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The results of many studies have suggested that we actively select information from the

environment. However, the functional consequences of such selectivity in knowledge

acquisition remain unclear, even though it is a vital factor in determining the characteristics

of our future knowledge and cognition. We hypothesized that spontaneous selectivity

in knowledge acquisition results in effective augmentation of productivity, especially in

creativity-demanding task. To test this, we conducted experiments in which subjects

acquired novel compositional words during their rapid presentation, evaluated memory

confidence rates for the acquired words, and then produced essays based on these

words. First, in experiment 1, we showed that the level of confidence in the recognition

memory for the words positively related with the length of the essays (a measure of

creativity-involving productivity in quantity). Additionally, we found that the semantic

distance from the essay to the components of the compositional word (a measure of

creative-productivity in quality) was farther for the word with higher memory confidence

than for the word with lower memory confidence, suggesting creative leaps when writing

the former. While this result supported our hypothesis, it might also reflect better memory

that was independent of spontaneous selection. Thus, in a different subject group, we

conducted a similar experiment (experiment 2) in which two of the 20 compositional

words were presented more often (five times per block) to force memorization. Again,

consistent with our hypothesis, essays based on spontaneously memorized words

(presented once per block) were significantly longer than those produced using the

forcedly memorized words. Therefore, better memory per se did not explain the

higher productivity. Instead, these results suggested that the higher creativity-involving

productivity was consequent to spontaneous selectivity in the knowledge acquisition.

Additionally, we propose a possible mechanism for the observed results based on the

results of a neural network simulation. In this simulation, we found that novel information

that was assigned to locations more easily accessible to the entire network was better

assimilated and therefore selectively acquired. Based on this simulation, we moderately

suggest that spontaneously acquired knowledge effectively confers productivity because

it effectively activates large parts of the neural networks.

Keywords: knowledge acquisition, learning, creativity-involving productivity, text composition, human behavioral

study, neural network simulation
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INTRODUCTION

Knowledge acquisition is not a passive process. Our brains
are not constantly assimilating flowing information but rather
are actively selecting the information to acquire from the
environment. In fact, compelling evidence gathered from
psychology and cognitive neuroscience experiments supports
the view of the active and selective acquisition of knowledge.
Because of such selectivity, knowledge acquisition should
make and remake our knowledge base, worldview, and entire
cognitive ability in a special way. However, little is known
of the functional consequences and underlying mechanisms of
selective knowledge acquisition. In this study, we addressed
these issues using human behavioral experiments and neural
network simulations.

First, we will show experimental evidences to suggest that
knowledge acquisition is selective and is governed by multiple
factors that confer selectivity. One of the most influential factors
is prior knowledge or pre-existing schema (van Kesteren et al.,
2012; Brod et al., 2013; Ghosh and Gilboa, 2014). In general,
information that is congruent with prior knowledge is more
easily assimilated than incongruent information. Numerous
studies have reported that items that are related to prior
knowledge are more easily acquired, whether through daily
life, academic learning, or laboratory experiments (Dooling and
Lachman, 1971; Bransford and Johnson, 1972; Dooling and
Mullet, 1973; van Kesteren et al., 2010a,b, 2013, 2014; van
Buuren et al., 2014; Brod et al., 2015, 2016; Liu et al., 2017;
Sommer, 2017). Subjects required to memorize pairs of items
show better memory performances for congruent associations
than for incongruent associations (van Kesteren et al., 2010b,
2013). One plausible reason is that the common knowledge
constructed in daily life helps subjects assimilate novel, but
commonsensical, pairs of items. Furthermore, the enhancing
effects of prior knowledge on the acquisition of novel knowledge
have been confirmed in more specialized fields. The effortful
acquisition of academic facts facilitates further acquisition in
related subjects (van Kesteren et al., 2014; Brod et al., 2016).
Recently, we showed that prototypical neural representation
that is arranged prior to experience plays a role in subsequent
knowledge selection in a manner depending on prior knowledge
(Kurashige et al., 2018).

Familiarity is also important for forming new knowledge. In
associative learning, even if there is no common relationship
between the items to be paired, familiarity for at least one item
facilitates an association (Brod et al., 2016; Liu et al., 2017).
Such enhancing effects of familiarity are also observed in the
implicit learning of artificial grammar by exemplification (Scott
and Dienes, 2010). In some cases, however, prior knowledge
interferes with the acquisition of additional knowledge (Lipson,
1982; Alvermann et al., 1985; Kendeou and van den Broek, 2007;
Sweegers et al., 2015).

Anticipation that the presented information will be used

later is another important factor for successful knowledge
acquisition, especially when sleep consolidation is involved. In

one study, subjects informed about a retrieval test achieved
better memory performance than uninformed subjects when the

test was performed after sleep (Wilhelm et al., 2011). Another
study found that subjects instructed that one-half of the encoded
associations would be tested later and the other half would not
be tested exhibited superior recall for the half they knew would
be tested (anticipatory information) after sleep (van Dongen
et al., 2012). In both studies, subjects that did not sleep between
the presentation of the anticipatory information and testing did
not show enhancement of learning. Similarly, anticipation for a
rewarding test also enhanced sleep consolidation in motor skill
learning (Fischer and Born, 2009).

The actual use or output of information also augments
knowledge acquisition (Karpicke and Roediger, 2008; Carpenter,
2009; Pyc and Rawson, 2010; Roediger and Butler, 2011;
Wing et al., 2013). For example, the importance of repeated
output on tests has been suggested to promote the memory
consolidation of foreign language vocabulary (Karpicke and
Roediger, 2008). In that study, four conditions were compared.
In the first condition, the items were repeatedly presented both
in encoding and testing trials over the entire experiment. In
the second condition, the items answered correctly once were
dropped from further encoding trials. In the third condition,
correctly answered items were dropped from further testing
trials. In the fourth condition, correctly answered items were
dropped from both the encoding and testing trials. Only in the
conditions in which the items were dropped from the testing
trials was memory performance impaired. Therefore, the actual
output of items on tests is crucial for knowledge consolidation,
which is rational because the items that were used should
be considered more important than the items that were not
used. Several studies suggest that such an effect may be due
to the elaboration of the path to retrieval through the actual
output (Carpenter, 2009; Pyc and Rawson, 2010).

Curiosity is also vital for knowledge acquisition. In our daily
lives, we prefer to learn about things of which we are curious.
Moreover, several studies have found that greater curiosity leads
to better memory performance, and accompanying functional
imaging has suggested that the activity of memory-related brain
areas has beneficial effects on the learning of items arousing
curiosity (Kang et al., 2009; Gruber et al., 2014).

Forgetting is another mechanism that indirectly contributes to
selective knowledge acquisition. Several studies have suggested
that forgetting occurs adaptively to prevent interferences
in memory and reduce the cognitive demands of future
tasks (Kuhl et al., 2007; Wimber et al., 2015). In typical
experimental conditions, subjects were asked to associate
both target and competitor with the same cue. Repetitive
retrieval of the target caused subjects to forget the competitor.
Strikingly, it decreased demands on cognitive control systems
including the anterior cingulate cortex and the lateral prefrontal
cortex (Kuhl et al., 2007).

Collectively, these findings strongly support the notion that we
actively select the knowledge to acquire according to our needs.
But what needs are satisfied and what functionality does such
selectivity confer? Or, by selecting information, how are we going
to sculpt our future knowledge, worldviews, and entire cognitive
ability? To shed light on these questions, we must identify a
cognitive ability that is augmented along with the spontaneous
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(selective) acquisition of knowledge. This implies that we need to
identify a positive consequence of such a selectivity in knowledge.

Here, we hypothesized that spontaneous selectivity in
knowledge acquisition results in effective augmentation
of productivity. In other words, our hypothesis predicts
that spontaneously selected knowledge effectively confers
productivity on us compared to forcedly memorized knowledge.
Previous studies have suggested a relationship between
productivity and spontaneity in human behavior. One study
found that vacuous (non-purpose) objects spontaneously created
by the subject stimulated productivity more strongly than objects
composed by others (Finke, 1990). In that study, after the object
composition, the subjects engaged in a surprise task in which they
were required to create novel uses for the objects. Another study
engaged subjects in freely editing a Wiki entry by referring to
medical documents and found that the number of spontaneous
Wiki reconstructions correlated with the degree of knowledge
acquisition from the documents, suggesting that, when given the
opportunity to use information in spontaneous tasks, subjects
will learn the information more strongly (Moskaliuk et al., 2009).
Therefore, in the present study, we directly explored the effects
of spontaneous selectivity during knowledge acquisition on
productivity in an essay composition task.

Briefly, we conducted two experiments (Figure 1A). Both
experiments consisted of a flash presentation task of novel
compositional Japanese words (Figures 1B,C), N-back
task, memory recognition task for these words, and essay
composition task based on these words (Figure 1D). In
experiment 1, we tested whether the acquisition strength
of the novel compositional words was positively related to
the productivity for the essay composition based on the
compositional words. In experiment 2, we examined whether
spontaneous selectivity in knowledge acquisition, rather
than memory strength per se, explained greater productivity.
We evaluated the essays from the view of quantity (essay
length) as well as the view of quality (semantic distance
from components of the compositional word). The results of
these experiments suggested that the selective acquisition of
knowledge effectively augmented productivity. In addition, we
propose a possible mechanism for the observed results based on
a neural network simulation of novel information assimilation
into a pre-existing schematic knowledge. We show that
selective assimilation (corresponding to stronger spontaneous
acquisition of words) tended to occur in locations easily
accessible to the entire memory network of prior knowledge,
which may explain the greater productivity. In addition, we
discuss that also the productivity measured from the view of
quantity, not only that measured from the view of quality,
is creativity-involving.

MATERIALS AND METHODS

Subjects
Thirty-two healthy subjects (11 females; mean age, 21.7 years; age
range, 20–25 years) participated in experiment 1, and 30 different
healthy subjects (13 females; mean age, 22.4 years; age range,
20–35 years) participated in experiment 2. All subjects were

right-handed native Japanese speakers with normal or corrected-
to-normal vision. This study and protocol were approved
and conducted in accordance with the recommendations of
the institutional ethics committee of the National Center
of Neurology and Psychiatry. Written informed consent was
obtained from all subjects in accordance with the Declaration
of Helsinki.

Experimental Outline
To examine our main hypothesis, we performed two
experiments, with each aimed at examining one sub-hypothesis
that was derived from the main hypothesis.

Experiment 1

In experiment 1, the proposed sub-hypothesis was that the
items that the subject more easily acquired constituted richer
sources for producing ideas in a text composition task (essay
writing based on novel compositional words). Experiment 1
consisted of the following four different tasks: a flash presentation
task, N-back working memory task, memory recognition task,
and essay composition task (“Exp. 1” in Figure 1A). All were
surprise tasks because the subjects were only told that this
was a language processing-related experiment, and they did not
receive any task-related information in advance. In the flash
presentation task, novel compositional words were presented
briefly to the subjects on a computer screen. Next, we executed
a N-back task to disrupt the short-term memory of the presented
compositional words. We then evaluated the memory intensities
of the compositional words in a recognition task. Finally, we
conducted the essay composition task, in which the subjects
were instructed to write essays about the compositional words
that were as creative as possible in a limited time. Our main
aim was to assess whether the essays that were based on the
compositional words that were best remembered according to
the recognition test rating were longer (i.e., the words conferred
greater productivity) than those that were based on the less
remembered words.

Experiment 2

In experiment 2, the proposed sub-hypothesis was that
selectivity in knowledge acquisition and not memory strength
was the reason for the different essay lengths (measure of
productivity). To this end, we conducted the same tasks as
in experiment 1, except that two compositional words were
presented five times in each block to force memorization in
the flash presentation task (“Exp. 2” in Figure 1A; see Flash
Presentation Task).

Compositional Words
To create the compositional words, we first extracted the two-
character Japanese kanji nouns that appear more than 1,000
times in the corpus of contemporary written Japanese (Maekawa
et al., 2014). We then constructed novel compositional words
by randomly combining two two-character nouns to form
novel four-character kanji words (Figure 1B). In the common
Japanese language, the first two characters have an adjectival
function over the second two characters. We prepared 20

Frontiers in Psychology | www.frontiersin.org 3 March 2019 | Volume 10 | Article 600

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Kurashige et al. Selective Knowledge Acquisition and Productivity

FIGURE 1 | Outline of the present study. (A) Task flow. We conducted a flash presentation task, N-back task, memory recognition task, and essay composition task

in sequence. In experiment 1, we presented each compositional word once in each block of the flash presentation. Experiment 2 was similar to experiment 1 except

that two of the 20 compositional words were presented five times in each block. (B) A sample compositional word. Two known Japanese two-character words were

combined in a novel manner to yield a novel four-character word. (C) The flash presentation task. Compositional words were presented rapidly in the center of a

computer display. The duration of one presentation was 300ms, and the duration of the blank period between the presentations was 200ms. (D) The window

application used for the essay composition. The left panel is the box listing the compositional words that appeared in the flash presentation task. The subjects clicked

on one of the words in the list box and then wrote an essay on the selected word as creatively as possible in the right text form. After finishing (or aborting) one essay,

they selected another word and wrote an essay on the newly selected word. This was repeated for 20min.

fixed compositional words (targets) that appeared mainly in
the three middle blocks of the flash presentation, memory
recognition task, and essay composition task. Additionally, we
prepared another 20 fixed compositional words (masks) that
were used in the first and last block of the flash presentation
to prevent primacy and recency effects (Murdock, 1962). Such
word combinations (or conceptual combinations) are usually
considered in creative cognition studies as they require creativity
for their interpretation (Wilkenfeld and Ward, 2001; Estes and
Ward, 2002).

Flash Presentation Task
We presented the compositional words sequentially and rapidly
at the center of a 15.6-inch (∼40 cm) computer display
(Figures 1A,C). The distance between the subject and display
was ∼80 cm. During the task, a white cross was displayed on a
gray background in the center of the display as a fixation point.
The presentation of each compositional word lasted 0.3 s and
was followed by a 0.2-s blank. The task consisted of five blocks.
The first and last were masking blocks that were included to

prevent primacy and recency effects (Murdock, 1962) and that
consisted of 20 mask compositional words. In the second-to-
fourth blocks, the 20 target compositional words were shown in
each block.

In experiment 1, we presented each word once in each block.
In experiment 2, 18 of the 20 words were presented once in each
block, and two words selected randomly for each subject were
presented five times in each block to force memorization. We
minimized the risk of words that were meant to be spontaneously
memorized be selected as words to be forcedly memorized
by limiting the number of words for forced memorization
to two. The presentation order of the words was random
within each block. Since each presentation was brief (0.3 s of
word presentation and 0.2 s of blank stimulus), the process of
pronouncing one word could inadvertently consume attentional
resources long enough such as to interfere with perceiving the
following word. Therefore, prior to the task, the subjects were
instructed to simply watch the words without pronouncing them
overtly or covertly. To prevent covert pronunciation, ∼70-dB
white noise was provided through headphones (USB Headset
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H390, Logitech Co., Ltd., Tokyo, Japan). The task was performed
using Win32 API programming.

N-Back Task
After the flash presentation of the compositional words, we
conducted a two-back task in which two-digit numbers were
presented sequentially using the same basic settings as those in
the flash presentation task. The duration of each presentation was
0.5 s, and the interval between the numbers was 2.5 s. The subjects
were required to respond by pushing the space key within the
0.5-s presentation epoch when the number was the same as the
second last one. Correct responses were indicated by the color of
the fixation cross changing to magenta, while incorrect responses
were indicated by the color of the fixation cross changing to black.
In total, 60 numbers were presented over 3min, and 20 stimuli
required responses.

Memory Recognition Task
In this task, the subjects evaluated their level of confidence that
a presented word had appeared during the flash presentation
task. Forty compositional words were shown, and 20 were used
in the flash presentation task (target words) while 20 were
distractors. These distractors were composed by decomposing
the target words to their original two-character words and
randomly recombining them into four-character compositional
words. The subject’s confidence was expressed on a scale of 0–
100 using sliders on the screen. We instructed the subjects to set
the value of the sliders to 100 if they were sure that the word
had appeared in the flash presentation task. Alternatively, they
were to set the slider to 0 if they were sure that the word had not
appeared during the flash presentation task. The middle value
(50) corresponded to a middle level of confidence or highest
uncertainty. We constructed this task as a window application
using the wxPython module (https://wxpython.org/) in Python.
Because values <50 reflected some degree of confidence that
the words had not appeared during the flash presentation, they
might induce surprise when, in the next task, the subjects
were informed that the word had appeared during the flash
presentation. Because this was out of the scope of the present
study, we limited our analyses to the words for which the level
of confidence ranged from 50 to 100.

Essay Composition Task
We required the subjects to write essays based on the
compositional words that were presented in the flash
presentation task using a window application that was comprised
of a box with the 20 compositional words listed and a text form
that was constructed using wxPython (Figure 1D). When the
subject selected one of the words by clicking on it, the text form
was activated, which enabled them to write an essay on the
selected word. When another word was selected by clicking on it,
the text form was reactivated, which enabled the subject to write
another essay.

The total time provided for the essay composition was 20min.
When the subject clicked on the first compositional word, the
countdown started. The remaining time and the current total
length of the essays were displayed on the screen. Prior to the

task, the subjects were instructed to write the essays as creatively
and insightfully as possible, and they were encouraged to select
words that would allow them to do that. Therefore, they tended
to write the essays about some of the listed compositional words.
Indeed, only one subject in experiment 1 wrote essays for all
20 words.

The main factor of interest was the length of the essays,
which reflects the productivity conferred by the corresponding
words. Since we encouraged subjects to select words which would
maximize the creativity and insightfulness of their essays, the
essay lengths first depend on their subjective judgments of the
ability of certain words to invoke their creative productivity. This
is because the essay lengths for the non-selected words were zero.
Such judgments are expected to approximately capture the actual
ability of the words to invoke creative productivity. Therefore,
the length of the essays is considered a primary approximation of
measures of productivity in total, especially creativity-involving
productivity (see Discussion).

To cancel out the between-subject differences in baseline
productivity, we first normalized the length of each essay by
dividing it by the total length of all essays for each subject.

Additionally, we semantically analyzed the written
essays using a method in natural language processing (see
Statistical Analysis).

Statistical Analysis
In the case of analyzing approximately Gaussian and highly non-
Gaussian data, group means and medians were compared by the
t-test and Mann–Whitney U-test, respectively, using the SciPy
module (https://www.scipy.org/) in Python. For the independent
t-test and paired t-test, we reported the Cohen’s d and dz as the
effect sizes, respectively (Lakens, 2013). For the non-parametric
test (Mann-Whitney U-test), we reported the probability of
superiority (PS) that is the proportion in which samples in one
group are larger than those in the other group (Grissom, 1994) as
the effect size. To calculate confidence intervals (CIs), we used the
bootstrap method (DiCiccio and Efron, 1996) implemented in
the arch module (http://bashtage.github.io/arch/doc/index.html)
in Python with the default parameters.

We also used surrogate data methods in two analyses. First,
we tested whether the subjects produced longer essays using
the higher confidence words or the lower confidence words
(Figure 2B). To this end, we measured the dot product between
the unitized vectors of the confidence levels and essay lengths. To
produce the surrogate data, we randomly shuffled the order of
the components in the vector for essay length and summed them
across subjects. The theoretical maximum of the distribution
corresponded to the number of subjects, while the minimum
corresponded to zero. In this analysis, the value of the dot product
increased if the level of confidence was positively related to
essay length (i.e., the value was at the high end of the surrogate
distribution). Second, we tested whether the subjects produced
longer essays using the spontaneously memorized words or the
forcedly memorized words (Figure 3E). Here, we considered
only the words that were rated 100 for the level of memory
confidence (absolute certainty). We normalized the essay lengths
again to make the total length equal to 1. We then sampled the
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surrogate data by randomly reassigning letters to the essays for
those words and summed the reassigned lengths of the essays
based on the spontaneously memorized words, which yielded the
null distribution for the total essay length of the spontaneously
memorized words. Because we summed them across subjects, the
theoretical maximum corresponded to the number of subjects,
while the minimum value corresponded to zero. Again, if
the subjects wrote longer essays based on the spontaneously
memorized words than those based on the forcedly memorized
words, the true value would be at the higher end of the surrogate
value distribution. Given that we originally had the one-sided
hypotheses (i.e., A is larger than B), as mentioned above, these
sub-hypotheses were evaluated with one-sided statistical tests.

Additionally, to more deeply analyze creativity endowed by
each compositional word, we measured semantic dissimilarity
between the component words composing the compositional
word and the essay for the compositional word using the
word2vec (Mikolov et al., 2013) implemented in the gensim
module (https://radimrehurek.com/gensim/) in Python. We
consider that a compositional word that endows more creativity
makes leaps of imagination, resulting in increase of the semantic
dissimilarity between the component words and the essay. We
note that this analysis was applied only to the compositional
words that were selected to write by the subjects. Since the
subjects was encouraged to select the words enabling them
to write essays as creatively as possible, this is considered to
analyze “residual” creativity after such a subjective judgment and
selection.We constructed the word2vecmodel using the Japanese
Wikipedia (https://ja.wikipedia.org) as a corpus. Generally,
words in Japanese text are not separated by spaces. Therefore,
first we applied the wp2txt (https://github.com/yohasebe/wp2txt)
(Hasebe, 2006) to the tagged Wikipedia texts to extract the plane
texts and then we used the MeCab (http://taku910.github.io/
mecab/) (Kudo et al., 2004) to make them be space-separated.
Then, we executed the algorithm for constructing word2vec
model. Using this model, we measured semantic similarity
between components of a compositional word and each word
appearing in the essay for the compositional word. For each
compositional word in the essay, we obtained two similarity
values, each of which was correspond to one of two components.
Hence, we defined the larger one as the similarity between the
word (in the essay) and the compositional word. Then, we
averaged similarities for all words in the essay (except same to
component words) and defined it as the similarity between the
component words and the essay for the compositional word.

Neural Network Simulation
We constructed a simple and generic neural network model
that was composed of Nex excitatory and Ninh inhibitory
neurons with their connection strengths governed by biologically
plausible synaptic plasticity. The excitatory neuron dynamics
were governed by the following differential equation:

τex
dvex,i

dt
= −vex,i +

∑

j 6=i
wex,4i←ex,jF

(

vex,j
)

+
∑

j
wex,i←inh,jF

(

vinh,j
)

+ Iex.

FIGURE 2 | The essays based on the words with higher confidence ratings in

the recognition memory task were significantly longer than those based on the

low-confidence words. (A) The mean description lengths of the essays that

were based on the words with lower self-rated confidence that they were

included in the flash presentation according to recognition score (left; [50, 75])

and those based on words with higher self-rated confidence [right; (75, 100)]

(difference is significant by Mann–Whitney U-test, one-sided). The horizontal

lines show medians. (B) Surrogate data test for the dot product between the

unitized vectors of the description lengths and confidence levels. The blue

histogram is the distribution sampled from the surrogate data that were

generated by shuffling the order of the components in the description length

vector. The red line shows the real data. If the level of confidence positively

relates with the description length, the location of the redline shifts to the high

end of the distribution. The black dashed and dotted lines represent the 5%

and 1% significant levels, respectively. (C) The semantic similarity between the

(Continued)
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FIGURE 2 | essay for the compositional word and the components

composing the compositional word. Each dot pair connected by line shows

the similarities averaged over the compositional words with lower self-rated

confidence (left) and those with higher self-rated confidence (right) for each

subject (difference is significant by paired t-test, one-sided).

Similarly, the inhibitory neuron dynamics were governed by the
following equation:

τinh
dvinh,i

dt
= −vinh,i +

∑

j 6=i
winh,i←ex,jF

(

vex,j
)

+ Iinh.

In these equations, vex,i and vinh,j express the voltages of the
ith excitatory neuron and jth inhibitory neuron, respectively,
and wex,i←ex,j, wex,i←inh,j, and winh,i←ex,j are the synaptic
weights of the excitatory-to-excitatory, inhibitory-to-excitatory,
and excitatory-to-inhibitory synapses, respectively. The terms
Iex and Iinh are the external noise currents for the excitatory
and inhibitory neurons, respectively, and F (v) is an activation
function that is defined by

F (v) =

{

v (v ≥ 2)
0 (v < 2)

,

where 2 is the activation threshold. We solved these equations
using the fourth-order Runge–Kutta method with a step size
of 1t.

Network topology was determined probabilistically. We set
the connection probability between excitatory neurons to Pex←ex

and assumed reciprocal connections which are usually seen
in the cortical (Song et al., 2005) and hippocampal CA3
circuits (Guzman et al., 2016). Therefore, we first set half
of the connections [i.e., Pex←ex

Nex(Nex−1)
2 connections] and

then gave them reciprocal connections. Thus, the connection
topology matrix was symmetric. The weight matrix was usually
nonsymmetrical because each weight varied according to the
plasticity rules explained below. The connection probability from
excitatory to inhibitory neurons was set to Pinh←ex. Similarly, the
connection probability from inhibitory to excitatory neurons was
set to Pex← inh.

In this simulation, the weights of the synapses among
excitatory neurons were governed by Hebbian plasticity (Hebb,
1949; Bliss and Collingridge, 1993). We implemented the
Bienenstock–Cooper–Munro (BCM) rule, which is a biologically
plausible variant of Hebbian plasticity (Bienenstock et al., 1982;
Gerstner et al., 2014). The dynamics of the weights were
expressed by the following equations:

τw
dwex,i←ex,j

dt
= −wex,i←ex,j + α φ

(

vex,i, θ
)

σ
(

vex,j
)

σ
(

vex,j
)

=
1

1+ exp
(

− β
vex,j−2

)

φ
(

vex,i, θ
)

=
6.75vex,i

2
(

vex,i − θ
)

θ3

+ tanh

(

6.75
(

vex,i − θ
)

θ

)

θ =
1− γ1t

1− (γ t)
t

1t

θ̂

θ̂ ← vex,i + γ1tθ̂

wex,i←ex,j ← κ
wex,i←ex,j

∑

k wex,i←ex,k
.

The second term of the first equation expresses the BCM rule as
the product of the presynaptic effect σ

(

vex,j
)

and postsynaptic
effect φ

(

vex,i, θ
)

. The presynaptic effect is described by a sigmoid
function (the 2nd equation). The third formula defines the
postsynaptic effect. It expresses the so-called BCM curve in
which above-threshold activity results in synaptic potentiation
and below-threshold activity results in synaptic depression. The
threshold θ for the BCM curve varied according to the dynamics
of the postsynaptic neurons as expressed in the 4th and 5th
formulas. The θ becomes the temporal mean voltage of the
postsynaptic neuron if the dynamics are stationary. In addition,
we implemented synaptic scaling using the last formulation
(Turrigiano et al., 1998; Turrigiano, 2008), which prevents
infinite divergence of activity caused by a positive feedback
loop in which a potentiated synapse induces more potentiation
through higher activity in the postsynaptic neuron. Because the
dynamics of the synaptic weights were slower than the voltage
dynamics, we solved the equation for synaptic weight using the
Euler method.

The values of the parameters used in the simulation were as
follows: Nex = 400, Ninh = 100, Pex←ex = 0.2, Pex←inh = 0.2,
Pinh←ex = 0.2, τex = τinh = 20.0 ms, τw = 1000.0 ms,
wex,i←inh,j = −0.025, winh,i←ex,j = 0.2, 2 = 1.0, α = 0.1,
β = 5.0, κ = 0.5, and t = 0.5 ms. The term Iex was drawn from a
Gaussian distribution with a mean of 1.0 and standard deviation
of 0.5, while Iinh was drawn from a Gaussian distribution with a
mean of 0.0 and standard deviation of 0.5. These variables were
calculated following standard numerical methods to integrate the
white Gaussian noise (Salinas and Sejnowski, 2002). All units
except time were arbitrary.

Using these equations, we performed simulations of
information assimilation. After running the simulation until
t = 50, 000 ms to reach a stationary state, we added a new item
to the network. We assumed that each item was represented
(encoded) by a triplet of excitatory neurons (three-neuronal cell
assembly) (Hebb, 1949; Buzsáki, 2010). Therefore, we added new
connections among these three neurons and set the initial values
to zero. The simulation was then started again. When t = 90, 000
ms, we stopped the simulation. Because network topology was
constructed in a probabilistic manner, we ran the simulation
with 10 different topologies.

Because we used a recurrent neural network with highly
reciprocal connectivity, we assumed that Hebbian learning was
induced in cortical horizontal connections but not in Schaffer
collateral connections from hippocampal CA3 to CA1 in which
plasticity has been widely considered a neural substrate of
early memory. However, cumulative evidence suggests that
learning without an explicit intention to remember (Atir-Sharon
et al., 2015; Merhav et al., 2015) and learning in a way that
is highly dependent on pre-existing knowledge (van Kesteren
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FIGURE 3 | Stronger acquisition per se does not explain the higher productivity conferred by spontaneously selected information. (A) The proportions of the words

judged as absolutely included in the flash presentation (confidence score of 100) in the recognition memory test. The left and right bars correspond to words

presented once (spontaneous memorization) and five times (forced memorization), respectively, per block (significant by Mann–Whitney U-test, two-sided). (B)

Comparison of the essay lengths for words presented onetime that were rated with low confidence (left; [50, 75]) or high confidence (right; (75, 100]) of recognition

(significant by Mann–Whitney U-test, one-sided). (C) Comparison of the essay lengths based on spontaneously (left) and forcedly (right) memorized words with high

confidence ((75, 100]) (significant by Mann–Whitney U-test, one-sided). (D) Comparison of the essay lengths based on spontaneously (left) and forcedly (right)

memorized words with certain confidence (i.e., 100) (Mann–Whitney U-test, one-sided). (E) Distribution of the surrogate data from the total normalized description

lengths of the spontaneously memorized words. The blue histogram is the distribution of the surrogate data that were generated by reassigning the letters. The red

line shows the real data. If the subjects wrote longer essays for the spontaneously memorized words, the location of the red line falls at the higher end of the

distribution. The black dashed and dotted lines represent the 5 and 1% significance levels, respectively. (F) The semantic similarity between the essay for the

compositional word and the components composing the compositional word. The left and right bars correspond to spontaneously (left) and forcedly (right) memorized

words, respectively, with high confidence ((75, 100]) (independent t-test, one-sided). The horizontal lines in (A–D) show the medians.

et al., 2010a,b, 2012, 2014; Brod et al., 2016) both bypass the
hippocampus, being directly addressed in the cerebral cortex.
Since both cases are relevant to our experimental conditions,
we consider the network structure in this simulation to be

relevant. In addition, many physiological studies, mainly related
to NMDA receptor channels, support the BCM rule (Cooper
and Bear, 2012), the use of which is therefore acknowledged.
In all, on one hand, we consider our model to capture general
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aspects of pre-existing knowledge-related learning and to fit our
experimental condition. However, we note that our assumptions
are very simplified and that many aspects of biological neural
systems were ignored, including areal interactions, spiking
activity, molecular substrates of plasticity, neuromodulators
affecting plasticity, and more detailed connectivity properties.
Therefore, it is important to stress that this is a highly
hypothetical mechanism.

RESULTS

In the present study, we tested the hypothesis that spontaneously
selected knowledge effectively conferred greater productivity.
As a task for knowledge acquisition, we presented 20 novel
compositional words in a flash presentation task (Figure 1C)
and subsequently measured the strength of the acquired memory
using subjective ratings from 0 to 100 in a recognition task.
To quantify the productivity associated with the compositional
words, the subjects produced essays based on the words that were
as creative as possible in a limited amount of time (Figure 1D).
The individual essay lengths were normalized to the total length
of all essays written by the subject, and this value was taken as a
measure of productivity conferred by the corresponding words.
The main aim of experiment 1 was to examine the relationship
between the memory acquisition strength for each compositional
word (rating scores in the recognition task) and the length of
the corresponding essay. The main aim of experiment 2 was
to confirm that such a relationship results from selectivity in
knowledge acquisition and not from strong memory per se.

Experiment 1: Positive Relationship
Between Knowledge Acquisition
and Productivity
The sub-hypothesis tested in experiment 1 was that essay length
would increase with memory confidence, which was indicated
by the recognition rating. We limited our analyses to words
that had confidence levels that ranged from 50 to 100 because
scores from 0 to 49 indicated the degree of confidence that
the word was not included in the flash presentation. The
normalized essay lengths were significantly longer for words with
a memory confidence rating c in the upper half of the scores
(75 < c ≤ 100) compared to essays for words with ratings
in the lower half (50 ≤ c ≤ 75) (Figure 2A), which was
consistent with our hypothesis (U = 675.5, p = 0.014, n =
32, PS = 0.66, 95% CIs of medians [0.018, 0.047] (50 ≤
c ≤ 75) and [0.052, 0.072] (75 < c ≤ 100)). Additionally,
we conducted an analysis using surrogate data (Figure 2B) and
found that the value of the dot product between the confidence
level vector and essay length vector from the real data fell at
the extreme high end of the shuffled data distribution (p =
0.010, n = 32, nsurrogate = 105), which again indicated that
the level of confidence was positively associated with essay length,
thus confirming our first sub-hypothesis.

As we explained (in Essay Composition Task), we encouraged
subjects to select compositional words which would maximize
the creativity of their essays and then to write the essays. This
means that the words selected to write essays were judged as

creativity-provoking by the subjects. Therefore, it is assumable
that the abilities of selected words to endow creativity-involving
productivity are higher than those of the words that were
not selected. Since the lengths of essays for the words that
the subject did not select were zero, this justifies the mean
essay length as a measure of creativity-involving productivity
(see also Discussion). On the other hand, the selected words
associated with higher memory confidences might more strongly
provoke creativity than those associated with lower memory
confidences even though both words were judged as creativity-
provoking and selected to write creative essays. To investigate
such a “residual” difference of ability to endow creativity, we
focused on the compositional words that were selected to write
essays and evaluated a leap of the imagination using semantic
distance between the written essay and the component words
that composed the compositional words. If a compositional word
endowed more creativity and made leaps of imagination, the
written essay for the word should be semantically more distant
from the components. Indeed, we found that the essays for
words with higher memory confidences were more semantically
dissimilar to the components than those for words with lower
memory confidences (paired t-test, t (18) = 2.02, p =

0.029, dz = 0.46, 95% CI of mean difference of semantic
similarities [0.0, 0.05]) (Figure 2C). Therefore, even if we focus
only on the words subjectively judged as creativity-provoking,
this result suggests the positive relationship between knowledge
acquisition and creativity-involving productivity.

Experiment 2: Strong Acquisition of
Knowledge per se Did Not Explain the
Higher Productivity
The results of experiment 1 supported our main hypothesis
that spontaneous selectivity in knowledge acquisition results
in higher productivity. However, higher productivity might
be due to stronger memory per se that was indicated by
the higher confidence rating. To distinguish between these
alternative interpretations, we conducted experiment 2 in
which two of the 20 compositional words were presented
five times rather than once in each block (Experiment 2
in Figure 1A) to force memorization. Indeed, the frequency
of ratings of 100 (absolute certainty that the compositional
word was included in the flash presentation) was significantly
higher for these two words compared to that for the other
18 words (U = 784, p < 10−6, n = 30, PS =

0.87, 95% CIs of medians [0.083, 0.22] (once) and [1.0, 1.5]
(five times)) (Figure 3A). In spite of such modification, the essay
lengths were still greater for those words that were presented in
the same manner as in experiment 1 (once per block) if they
were rated in the upper half of the recognition memory score
distribution compared to those rated in the lower half of the
distribution (U = 497, p = 0.038, n50≤c≤75 = 26, n75<c≤100 =

30, PS = 0.64, 95% CIs of medians [0.0055, 0.051] (50 ≤ c ≤
75) and [0.034, 0.082] (75 < c ≤ 100)) (Figure 3B). Therefore,
we were able to reproduce the results of experiment 1.

To test the second sub-hypothesis that selectivity in
knowledge acquisition, rather than the difference in memory
strength, was the reason for this difference in the lengths of the

Frontiers in Psychology | www.frontiersin.org 9 March 2019 | Volume 10 | Article 600

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Kurashige et al. Selective Knowledge Acquisition and Productivity

essays, we focused on the better-memorized words that were
in the upper half of the recognition rating distribution (75 <

c ≤ 100). Henceforth, we refer to the better-memorized words
that were presented once per block as spontaneously memorized
words and the better-memorized words that were presented
five times in each block as the forcedly memorized words.
Consistent with sub-hypothesis 2, the spontaneously memorized
words yielded longer essays than the forcedly memorized words
(U = 522, p = 0.048, nspontaneous = 30, nforced = 28, PS
= 0.62, 95% CIs of medians [0.034, 0.082] (spontaneous) and

[−0.046, 0.0] (forced)) (Figure 3C).
Moreover, because differences might exist in the confidence

level distribution within the range of the upper half (75 <

c ≤ 100), we compared the lengths of the essays only
among the words that were rated with certainty (score of
100). The results were not significant, but they showed a
trend that supported sub-hypothesis 2 (U = 445, p =
0.061, nspontaneous = 28, nforced = 26, PS =

0.61, 95% CIs of medians [0.024, 0.097] (spontaneous) and

[0.0, 0.0] (forced)) (Figure 3D). To further support this sub-
hypothesis, we performed a surrogate data analysis in which
the letters in the essays were randomly reassigned (Figure 3E),
and found that the mean essay length of the spontaneously
memorized words fell in the extreme upper part of the surrogate
data distribution (p = 0.018, n = 17, nsurrogate = 105), which
was in line with sub-hypothesis 2.

Additionally, we analyzed semantic dissimilarity between the
essay for the compositional word selected as creativity-provoking
word by the subjects and the component words composing the
compositional words. Unlike in the case of Experiment 1,
we used the independent t-test to test the difference between
dissimilarities for spontaneously and forcedly memorized words
because the number of subjects who wrote essays for both
spontaneously and forcedly memorized words was too small
(i.e., nboth = 7, nspontaneous = 22, nforced = 9). However, we
did not find significant difference (t (29) = 1.15, p = 0.13, d =
0.47, 95% CIs of mean semantic similarities [0.19, 0.23]
(spontaneous) and [0.21, 0.25] (forced)) (Figure 3F). We note
that we analyzed residuals after a screening for creativity-
provoking words by selecting such words subjectively. Therefore,
this result may suggest such a screening well done. In addition,
since the effect size is near medium, the sample size (especially
for forcedly memorized words) might be too small to detect the
residual difference of creativity.

Taken together, these results show that the strong acquisition
of the compositional words per se does not explain the
higher productivity conferred by the better-memorized words.
Therefore, we concluded that spontaneous selectivity in
knowledge acquisition resulted in greater productivity.

Simulation: Novel Information That Was
Assigned to Locations Easily Accessible to
the Entire Network Was Assimilated Better
Considering the results of the two behavioral experiments,
we concluded that the selective acquisition of knowledge
effectively augmented productivity in the essay composition task.

TABLE 1 | Summary of the results of the neural network simulations using 10

different connection topologies.

Trial Within cell assembly Between cell assembly and entire network

r p-value r p-value

1 0.847 <10−27 0.442 <10−5

2 0.883 <10−33 0.313 0.0015

3 0.856 <10−29 0.544 <10−8

4 0.860 <10−29 0.353 0.00031

5 0.888 <10−34 0.227 0.023

6 0.880 <10−32 0.323 0.0011

7 0.882 <10−33 0.446 <10−5

8 0.848 <10−28 0.317 0.0013

9 0.846 <10−27 0.203 0.042

10 0.901 <10−36 0.594 <10−10

To elucidate the mechanisms, we conducted neural network
simulations. We assumed that memories of compositional words
encoded through the flash presentation task reflected long-term
rather than working memory since they were not washed out
by the N-back working memory task and were thus naturally
considered to be associated with Hebbian synaptic plasticity.
Therefore, we constructed a recurrent neural network model
consisting of neurons with reciprocal connections that followed
activity-dependent Hebbian and homeostatic plasticity that were
regulated by the BCM rule and synaptic scaling, respectively.
The BCM curves corresponding to the different threshold values
for the potentiation and depression of synaptic strength (θ) are
presented in Figure 4A. This network model showed seemingly
random baseline activity as is observed in the biological brain
(Figure 4B). To model the assignment of new information
into the network, we added new connections that linked three
neurons to form a cell assembly that was a unit of information
representation. For 100 cell assemblies, we compared the strength
of assimilation as defined by the synaptic mean weight among
these three neurons with the mean activity correlation within
the cell assembly and found a strong positive correlation
(Figure 4C) across different network topologies (Table 1). This
result was not surprising because Hebbian plasticity operates
as a detector of correlated activity in pre- and post-synaptic
neurons. Moreover, we compared the strength of assimilation
to the correlation of activity between the neurons within the
cell assembly and neurons outside the cell assembly and found
a positive correlation (Figure 4D and Table 1). This result
proposed a hypothesis that novel information that was assigned
to a cell assembly in a location easily accessible to the entire
network tended to be better assimilated.

DISCUSSION

In the present study, we investigated one consequence of
selectivity in knowledge acquisition. If knowledge acquisition
is a rational process, the spontaneous selection of information
should augment certain cognitive functions. In this study, we
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FIGURE 4 | Neural network simulation. (A) Bienenstock–Cooper–Munro plasticity curves (direction and magnitude of synaptic strength change vs. neuronal voltage)

at different threshold values for the potentiation–depression transition (blue: θ = 0.6, orange: θ = 0.8, green: θ = 1.0). (B) Raster plot of excitatory neurons. The

activities above 1.0 are plotted in white, while the others are plotted in black. At 50,000ms (red line), links to make the three-neuronal cell assembly were added. (C)

Comparison of the mean weights within a cell assembly and the mean correlation values within a cell assembly. (D) Comparison of the mean weights within a cell

assembly and the mean correlation values between the cell assembly and the entire network. In (C,D), the weight for each link was calculated by averaging the values

from 70,000 to 90,000ms, and the correlation for each neuronal pair was calculated by averaging the values from 30,000 to 50,000ms.

hypothesized that selectivity in knowledge acquisition would
effectively augment productivity. To test this hypothesis, we
conducted two experiments. In experiment 1, we observed
a positive relationship between knowledge acquisition and
productivity. In experiment 2, we showed that this relationship
was not attributable to stronger memory per se because
strong memories that were acquired spontaneously resulted in
greater productivity than strong memories that were induced
forcibly. Thus, our main hypothesis was confirmed. Additionally,
we conducted neural network simulations to explore the
mechanisms underlying the experimental results. The results
of this simulation suggested that the selective assimilation of
information that was assigned to a location that was easily
accessible to the entire network resulted in greater productivity.

We note that most of what we found and reported in this study
is that spontaneously selected words result in the production
of longer essays in the time-limited, creativity-contingent text
composition task. Although many factors may affect the length
of the essays (e.g., provoked thoughts, associability with pre-
existing knowledge, and individual essay writing strategies), they
are expected, since subjects were encouraged to pick words that
would maximize the creativity and insightfulness of their essays,

to be mainly dependent on individuals’ subjective judgments
of the ability of a given compositional word to invoke their
creative productivity. Therefore, the essay lengths mainly reflect a
subject’s rating of a word’s ability to generate creative productivity
(since the essay lengths for non-selected words were zero). Such
a rating is expected to approximately capture actual generation
of creative productivity. Of course, also an actual ability of
word to endow productivity is directly reflected in the essay
length. We thus consider the essay lengths to be the primary
approximation of measures of total productivity that is at least
partially creativity-involving. In addition, though we cannot
exclude the possibility that subjects had the self-motivation to
write longer essays, it is important to note that we did not
encourage it. This likely means that subjects tapped into their
subjectively-fueled creative productivity.

Although the compositional words that the subjects selected
and wrote the essays for were judged as creativity-provoking
by them, the semantic analysis revealed difference of creativity
between the essays for the words whose memory confidence
were higher and lower even after such judgments. Therefore,
the positive relationship between selective knowledge acquisition
and creativity-involving productivity is suggested not only by the
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quantitative measure (i.e., essay length) but also by qualitative
measure (i.e., semantic dissimilarity). On the other hand, we did
not find significant difference between semantically-measured
creativity in the essays for the spontaneously memorized words
and that in the essays for the forcedly memorized words.
However, we note again that this analysis was applied only to the
essays for the words judged as creativity-provoking and selected
by the subjects. Therefore, we consider that the difference of
abilities to endow creativity between those words was small
compared to that between the selected and non-selected words.
In addition, especially for forcedlymemorized words, the number
of the words that the subjects actually wrote the essays for
might be too small to detect such a residual difference, which is
suggested by not-so-small effect size.

Interpretations of the Experimental Results
We demonstrated that spontaneous selectivity in knowledge
acquisition resulted in the effective augmentation of productivity.
Although our simulations suggested that biological plasticity
rules might be the link between selectivity and productivity, we
are open to any interpretation of the underlying mechanisms
because our behavioral experiments alone did not specify the
actual causality and factors latent in the observed link.

We considered at least four non-exclusive interpretations of
the observed results. The first was that a latent common factor
governed both knowledge acquisition and high productivity,
such as the degree of associability with pre-existing schematic
knowledge. Novel information might be acquired better if
the information is assigned to a location that allows it to
associate with the majority of the pre-existing knowledge.
This location would also allow the information to activate the
majority of the knowledge more readily, thus resulting in greater
productivity. Thus, novel information that tends to be acquired
better (i.e., more confidently recognized) might effectively
augment productivity (i.e., longer essays) because it activates
more pre-existing knowledge. Our simulation that implemented
Hebbian plasticity suggested this possibility. Alternatively, novel
information that associates with a more richly organized
subdomain of knowledge might be acquired better. In this case,
the novel information that is acquired better can be considered a
conduit to more productive knowledge, which results in greater
productivity. These mechanisms are in accord with previous
studies reporting the facilitation of knowledge acquisition by pre-
existing knowledge (van Kesteren et al., 2010a,b, 2013, 2014; van
Buuren et al., 2014; Brod et al., 2015, 2016; Liu et al., 2017;
Sommer, 2017). To investigate such mechanisms further, we may
need to infer individual pre-existing schematic knowledge and
reveal relationships between the knowledge structure, selectivity
in knowledge acquisition, and productivity based on newly
acquired knowledge. In order to infer the structure of individual
knowledge, we plan on applying a representational similarity
analysis (Kriegeskorte et al., 2008; Carota et al., 2017) on fMRI
signals activated using large-scale naturalistic stimuli (Huth
et al., 2012, 2016) as well as conducting a free association task
(Kenett et al., 2014, 2018) for the construction of an individual
semantic network.

The second interpretation was that humans actively select
information that augments productivity effectively. In other
words, knowledge is selectively acquired with the gradient of
productivity as a direct driving force. This is one form of
the optimization-theoretical view of cognitive processing in
which our cognitive acts are governed by objective functions
(optimization functions). In this study, productivity was an
example of an objective function, with the resultant lengths
of the essays corresponding to the function’s return values (or
differences in return values). Therefore, the expected increment
of productivity conferred by the information determined the
degree of acquisition selectivity. Thus, the spontaneous selection
of information might directly increase productivity. With this
view, the augmentation of productivity is considered a cause
rather than a consequence because it defines an effective force
that drives selective knowledge acquisition.We straightforwardly
consider that this force is related to the motivation to produce.
Therefore, to test this interpretation, we can control the
motivation (i.e., gradient of productivity) through controlling
reward or opportunity for production based on newly acquired
knowledge and observe the consequent effect on selectivity.
In addition, we can test this interpretation (i.e., heightened
productivity as a cause and selectivity in knowledge acquisition
as a consequence) by inferring individual motivation and
applying causal inference methods based on non-Gaussianity
(Shimizu et al., 2006; Shimizu and Kano, 2008) into paired
data on motivation and selectivity. If this interpretation is
true, however, we need to note that productivity is probably
not the only objective function. By definition, the values of
objective functions governing knowledge acquisition necessarily
increase along with the spontaneous acquisition of information.
Considering this criterion, predictability may be an objective
function because it is usually augmented by the acquisition of
knowledge. Several theoretical studies have proposed that an
increase in predictability is a more general principle that governs
the dynamics of the brain (Bar, 2007, 2009, Friston, 2005, 2009,
2010). Therefore, wemay need to consider knowledge acquisition
with respect of not only productivity augmentation but also
predictability augmentation.

The third interpretation was that the spontaneous selection
of knowledge alone augmented productivity. For this view,
the selection of information also likely directly increased
productivity. We are open to this possibility. However, this
does not mean that an item resulting in higher productivity
was decided randomly. As discussed in the Introduction,
knowledge acquisition is characterized by selectivity, which is
governed by several cognitive factors (e.g., congruency with
pre-existing schematic knowledge, curiosity, and anticipation
of use) that can be evaluated based on subjective ratings and
investigation of individual semantic networks (see above).
Therefore, for this interpretation, signatures characterizing
the spontaneous selection of knowledge also indirectly
characterize the item endowing higher productivity. This
view implies a path diagram (causal network) from cognitive
factors to productivity via spontaneous knowledge acquisition.
Since productivity becomes independent of the cognitive
factors under conditioning with spontaneous selectivity in
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knowledge acquisition, we can test this interpretation based on
conditional independence.

The fourth interpretation was that the attention to an item
caused both stronger acquisition and greater productivity. In
other words, attention is considered a medium that links them.
In this case, items attracting attention are not decided randomly
because of the characteristic selectivity in knowledge acquisition.
Although attention enhances memory acquisition (Moray, 1959),
the relationship between attention and productivity is unclear.
Therefore, to confirm this interpretation, we need to elucidate
causality between attention and productivity. We can control the
bottom-up attentional strength by changing the brightness of
the presentations of compositional words and gauge top-down
attentional strength from pupil size (Hoeks and Levelt, 1993) and
electrodermal activity (Raskin, 1973).

All four interpretations lead us to consider selective
knowledge acquisition as an augmentation process of creativity-
involving productivity. This means that through selectivity
in knowledge acquisition, the brain automatically acquires
information that will be a useful resource for subsequent
production. This view is justified regardless of whether a
gradient of productivity directly drives the selectivity in
knowledge acquisition.

As stated above, these four interpretations are non-exclusive.
In addition, it is possible that productivity augmentation is
achieved through a combination of mechanisms, each utilizing
different sources for the productivity. In the first, the source for
the productivity is prior knowledge, and the new information
effectively provokes its recall. In the second, the newly assimilated
information per se is the resource for productivity. In the
third, the source emerges de novo through an interaction of
the prior knowledge with the new information. In the present
study, the interpretations as well as the sources of productivity
are entangled. Therefore, more sophisticated experiments are
necessary to isolate them.

Although we did not inform about essay composition task
before presenting novel compositional words, the subjects might
expect to be rewarded for acquisition of creative productivity-
invoking items from their everyday lives. In this case, our
observations are possibly reduced to reward-based reinforcement
learning algorithms (Sutton and Barto, 1998). On the other
hand, the subjects might engage in more spontaneous learning
to update their internal models for the world. Since the
compositional words were novel concepts possibly elucidating
certain aspects of the world, they should drive the subjects
to update their internal models. The higher creativity-invoking
productivity endowed by spontaneously acquired words might
reflect large differences between prior and updated models. From
a computational view, this may be reasonable because the driving
force governing such spontaneous learning is modeled as a
gradient of (pseudo-)distance between prior and updated models
(e.g., Kullback-Leibler divergence) (Storck et al., 1995; Baldi and
Itti, 2005; Itti and Baldi, 2006; Little and Sommer, 2013).

Implications of the Present Study
Several factors appear to influence selectivity in knowledge
acquisition, including prior knowledge, familiarity, anticipation

of utility, and natural curiosity. Furthermore, brain areas related
to selective knowledge acquisition have been identified. However,
little is known about the functionality of such selectivity. To
understand this functionality, it is necessary to understand the
consequences of the selectivity as well as the principles governing
the selectivity, which roughly correspond to the highest
(computational theory) of Marr’s three levels of understanding of
information processing systems (Marr, 1982). Our experiments
identified one such consequence (augmentation of productivity).
In other words, the augmentation of productivity can be
considered one of the goals of selective knowledge acquisition.
Additionally, as we mentioned in the section above on the
interpretations of the experimental results, our observations
moderately suggest the existence of an optimization process in
which productivity is the objective function latent in selectivity.
Moreover, our neural network simulation showed that the newly
selected acquired information was encoded in a location that
was easily accessible to the entire network when the connectivity
was governed according to Hebbian and homeostatic plasticity
rules. Because each neuron or cell assembly can be considered
to represent information in the knowledge schema, this means
that information is well-acquired when it is effectively linked
to the entire body of knowledge. We suggest that this is a
possible mechanism underlying not only the augmentation of
productivity but also the facilitated learning of items that are
congruent with prior knowledge (van Kesteren et al., 2010a,b,
2013, 2014; van Buuren et al., 2014; Brod et al., 2015, 2016; Liu
et al., 2017; Sommer, 2017).

Our observations shed light on the proactive nature of the
brain because selectivity in knowledge acquisition contributes
to future productivity. As a result, the brain can be considered
to already ‘know’ what items will enhance future productivity,
at least at the stage of knowledge acquisition. Elucidating the
precise neural mechanisms enabling such proactive knowledge
acquisition requires much further study. Our simulation
suggested some involvement of Hebbian and homeostatic
plasticity. Identifying when the brain decides that certain
information is important to acquire is an essential first step. An
electroencephalography study has suggested that this may occur
shortly after presentation (within a few hundred milliseconds)
(Packard et al., 2017). A recent study that showed that pupil
dilation occurred 1 s after the presentation of an item predicted
that successful encoding may be additional evidence of this view
(Kucewicz et al., 2018).

In the present study, we used a creativity-demanding task and
showed the association between selective knowledge acquisition
and creativity-involving productivity. Although we do not allege
that we distilled pure creativity, we consider that our results
provide insights for creativity research. Because we instructed
the subjects to write their essays as creatively as possible, they
did engage in the task creatively in some naturalistic sense using
their subjective judgments. As we discussed above, therefore, the
productivity measured in this study (essay length) is expected
to be creativity-involving. If it actually reflects creativity that
is conferred by acquired item, the most important insight
is that knowledge acquisition may automatically lead to the
augmentation of creativity. This is compatible with the notion
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that one’s creativity positively and monotonically relates to the
degree of expertise (Weisberg, 1999, 2006) while it appears to
contradict the view that knowledge may confer tunnel vision
(Frensch and Sternberg, 1989). Another possible insight from
the results of the present study is that information conferring
greater creativity may be assigned to neural network locations
that are more easily accessible to the entire network. Applying a
percolation analysis to a semantic network that was constructed
based on free association task data showed that the semantic
networks that were possessed by highly creative people had
robustness to removal of the edges (Kenett et al., 2018).
The nodes in such semantic networks were highly accessible
to each other. Therefore, while that study illustrated a close
relationship between global accessibility among all network
nodes and creativity, the simulations conducted in the present
study suggested a relationship between the accessibility of an
item to the entire network and the creativity conferred by
that item.

Limitations and Future Directions
In our experimental design, we encouraged the subjects to
select words that would allow them to write the most creative
and insightful essays. Therefore, they tended to write essays
about only certain words, and they subjectively judged whether
a given word would enhance their creative productivity. We
accounted for these subjective judgements, but we believe that
they were highly correlated with the actual productivity. In
natural situations, we probably choose themes that allow for
the greatest individual productivity when we are required to
be productive. If so, then the resulting productivity is largely
determined by the theme selection. Therefore, our measurement
of productivity with essay lengths was thought to capture
productivity in natural scenes and/or in totality. However, in
future studies, it will be important to distinguish subjective
judgments from actual productivity and analyze the tripartite
relationships among the subjective judgments of productivity,
actual productivity, and selectivity in knowledge acquisition.
In addition, we note that our measure (lengths of essays),
since confounded by factors such as contingent spotting of
some words and individual word picking and essay writing
strategies, was not purely reflective of productivity. These
confounding factors partially resulted from the time limited essay
composition task. Moreover, due to this time limit, nearly no
subject completed the essay composition for all compositional
words. We therefore could only apply incomplete analysis of
essay qualities to each compositional word. To address this,
we plan on conducting another experiment in which the essay
composition task will be conducted without a time limit. In the
experiment, the essays will be analyzed from various perspectives
(e.g., subjective and third person’s evaluations using adjective
rating scales and more sophisticated natural language processing
methods to show syntactic and semantic features of the essays)
to more clearly evaluate the consequences of selectivity in
knowledge acquisition. In addition, it is important to utilize
multidimensional measurements (not only essay composition)
for each compositional word including free associations with
the word.

In the present study, we identified the augmentation of
productivity as one consequence of spontaneous selectivity
in knowledge acquisition. However, this is probably not the
only consequence. As mentioned in section above on the
interpretations of the experimental results, the augmentation
of predictability may be another consequence of selectivity in
knowledge acquisition. Because we believe that there may be
dozens of consequences resulting from selectivity in knowledge
acquisition, it is necessary to explore these exhaustively.
Moreover, we should be able to identify actual logical
causality between the consequences and selectivity in knowledge
acquisition. In the section above on the interpretations of
the experimental results, we argue for the possibility that
productivity can be a cause of selectivity if it is given as
an objective function in the optimization process. Therefore,
to understand how knowledge acquisition determines our
future knowledge, worldviews, and entire cognitive features,
we need to exhaustively disentangle the principles, causes,
and consequences of selectivity. We must elucidate the entire
relational network that is centered on selectivity in knowledge
acquisition, which includes an explanation of our present
observations. Such an exhaustive exploration is the most
important future direction.

We navigated various experimental parameters, including
the number of compositional words, the time and duration of
flash presentations of the words, and the time allocated for
essay writing. The number of forcedly memorized words may
be an issue. As mentioned, in the section Flash Presentation
Task, we decided to minimize the risk that some words
to be spontaneously memorized be selected as words to
be forcedly memorized. With regards to generating enough
statistical power, two words selected for this intent could
be too considered too little. As such, it is important to
note that the increase in the number of forcedly memorized
words does not necessarily increase power since the test’s
sample size is not the number of words, but the number
of subjects. Although increase of the number of forcedly
memorized words may affect power by changing the effect
sizes due to change in population variances for spontaneously
and forcedly memorized words, this dynamic is not known.
In the analysis of semantic dissimilarity, our choice of the
number of forcedly memorized words might lead to small
power. However, this was caused also by subjects’ selections
of the word to write. Therefore, this problem should be
resolved using more sophisticated experimental protocol as we
mentioned above.

Several researchers have recently suggested that
conventionally used significance levels (α = 0.05) are not
conservative enough to support the replicability of scientific
studies, including those within psychology and cognitive
neuroscience, and have proposed to redefine the significance
level as 0.005 (Benjamin et al., 2018). In this study, since we
used a conventional significance level to test our hypotheses,
our statistical analysis may not be robust enough. However,
it is important to stress that the result of experiment 1 were
qualitatively replicated in the experiment 2. Therefore, we
conclude that the first sub-hypothesis has strong reason to
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be supported. The second sub-hypothesis, however, requires
more evidence.

The neural network model addressed in the present study had
recurrent connections which are widely observed in the cerebral
cortex. In addition, we used a biologically plausible model of
Hebbian plasticity. Such simple assumptions make the results
general. Nonetheless, since we ignored many biological details,
this model is only a hypothetical candidate for explaining our
experimental observations.

CONCLUSION

In the present study, we identified effective augmentation
of productivity that is at least partially creativity-involving
as one consequence of selectivity in knowledge acquisition.
Thus, we now consider selective knowledge acquisition as an
augmentation process of the creativity-involving productivity.
Moreover, on the basis of the neural network simulation,
we proposed a hypothesis that the selective assimilation of
information assigned to a location that is easily accessible
to the entire neural network is a mechanism underlying the
augmentation of productivity. The results of this study provide
significant insights for how selective knowledge acquisition
sculpts our entire cognition.
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