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Abstract

The annual regeneration of deer antlers is a unique developmental event in mammals, which as a rule possess only a very
limited capacity to regenerate lost appendages. Studying antler regeneration can therefore provide a deeper insight into
the mechanisms that prevent limb regeneration in humans and other mammals, and, with regard to medical treatments,
may possibly even show ways how to overcome these limitations. Traditionally, antler regeneration has been characterized
as a process involving the formation of a blastema from de-differentiated cells. More recently it has, however, been
hypothesized that antler regeneration is a stem cell-based process. Thus far, direct evidence for the presence of stem cells in
primary or regenerating antlers was lacking. Here we demonstrate the presence of cells positive for the mesenchymal stem
cell marker STRO-1 in the chondrogenic growth zone and the perivascular tissue of the cartilaginous zone in primary and
regenerating antlers as well as in the pedicle of fallow deer (Dama dama). In addition, cells positive for the stem cell/
progenitor cell markers STRO-1, CD133 and CD271 (LNGFR) were isolated from the growth zones of regenerating fallow
deer antlers as well as the pedicle periosteum and cultivated for extended periods of time. We found evidence that STRO-1+

cells isolated from the different locations are able to differentiate in vitro along the osteogenic and adipogenic lineages. Our
results support the view that the annual process of antler regeneration might depend on the periodic activation of
mesenchymal progenitor cells located in the pedicle periosteum. The findings of the present study indicate that not only
limited tissue regeneration, but also extensive appendage regeneration in a postnatal mammal can occur as a stem cell-
based process.
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Introduction

The annual regrowth of deer antlers is the only example of

regeneration of a complete, anatomically complex appendage in a

mammal, and antlers are therefore of high interest to regeneration

biologists [1–6]. Antlers are cast and regenerated from permanent

bony protuberances of the frontal bones, called pedicles. After antler

casting, the bone wound on the top of the pedicle is bordered by the

pedicle periosteum and the pedicle skin [7,8]. Wound healing and

epithelialization as well as formation of an antler bud occur very

rapidly and, in larger species like the red deer (Cervus elaphus), the

new antler elongates at an average rate of about 1 cm per day [3].

In contrast to mammals, lower vertebrates have a striking capacity

to regenerate complex structures. The epimorphic regeneration

involves progenitor cells created through reprogramming of

differentiated cells or through the activation of resident stem cells

[9,10]. Exploring the mechanisms of antler regeneration may

provide crucial insights to better understand why mammals are

unable to regenerate amputated limbs and, with regard to medical

treatments, might even provide information that helps to overcome

this inability some day. Richard J. Goss, one of the most prominent

researchers in the field of antler regeneration during the second half

of the 20th century, recognized these chances very clearly and must

be credited for linking the study of antler regeneration to

regeneration biology in general [2,3,11,12].

The source of the cells that give rise to the regenerating antler

has been a matter of controversy. Wislocki [13] and Goss [12,14]

suggested that these cells originate from the pedicle dermis.

Currently, however, most workers in the field consider the

periosteum of the pedicle to be the source of the cells forming

the regenerating antler [7,8,15–20]. The pedicle periosteum is a

derivative of the antlerogenic periosteum that builds up the pedicle

and the first antler [21–23]. Recently, it has been hypothesized

that antler regeneration is a stem cell based process [5,7,8,15,23].

According to this view, stem cells located in the pedicle periosteum

give rise to progenitor cells of different lineages, such as chondro-

and osteoprogenitors [7]. However, thus far direct evidence for the

existence of stem cells in the pedicle periosteum and the growing

the antler was lacking. As part of an ongoing research project, we

searched for the presence of cells positive for known stem cell

markers in pedicles and growing antlers of fallow deer (Dama dama)

[24,25]. In addition, we isolated and cultivated stem cells derived

from the deer antler/pedicle and investigated their proliferation

and differentiation properties.
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Results

Immunohistochemical localization of STRO-1+ cells in the
antler and pedicle

In the regenerating antler, a high density of STRO-1+ cells was

found in the cambial layer of the perichondrium (Fig. 1a–c) and

within the chondrogenic growth zone (Fig. 1d–f) present at the tips

of the main beam and the antler tines.

In the more proximally located cartilaginous zone, STRO-

1+cells were detected in the perivascular tissue and in the vascular

endothelium (Fig. 2a, b). Furthermore, STRO-1+ cells were

detected at the base of sebaceous glands within the velvet (Fig. 2c,

d). In some perivascular areas, STRO-1+ cells (Fig. 2e, f) were

found to be also slight positive for the CD271 marker (Fig. 2g, h),

as shown in the merged image (Fig. 2i)

STRO-1+ cells were also present in different tissues of the

pedicle of the yearling fallow buck (Fig. 3a–c). Located between

thick collagen fibres, STRO-1+ cells were detected within the

reticular layer of the dermis (Fig. 3a, d–f). In addition, STRO-1+

perivascular cells were located in the subcutaneous tissue (Fig. 3a,

g, h). Corresponding to the situation in the regenerating antler, a

high density of STRO-1+ cells was found in the cambial layer of

the pedicle periosteum (Fig. 3a, l, m). Moreover, groups of STRO-

1+ cells resembling satellite cells were observed between muscle

fibers of the frontoscutular muscle (Fig. 3a, i–k).

Cell sorting
Primary mixed cell cultures were established from tissue samples

of the chondrogenic growth zones of primary and regenerating

antlers as well as the pedicle periosteum. To obtain pure cultures

of STRO-1+, CD271+ and CD133+ cells, we used these markers

for cell sorting. Applying fluorescence-activated cell sorting

(FACS), we obtained 3.5%–5.5% STRO-1+ cells from the primary

mixed cell cultures (Fig. 4a, b). Scanning electron microscopy

(SEM) showed that, in contrast to mixed antler cell cultures, the

sorted STRO-1+ cells grow as a homogeneous cell population (Fig.

4c, d). CD271+ and CD133+ cells can be isolated at high purity

and grown with homogenous morphology as well (data not

shown).

Primary cultures of the pedicle periosteum were analyzed by

FACS and STRO-1+ (Fig. 4e–g), CD271+ (Fig. 4h–j) and CD133+

(Fig. 4k–m) cells were found to be CD34 negative.

Magnetic cell sorting (MACSH) gave up to 13.4% STRO-1+

cells in mixed cultures derived from the chondrogenic growth zone

of antlers of adult fallow deer (Table 1). Highest numbers of

STRO-1+ cells (17.3%) were detected in primary cultures derived

from the pedicle periosteum of the yearling fallow buck (Table 1).

Cells positive for CD14 -, CD34 -, CD105 -, CD133 (human)-and

CD271 (LNGFR)–surface markers were present in mixed cultures

derived from regenerating antlers (Table 1).

RT-PCR analyses
RT-PCR analyses showed that under standard culture condi-

tions [DMEM (Gibco) + 10% fetal calf serum], the cultured

STRO-1+ cells did not express key markers of the osteogenic (cbfa

1, osteocalcin) or chondrogenic (chondroadherin) lineages (Fig.

5a). However, a weak expression of collagen 1 was noted,

suggesting that a few cells were already differentiated. In contrast,

the STRO-1 negative antler cell populations showed marked

expressions of the above key markers indicating the presence of

cells of the osteogenic and chondrogenic lineages. Sequencing of

PCR products amplified using collagen 1 primers revealed 100%

identity with published sequences of human, bovine and mouse

collagen 1. In addition, PCR products amplified using GAPDH

and ß-actin primers showed also 100% identities with published

sequences of roe deer, human, bovine, mouse GAPDH and red

deer, human, bovine, mouse ß-actin, respectively.

In vitro–morphology, proliferation and differentiation
capacity of STRO-1+ cells

Examples of the morphology of non-confluent STRO-1+ cells

are shown in Fig. 5b–e. Occasionally, we also observed ‘‘atypical’’

cells with three nuclei (Fig. 5d, e), a phenomenon that to our

knowledge has not previously been reported for stem cells in

culture.

To investigate the influence of different culture media on the

proliferation of STRO-1+ cells, we cultivated cells for one month

in Dulbecco’s minimal eagle medium [DMEM (Gibco) + 10%

FCS], osteoblast growth medium (OB) + supplement mix (both

Promocell) or NeuroBasal medium (NB/Gibco) containing 50 ng/

ml nerve growth factor (NGF 7S/Invitrogen). Proliferation rates of

STRO-1+ cells differed between these media (Fig. 6a). Prolifera-

tion rates per day (DN/Dt) were highest in osteoblast medium. The

peaks of the different growth curves coincide with cell confluence

in culture wells. In OB-medium confluence was reached after 3.51

days in culture whereas in DMEM and NB–medium confluence

occurred after 6.78 and 7.14 days, respectively. Afterwards,

proliferation decreased dramatically in all media to minimal values

within 5-6 days. A distinct osteocalcin expression could be

observed in osteoblast growth medium at day 21, indicating a

differentiation of STRO-1+ cells into osteoblasts (Fig. 6b).

After four days of induced fat differentiation in NH AdipoDiff

Medium, STRO-1+ cells started with intracellular lipid formation

(Fig. 6c, d). Upon prolonged culture in adipocyte medium for 10

days, many cells had accumulated cytoplasmic lipid droplets that

stained positive with Oil Red O (Fig. 6e, f).

Discussion

The most important finding of the present study is the

demonstration of STRO-1+ stem cells in different locations of

the primary and regenerating antler as well as in the pedicle of

fallow deer. FACS analyses revealed that primary cell cultures

derived from the pedicle periosteum contain STRO-1+, CD271+

and CD133+ cell populations that are negative for CD34 (marker

for hematopoietic progenitors). Therefore, these cells can be

defined as mesenchymal progenitor cells. These findings strongly

support the view that the annual antler regeneration represents a

stem cell-based process. The results are consistent with the

hypothesis that the regenerating antler is build up by the progeny

of mesenchymal stem cells located in the cambial layer of the

pedicle periosteum [5,7,8,15,23]. It has recently been shown that

stem cell populations exist in ‘‘niches’’—specific anatomical

locations that regulate how the stem cells participate in tissue

generation, maintenance and repair [26,27]. We assume that such

a ‘‘stem cell niche’’ is located in the cambial layer of the

periosteum and that the regeneration of antlers is dependent on

the periodic activation of these stem cells. In the pedicle, STRO-1+

cells resembling satellite cells [28,29] were also found adjacent to

muscle fibres (frontoscutular muscle). The existence of possible

satellite cells in this area remains to be elucidated by further

studies. In addition, it is also necessary to find explanations for the

presence of STRO-1+ cells detected within the reticular layer of

the dermis in the pedicle of the juvenile fallow buck. It is

conceivable that dermal and epidermal stem cells/progenitor cells

are involved in the rapid proliferation of velvet components during

antler regeneration [30].

Stem Cells in Deer Antler
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Figure 1. STRO-1+ cells in the cambial layer of the perichondrium and the cartilaginous zone of an antler. Paraffin embedded biopsy
samples of a velvet antler from a 4 yr-old fallow buck (Dama dama); samples were taken 46 days after onset of regeneration. (a) Cross section of brow
tine about 1 cm below the tip, overview, (E) epidermis, (D) dermis, (CP) cambial layer of the perichondrium, (CZ) cartilaginous zone, white
arrows = vessels, black arrows = sebaceous glands; HE-staining, scale bar: 500 mm. (b) STRO-1+ cells in the cambial layer of the perichondrium [STRO-1
antibody combined with an anti-mouse IgM secondary antibody conjugated with fluorescence dye (FITC), nuclei counter-stained with Hoechst
33342], scale bar: 100 mm. (c) Negative control, cambial layer of the perichondrium, same staining as (b) without STRO-1 antibody, scale bar: 100 mm,
identical exposure times for pictures (b) and (c). (d) Cross section of part of a main beam, cartilaginous zone, HE-staining, scale bar: 100 mm. (e) STRO-
1+ cells within the cartilaginous zone [same staining as (b)], scale bar: 100 mm. (f) Negative control, comparable area of the cartilaginous zone, same
staining as (e) without STRO-1 antibody, scale bar: 100 mm, identical exposure times for pictures (e) and (f).
doi:10.1371/journal.pone.0002064.g001

Stem Cells in Deer Antler

PLoS ONE | www.plosone.org 3 April 2008 | Volume 3 | Issue 4 | e2064



In the regenerating antler, STRO-1+ cells were found in a

perivascular and vascular endothelial location both in the

subcutaneous tissue of the pedicle and in the cartilaginous zone.

Immunocytochemistry revealed cells positive for the stem cell

marker CD271 at similar locations in the regenerating antler.

CD271, also known as low-affinity nerve growth factor receptor

(LNGFR), is a marker for the isolation of mesenchymal stem cells

directly from bone marrow aspirate [31,32]. To date, the function

of LNGFR on mesenchymal progenitor cells is not clear, but it is

discussed that it may have a morphogenic role in the development

of the human bone marrow cavity and other organs [31]. Our

double-stainings for STRO-1 and CD271 indicate that cells in

Figure 2. STRO-1+ cells in different locations of a velvet antler. (a-i) Paraffin embedded biopsy samples of velvet antler (main beam, cross-
sections, samples taken about 1 cm below the tip), 9 yr-old fallow buck (Dama dama); samples were taken 74 days after onset of regeneration; scale
bars: 100 mm. (a) Part of the cartilaginous zone, numerous blood vessels are located in the area between the cartilaginous trabeculae, white
asterisks = vessels, white arrows = chondrogenic cells, Movat-staining. (b) Perivascular and endothelial cells staining positive for the STRO-1 antibody
(fluorescence dye = FITC), phase-contrast picture. (c) Part of velvet skin containing hair follicles and sebaceous glands (black square), HE-staining. (d)
STRO-1+ cells at the base of a sebaceous gland, red asterisk = sebaceous gland, varel-contrast picture. (e–i) Perivascular cells in the cartilaginous zone.
(e) STRO-1+ cells, white asterisk = vessel, varel-contrast picture. (f) Same picture as (e), STRO-1+ fluorescence only. (g) CD271+ cells [CD271 antibody
combined with an anti-mouse IgG secondary antibody conjugated with fluorescence dye (Alexa Fluor 546)], white asterisk = vessel, varel contrast
picture. (h) Same picture as (g), CD271+ fluorescence only. (i) Merged image of (f) and (h).
doi:10.1371/journal.pone.0002064.g002
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Figure 3. STRO-1+ cells in different areas of the pedicle. (a) Methylmetacrylate (TechnovitH 9100 New) embedded sample of the pedicle
shown in (b) and (c); cross-section, overview, HE-staining. (E) epidermis, (D) dermis, (SC) subcutaneous tissue with superficial muscle (asterisk), (Mf)
Part of the frontoscutular muscle, (Fa) fascia (tissue slightly lacerated during histological processing) , (CP) cambial layer of the periosteum, (B) pedicle

Stem Cells in Deer Antler
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these perivascular locations within deer antler tissue can be

positive for both markers. The meaning of the presence of

CD271/LNGFR on STRO-1+ cells requires further investiga-

tions. Recently, it was reported that the growing tip of the deer

antler contains proliferating perivascular cells and possible

angioblastic precursors [33]. In addition, in other animal models

perivascular cells were described that seemed to be a novel stem

cell-like population with the capacity to differentiate into multiple

mesenchymal lineages [34]. Further studies are necessary to clarify

whether the STRO-1+ perivascular cells in the pedicle and

regenerating deer antler and the STRO-1+/CD271+ cells in the

regenerating antler represent angioblastic precursors. For that

reasons, is has to be elucidated whether STRO-1+ and/or

CD271+ cells can be found in the vascular endothelium at

different locations of the regenerating antler. For example, this

seems to be the case in Fig. 2b, where the vascular endothelium

contains STRO-1+ cells.

STRO-1+ cells were also observed within the velvet skin of the

regenerating antler. We detected STRO-1+ cells associated with

sebaceous glands. Presence of pluripotent neural crest derived

stem cells in the adult mammalian hair follicle has been reported

by several authors [35–37]. De novo formation of hair follicles is a

characteristic of velvet skin [1] and follicle-associated STRO-1+

cells may play a crucial role in this process.

Recently, different groups have found clues to the presence of

stem cells/progenitor cells in the pedicle periosteum as well as in

primary and regenerating antlers [16,24,38–40]. Here we proved

for the first time the existence of STRO-1+, CD271+ and CD133+

cells in different areas of the pedicle and the primary and

regenerating fallow deer antler. Preliminary studies on cell cultures

derived from the growth zone of regenerating red deer antlers also

revealed the presence of STRO-1+ cells (1.5–13.3%, 35 analyses)

(Kuzmova et al., unpublished results).

We were able to sort (FACS and MACSH) and cultivate the

STRO-1+, CD271+ and CD133+ cells as ‘‘pure’’ cultures.

Expression profiles of isolated STRO-1+ cells versus STRO-12

cell populations suggest that indeed the STRO-1+ cells represent a

population of progenitor cells. In addition, preliminary MACSH
analyses proved the existence of cells positive for the stem cells/

progenitor cell markers CD34, CD105, CD133 and CD271

(LNGFR) in the regenerating antler. Since regenerating antler

tissue contains also hematopoietic cells and progenitors in great

quantities it is not surprising that we were able to detect CD34+

cells in primary mixed cultures derived from this tissue. In

contrast, primary cultures from pedicle periosteum did not contain

CD34+ cells.

STRO-1+ cells showed different growth patterns and different

cell shapes in DMEM, OB–and NB–medium (data not shown).

Remarkably STRO-1+ cells exhibited highest proliferation rates in

the first four days in culture in osteoblast differentiation medium

compared to DMEM and NB-medium. The reason for this

difference in proliferation rates remains to be elucidated. The

occasional occurrence of STRO-1+ cells with three nuclei (Fig. 5d,

e) might be related to the rapidity of the proliferation process.

The present study showed that in vitro the differentiation potential

of STRO-1+ cells is not restricted to the osteogenic and

chondrogenic lineages. In addition to their ability to differentiate

in vitro into cell types that naturally occur in growing antlers (e.g.

osteoblasts), under appropriate culture conditions STRO-1+ cells

were also able to differentiate into adipocytes. In contrast to long

bones, adipogenesis does not occur in regenerating antlers. For that

reason, we conclude that STRO-1+ cells in deer antlers represent a

population of at least bi- or tripotent mesenchymal progenitor cells.

These results are in accordance with the finding that adipogenesis

can be induced in cultured donor cell lines derived from

antlerogenic periosteum of male red deer (Cervus elaphus) [40].

In conclusion, the present study provides evidence for the

contribution of stem cells in the process of antler regeneration. We

suggest that the development of primary antlers and the yearly

replacement of antlers in adult deer are both stem cell-dependent

processes. We further suggest that antler regeneration involves the

activation of stem cells located in a niche in the cambial layer of

the pedicle periosteum. The presence of stem cells/progenitor cells

observed in different locations of primary and regenerating antlers

suggests that these cells play a role both for the formation of the

interior component (e. g. bone and cartilage) as well as the external

component (velvet skin) of the growing antler. The results of the

present study also suggest that, in the case of antlers, extensive

regeneration of a histological complex appendage in a postnatal

mammal is triggered by activation of resident stem cells located in

different ‘‘niches’’, e.g. stem cells located in the pedicle periosteum

of the deer. This mode of regeneration is different from that

occurring during limb regeneration in urodele amphibians and fin

regeneration in teleost fish [29,41], which involve large-scale

dedifferentiation and reprogramming of cells in the amputation

stump. Based on the findings on antler regeneration it could thus

be speculated that induction of dedifferentiation in the stump

tissue may also not be an indispensable step in promoting limb

regeneration in mammals. However, there is still much to be

learned about the similarities and differences of the mechanisms

that prevent the regeneration of amputated limbs in mammals

(including deer) and that allow and regulate the periodic

regeneration of deer antlers. Antler regeneration may therefore

be a useful model for the study of stem cell based regenerative

processes in mammals including humans.

r

bone; white asterisk = bony trabeculae, scale bar: 500 mm. (b) Left pedicle and primary velvet antler of a 1 yr-old fallow buck (Dama dama), the antler
was cut below the coronet (dashed line) to obtain a cross-section of the distal pedicle, scale bar: 10 cm. (c) Cross-section of the distal pedicle shown
in (b); white rectangle marks the area shown in (a); scale bar:1 cm. For all pictures (d-m): [STRO-1 antibody was combined with an anti-mouse IgM
secondary antibody conjugated with fluorescence dye (FITC), nuclei were counter-stained with Hoechst 33342]. (d,e) STRO-1+ cells within the
reticular layer of the dermis, located between thick collagen fibres; (d) STRO-1+ fluorescence only, same area as (e); (e) Fluorescence combined with
varel-contrast picture; (f) Negative control; similar area as shown in (e); the small green dots are erythrocytes marked by the fluorescence dyes;
identical exposure times for pictures (e) and (f), scale bars: 100 mm. (g) Vascular associated STRO-1+ cells within the subcutaneous tissue, varel-
contrast picture, scale bar: 100 mm. (h) Negative control; same area as shown in (g); identical exposure times for pictures (g) and (h), varel-contrast
picture, scale bar: 100 mm. (i–k) STRO-1+ cells between fibres of the frontoscutular muscle, scale bars: 100 mm; (i) Fluorescence combined with varel-
contrast picture; (j) STRO-1+ fluorescence only, same area as (i); (k) Negative control, similar area as shown in (i); varel-contrast picture, identical
exposure times for pictures (i) and (k); the bright green dots in picture (k) are erythrocytes marked by the fluorescence dyes. (l) STRO-1+ cells within
the cambial layer of the periosteum; scale bar: 100 mm. (m) Negative control, similar area as shown in (l); scale bar: 100 mm, identical exposure times
for pictures (l) and (m); the bright dots in pictures (l) and (m) are erythrocytes marked by the fluorescence dyes.
doi:10.1371/journal.pone.0002064.g003
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Figure 4. Isolation of STRO-1+, CD271+ and CD133+ cells derived from regenerating deer antler and pedicle periosteum. The mixed
cell populations were analysed by flow cytometry (FACS). (a,b) Mixed population of cells derived from the antler growth zone (b) Percentage of
STRO-1+ cells within the gated population (R1). (c) Scanning electron microscopy (SEM) picture of a mixed antler cell population, scale bar: 20 mm
(6500). (d) SEM picture of a pure STRO-1+ cell population, scale bar: 50 mm (6200). Samples shown at pictures (c) and (d) were prepared after cell
cultures had reached confluence. (e–m) Mixed cell population derived from the pedicle periosteum; (e,h,k) Global mixed populations (FSC/SSC);
(f,i,l) Gated populations (unstained), cells of gate R1 (FSC/SSC) plotted as FL2 as a function of FL1; (g) Double staining (CD34/STRO-1), FL1 = STRO-1,
FL2 = CD34; (j) Double staining (CD34/CD271), FL1 = CD271, FL2 = CD34; (m) Double staining (CD34/CD133), FL1 = CD133, FL2 = CD34.
doi:10.1371/journal.pone.0002064.g004
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Materials and Methods

Tissue sampling and cell culture
Tissue samples were obtained from a yearling fallow buck and

from five adult fallow bucks, aged between 4 and 9 years. The

yearling buck, which was growing its first set of antlers, and one of

the five adult bucks were killed and their pedicles and antlers

collected. In four of the adult bucks, tissue samples from the antler

growth region were obtained with a bioptic punch between day 36

and day 144 after casting of the previous hard antlers. The biopsies

were taken 1–2 cm below the growing tip of the regenerating

antler. Pedicle and antler tissue samples were used for histology

and cell cultures. The latter were established as previously

described and did not include pedicle and antler skin [6].

All tissue samples were carried out in compliance with the

institutional guidelines on animal husbandry and care/welfare of

the University Hospital in Goettingen (Department for Animal

Experiments) and the Institute for Wildlife Biology and Game

Management (Faculty of Forest Sciences and Forest Ecology), University

of Goettingen, Germany. In addition, the authorization for the

experiments was given by the district government Braunschweig,

Germany (permission numbers: 604.42502/01-21.96 and 604.42502/

01-22.96).

Tissue preparation and histology
Tissue samples were embedded in either paraffin (soft tissue) or

methylmetacrylate (TechnovitH 9100 new, Heraeus Kulzer

GmbH, Germany) (undecalcified mineralized specimens) accord-

ing to Delling [42]. Histological sections were stained with

hematoxylin-eosin (HE) and Movat’s stain [43]. For scanning

electron microscopy cells were fixed in glutaraldehyde, dehydrated

in a graded series of ethanol and critical point dried. Specimens

were sputtered with gold-palladium and viewed in a Zeiss DSM

960 scanning electron microscope.

Flow cytometry and MACSH analyses
When the cultured cells approached confluence, they were

trypsinised, labeled with STRO-1- [44] (MAB 1038, R&D

Systems, Germany and Developmental Studies Hybridoma Bank,

Iowa, USA), CD133-, CD271- (Miltenyi Biotec Inc., Bergisch

Table 1. MACS-Analyses of ‘‘mixed’’ cell cultures derived from
regenerating antlers.

Antibody Positive cells [%]

CD34 11.8 *

CD105 4.6 *

CD14 1.7 *

CD271 (LNGFR) 2.8–4.8 **

CD133 (human) 14.3–16.5 **

STRO-1 17.3 (pedicle periosteum of a yearling fallow buck/
primary culture)

STRO-1 3.5–13.4 ** (antler growth zone/adult fallow deer )

Percentages of cells positive for different surface markers
*Single analysis/Second passage of cells derived from the antler growth zone of
an adult fallow deer.

**Values obtained from different culture analyses (analysed were primary
cultures till third passages)

doi:10.1371/journal.pone.0002064.t001

Figure 5. Expression profiles and morphology of isolated STRO-1+ cells. (a) Expression profiles of STRO-1 negative versus STRO-1+ cells. RT-
PCR was used to detect the mRNA of specific markers for the osteogenic [Collagen 1, cbfa 1, osteocalcin (OCN)] and the chondrogenic lineages
(chondroadherin). Expression of deer ß-actin was used for standardization. (+) = STRO-1+ cells, (2) = STRO-1 negative cells, (M1) = Marker: 500 bp DNA
ladder, (M2) = Marker: 100 bp DNA ladder. (b,c) Typical morphology of STRO-1+ cells isolated from fallow deer antler cell cultures [STRO-1 antibody
combined with fluorescence dye (FITC), nuclei counter-stained with Hoechst 33342], scale bar: 100 mm. (d,e) STRO-1+ stem cells with three nuclei, (d)
phase contrast picture; (e) same staining as shown in (b) and (c); scale bars: 100 mm.
doi:10.1371/journal.pone.0002064.g005
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Gladbach, Germany) and CD34- (Immunotech and Miltenyi

Biotec) antibodies, and analyzed by flow cytometry (FACSVanta-

geTM SE/Becton Dickinson). In addition, for positive cell selection

using magnetic cell sorting (MACSH, Miltenyi Biotec), mixed cell

cultures from the antler growth region and pedicle periosteum

were labeled with CD14-, CD34-, CD105-, CD133-, CD271

(LNGFR)–MicroBeads (Miltenyi Biotec) as well as a STRO-1

antibody (MAB 1038, R&D Systems, Germany) coupled with

IgM–MicroBeads (Miltenyi Biotec). Cells derived from primary

cultures or up to third passages were used for selection.

Figure 6. Growth and differentiation of STRO-1+ cells in different culture media. (a) Time –dependent increase in cell numbers (DN/Dt) in
Dulbecco’s Minimal Eagle Medium (DMEM), osteoblast proliferation medium (OB), and NeuroBasal medium containing 50 ng/ml nerve growth factor
(NB). The peak values of the curves coincide with the time when the cells reached confluence (tk), culture well area = 2 cm2. (b) Expression of
osteocalcin in isolated STRO-1+ cells cultured for several weeks in DMEM and OB-medium. RT-PCR was used to detect the mRNA of osteocalcin (OCN);
expression was investigated at culture days 7, 14 and 21. (c,d) STRO-1+ cells after four days of induced adipogenic differentiation in adipocyte
differentiation medium starting with intracellular lipid formation (white arrows), (c) phase contrast, (d) varel contrast; scale bars: 100 mm. (e,f) STRO-
1+ cells after 10 days culture in adipocyte differentiation medium. Cells were fixed, stained for lipid accumulation (Oil Red O) and observed under a
light microscope; scale bars: 100 mm.
doi:10.1371/journal.pone.0002064.g006
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Immunocytochemistry
Immunocytochemistry was performed on paraffin embedded as

well as methylmetacrylate embedded samples from the pedicle and

from primary and regenerating antlers to investigate possible

localizations of stem cells within the tissues. The STRO-1

antibody was used in combination with an anti-mouse IgM

secondary antibody conjugated with a fluorescent dye [Fluorescein

isothiocyanate (FITC), Becton Dickinson]. The CD271 marker

(Miltenyi Biotec) was used in combination with an anti-mouse IgG

secondary antibody conjugated with Alexa Fluor 546 (Molecular

Probes). Negative controls were performed using conjugated

secondary antibodies only. The nuclei were counter-stained with

Hoechst 33342 fluorescent dye (Invitrogen). For target retrieval of

specimens a microprocessor controlled Pascal pressure chamber

(DakoCytomation) was used (30 seconds at 123 uC).

RT-PCR
Total cellular RNA was isolated, after MACS separation, from

both STRO-1+ and STRO-12 cells using the RNeasy Mini Kit

(Qiagen, Germany). Reverse transcription was performed with 0.5

or 1 mg of total RNA using the iScriptTM cDNA Synthesis Kit

(Biorad, Germany). In total, 50 ng of cDNA were used for reverse

transcription-polymerase chain reaction (RT-PCR). PCR ampli-

fication was carried out using primers for cbfa1, osteocalcin,

chondroadherin, type I collagen and deer ß-actin [45] (as house

keeping gene). The primer sequences used in this study are

summarized in Table 2. Each PCR protocol started with an initial

denaturation step of 95uC for 2 min and ended with an additional

single step for 7 min at 72uC. PCR-amplifications were carried out

as follows: Cbfa1: 30 Cycles at 95uC for 45 sec, annealing at 58uC
for 45 sec, and extension for 45 sec at 72uC. Collagen1: 28 cycles

at 95uC for 45 sec, annealing at 53uC for 45 sec, and extension for

45 sec at 72uC. Osteocalcin: 32 cycles at 95uC for 45 sec,

annealing at 53uC for 45 sec, and extension for 45 sec at 72uC.

Deer ß-actin: 23 cycles at 95uC for 45 sec, annealing at 60uC for

45 sec, and extension for 45 sec at 72uC. Chondroadherin: 30

cycles at 95uC for 45 sec, annealing at 55uC for 45 sec, and

extension for 45 sec at 72uC. PCR products were analyzed by

agarose gel electrophoresis and detected by ethidium bromide

staining under UV light. The specificity of the PCR products

obtained with Collagen 1-, GAPDH- and deer ß-actin- primers

was proven by sequencing (SEQLAB, Göttingen).

Osteogenic and adipogenic differentiation
It has been previously shown that STRO-1+ bone marrow cells

can differentiate along multiple mesenchymal lineages including

adipocytes, osteoblasts and chondrocytes [46,47]. Differentiation

capability of MACSH sorted STRO-1+ cells from the antler

growth region into cells of the adipocyte lineage was tested using

an adipogenic differentiation medium (MACSH NH AdipoDiff

Medium, Miltenyi Biotec). STRO-1+ cells were first incubated for

3 days in MACSH NH Expansion Medium (Miltenyi Biotec),

followed by incubation in AdipoDiff medium for 10 days.

Osteogenic and chondrogenic differentiation capabilities of

STRO-1+ cells from the antler growth region were tested by

incubating them immediately after sorting for 3–4 weeks in

osteoblast growth medium (PromoCell) + supplement mix (C-

27001, PromoCell) and in osteoblast and chondroblast differen-

tiation media from the hMSC functional identification kit (SC006,

R&D Systems). In addition, STRO-1+ cells were also grown in

NeuroBasal medium (Gibco) containing 50 ng/ml nerve growth

factor (NGF 7S, Invitrogen). In each experiment, a STRO-1

negative fraction was treated accordingly.

Oil Red O staining
After incubation in AdipoDiff medium for 4 or 10 days, cells were

fixed in 4% paraformaldehyde for 15 min at room temperature,

washed three times in PBS, stained for 60 min in a freshly filtered

solution of six parts saturated oil red O (Sigma, 0.5 g in 100 ml

isopropanol) and four parts ddH2O, washed thoroughly in ddH2O

and finally mounted with DAKO mounting medium.

Statistical analysis
Cell numbers in the cultures (3#n#6) were determined daily by

using an electronic cell counter system (CASYH, Schaerfe System,

Reutlingen, Germany), starting with the day of seeding. Mean cell

numbers were calculated and plotted against time, and regression

curves were fitted to the data using Sigma PlotH (Erkrath,

Germany). The daily increase in cell number (1. derivation of the

regression curve) was then calculated based on the regression.
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Table 2. Primer sequences used in RT–PCR analyses

Gene Nucleotide Sequence (59-39)

Cbfa1 for: GTGAGGGATGAAATGCTTGGGAAC

rev: CATAACCGTCTTCACAAATCCTCCC

Collagen1 for: GACCTCCGGCTCCTGCTCCTCTTAG

rev: GGACCCATGGGGCCAGGCACGGAAA

Osteocalcin for: GCCCTCACACTCCTCGCCCTATTGG

rev: GTCTCTTCACTACCTCGCTGCCCTC

Deer ß-actin for: CCCAAGGCCAACCGTGAGAAGATG

rev: GTCCCGGCCAGCCAAGTCCAG

Chondroadherin for: ACCTGGACCACAACAAGGTC

rev: CTTCTCCAGGTTGGTGTTGTCC

doi:10.1371/journal.pone.0002064.t002
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