

where w 5 cMl/2 1 d2/4, and d 5 v0 2 vc. For d 5 0, one obtains Eq. (16).
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