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Abstract

In this paper, the authors study the mathematical properties of a class of alternating links

called polyhedral links which have been used to model DNA polyhedra. The motivation of

such studies is to provide guidance and aid in the research of the properties of certain DNA

molecules. For example, such studies can provide characterizations of the structural com-

plexity of DNA molecules. In an earlier work, Cheng and Jin studied the mathematical prop-

erties of such polyhedral links and were able to determine the braid index of a double

crossover polyhedral link with 4 turn. However, the braid index of a double crossover polyhe-

dral link with 4.5 turn remained an unsolved problem to this date, even though the graphs

that admit the double crossover polyhedral links with 4.5 turn have been synthesized. In this

paper, we provide a complete formulation of the braid index of a double crossover polyhe-

dral link with an arbitrary turn number. Our approach is more general and it allows us to

completely determine the braid indices for a much larger class of links. In the case of the

double crossover polyhedral links, our formulation of the braid index is a simple formula

based on a simpler graph used as a template to build the double crossover polyhedral links.

1 Introduction

The synthesis of topologically interesting structures like braids in the range of nanometer to

micrometer is becoming popular. For example, braiding of nanofibers in supramolecular gels

[1], Molecular braids in metal-organic frameworks [2], and knotted hydrocarbon complexes

[3]. The topological properties of these chemical and biological braid structures are of great

interests in research. Braid index, a fundamental topological invariant that is sometimes used

to describe the complexity of a molecule, is another potential tool that can be used to study the

complexity properties of certain DNA molecules, some of which have been synthesized in lab-

oratories by chemists and biologists in recent years. For example, through four arm immobile

DNA crossover junctions, the following DNA polyhedral links with polyhedral shapes have

been synthesized in laboratories: DNA cube [4], DNA tetrahedron [5], DNA octahedron [6],

DNA truncated octahedron [7], DNA bipyramid [8], DNA dodecahedron [9], and DNA

dodecahedron and buckyballs [10].
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A common strategy used to build/assemble more complicated DNA polyhedra is to use

simpler structures such as a double crossover as building blocks [10–20]. For example, Zhang

et al. [18] synthesized 4.5 turn cubes in a laboratory by “n-point star motif (tiles)”. (Fig 1

shows a few regular DNA polyhedra built using 3-point or 4-point star motifs.) In the case of

the 4 or 4.5 turn cubes (shown in Figs 2 and 3), each of the eight vertices of the cube is replaced

by a three-point-star tile and each face (a square) of the cube consists of four three-point-star

tiles. Such conditions cannot be met by adjusting the concentration and/or flexibility of the

DNA tiles.

In [21, 22], Cheng et al. studied the braid index problem for several polyhedral links that

were proposed by mathematicians as potential candidates as DNA polyhedra to be synthesized.

For the few relatively simple ones with single crossover they were able to determine the braid

indices of these links completely. They were also successful in determining the braid indices of

a more complicated one, namely the double crossover polyhedral links with 4 turn [21].

Fig 1. [21] Top: DNA polyhedra built with 3-point star motifs (tetrahedron, cube, dodecahedron and buckyball);

Bottom: DNA polyhedra built with 4-point and 5-point star motifs (octahedron and icosahedron).

https://doi.org/10.1371/journal.pone.0228855.g001

Fig 2. An alternating link L0 with negative writhe that is the realization of a 4 turn double crossover cube link.

https://doi.org/10.1371/journal.pone.0228855.g002
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However the braid indices of polyhedral links with 4.5 turn double crossover remain unsolved

until now. This is the motivation of this paper. Here, we present a solution to this problem as

the consequence of a much more general result, that is, we present a solution that would allow

us to determine the braid index of a double crossover polyhedral link with an arbitrary turn

number.

Alexander proved that every oriented link can be represented as a closed n-string braid in

which all strings in the braid are assigned parallel orientation [23]. The braid index b(L) of a

link L is the least number n of strings needed to present L a closed braid. Yamada [24] proved

that the braid index of a link L is bounded above by the number of Seifert circles in any given

Fig 3. An alternating link L�
0

with negative writhe that is the realization of a 4.5 turn double crossover cube link.

https://doi.org/10.1371/journal.pone.0228855.g003
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regular diagram of L. Consequently, b(L) equals the minimum number of Seifert circles

among all link diagrams of L. However, the braid indices for most links remain unknown due

to the lack of a universal method/algorithm that can guarantee the successful determination of

the braid index of any link. Thus it makes sense for one to seek general lower and upper esti-

mates of b(L). One such result is due to Franks and Williams [25], and Morton [26]. Specifi-

cally, let PL(a, z) be the HOMFLY-PT polynomial of a link L and γ(L), α(L) be the maximal

and minimum powers of a in PL(a, z) respectively, then

1

2
spanaPLða; zÞ þ 1 � bðLÞ; ð1Þ

where spanaPL(a, z) = γ(L) − α(L). The inequality in (1) is known as the MFW inequality.

Of course, in the case that the equality in the MFW inequality holds (which we shall call it

the MFW equality), one obtains the braid index of the link in question. Much effort was

devoted to the identification of links that satisfy the MFW equality. For example, it was shown

that the MFW equality holds for torus links and closed positive braids with at least one full

twist [25]. In fact Franks and Williams first conjectured that the MFW equality holds for any

closed positive braid. This conjecture was found to be false: a counter example was later given

by Morton and Short using a 2-cable of the trefoil [27]. More work regarding closed positive

braids can be found in [28], where Nakamura identified families of (infinitely many) positive

closed braids for which the MFW equality either holds or fails. In [29], Elrifai classified all

3-braids for which the MFW equality holds. Murasugi [30] proved that the MFW equality

holds for all rational links and alternating links that are fibered. However the MFW equality

does not hold in general for all alternating links due to counter examples discovered by Mura-

sugi and Przytycki [31]. Recently, Diao and colleagues [32, 33] used a diagrammatic approach

to establish the MFW equality for a large class of alternating links that includes all alternating

pretzel links and Montesinos links, leading to the complete determination of the braid index

of any such link. It is important to note that none of these known results provides answers to

the polyhedra links discussed in this paper.

The main result of this paper is the determination of the braid index for any link in a large

class of positive (or negative) alternating links. This link class includes all double crossover

polyhedral links with any given turn number. More specifically, we prove that the MFW

equality holds for any link from this class. An immediate consequence of this main result is the

solution to the open braid index problem for double crossover polyhedral links with 4.5 turn.

In addition to providing the determination of an important measure for characterizing and

analyzing the structure and complexity of DNA polyhedra modeled by the double crossover

polyhedral links (with any given turn number), our research can also be used as tools in the

study of topological entanglement of more general biopolymers encountered in DNA

nanotechnology.

The rest of the paper shall be organized in the following way. In the next section, we provide

some necessary background knowledge, concepts and terminology in knot theory and graph

theory. In Section 3, we outline the results for the double crossover polyhedral links. The rea-

son for us to do so, instead of stating the theorems in the general cases only, is so that our

reader familiar and interested in the applications of these types of links can easily comprehend

our results and compare them with the previously known results. In Section 4, we state and

prove our theorems under in the general cases. In the last section, we end the paper by showing

how our approach and results in this paper may be used to provide alternative proofs for some

previously known results in the case of double crossover polyhedral links with 4 turn, as well

as obtaining some parallel (new) results for the case of double crossover polyhedral links with

4.5 turn.
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2 Basic background knowledge, concepts and terminology

2.1 Knot theory

A link consists of several simple closed curves embedded in the 3-space R3 where each of these

closed curves is called a component of the link. A link with one component is also called a knot.
A link is said to be oriented if each of its components is assigned an orientation. A regular dia-
gram, or just a diagram, of a link is the projection of the link (as a set of disjoint, closed simple

space curves) onto a plane in which strands can cross each other only transversely and at most

two strands are allowed to cross at the same point. A point at which two strands cross each

other is called a crossing point (or just a crossing for short). In such a projection, the under-

strand and upper-strand at each crossing are specified so that the original link can be re-con-

structed from the (projection) diagram. The crossing number of a link L, denoted by c(L), is

defined as the least number of crossings in any regular diagram of the link. A diagram with the

least number of crossings for a given link is called a minimal diagram of the link. A crossing in

a link diagram is said to be nugatory if the crossing is as shown in Fig 4, which can be removed

by a simple twist on a part of the diagram. A link diagram is said to be alternating if one

encounters the crossings alternately between over strand and under strand when traveling

along any component of the link following any orientation. A link is said to be alternating if it

has a regular projection that is alternating. It is a well known result (as a consequence of the

Jones polynomial) that an alternating link diagram without nugatory crossings is a minimal

link diagram.

An n-string braid β is an n-string tangle diagram with fixed end-points as shown in Fig 5.

The closure of braid β as shown in Fig 5 is called a closed braid, and denoted by b̂. It is known

that every oriented link can be represented as a closed braid with the strings in the braid

assigned parallel orientation [23]. The braid index of an oriented link L, denoted by b(L), is

defined as the least number of strings needed to present L as a closed braid. It is obvious that

b(L) = b(L�) if L� is the mirror image of L.

The HOMFLY-PT polynomial is an invariant of oriented links, introduced in [34] and [35]

independently. Let L be an oriented link and D be a regular projection of L. Let D+, D−, and D0

be oriented link diagrams that coincide with each other except at a small neighborhood of a

crossing as shown in Fig 6. The HOMFLY-PT polynomial of an oriented link L, denoted by

PL(a, z), is a two variable Laurent polynomial with integer coefficients satisfying the following

conditions:

PD1
ða; zÞ ¼ PD2

ða; zÞ ¼ PLða; zÞ ð2Þ

Fig 4. A nugatory crossing.

https://doi.org/10.1371/journal.pone.0228855.g004
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if D1 and D2 are both regular projections of the same link L;

aPDþ
ða; zÞ � a� 1PD�

ða; zÞ ¼ zPD0
ða; zÞ ð3Þ

and PD(a, z) = 1 if D is a regular projection of the unknot.

Eq (3) in the above is called the skein relation of the HOMFLY-PT polynomial, which can

be rewritten as the following two equivalent forms:

PDþ
ða; zÞ ¼ a� 2PD�

ða; zÞ þ a� 1zPD0
ða; zÞ; ð4Þ

PD�
ða; zÞ ¼ a2PDþ

ða; zÞ � azPD0
ða; zÞ: ð5Þ

It can be easily shown that PD(a, z) = PD�(−a−1, z), where D� is the mirror image of D. This

implies that

spanaPLða; zÞ ¼ spanaPL� ða; zÞ:

2.2 Notations and terminology in graph theory

We assume that our reader will have some knowledge in graph theory hence this subsection

will only provide a list of notations and terminologies used in this paper for the purpose of

easy referencing. The required knowledge is basic and elementary, and can be found in any

graph theory textbook. Let G be a graph. The following is a list of notations concerning G:

Fig 5. A braid and its closure.

https://doi.org/10.1371/journal.pone.0228855.g005

Fig 6. The sign convention at a crossing.

https://doi.org/10.1371/journal.pone.0228855.g006
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• V(G) and E(G): the vertex set and edge set of G respectively;

• |V(G)| and |E(G)|: the number of vertices and the number of edges in G respectively;

• κ(G): the number of connected components of G;

• G − e: the graph obtained from G by deleting the edge e;

• G/e: the graph obtained from G by contracting the edge e (namely deleting e first and then

identifying its two end vertices);

• a bridge edge e: an edge e satisfying the condition κ(G − e)> κ(G);

• a loop edge e: an edge e with its two end-vertices being the same;

• degree of a vertex v (d(v)): the number of edges connected to v;

• a k-regular graph: a graph in which every vertex has degree k;

• a bipartite graph: a graph whose vertices can be partitioned into two non-empty sets such

that no edge of G is between vertices belonging to the same set;

• a simple graph: a graph in which any pair of vertices can be connected by at most one edge;

• a path in a graph: an (ordered) sequence of distinct vertices such that two adjacent vertices is

connected by an edge but no other pairs of edges are connected by any edges;

• a cycle in a graph: a path in the graph with an additional edge added that connects the first

and the last vertices in the path;

• a planar graph: a graph that can be embedded in a plane such that edges will not cross each

other;

• a plane graph: a specific embedding of a planar graph in a plane.

It is well known that a graph is bipartite if and only if every cycle contained in the graph (as

a subgraph) has even length.

2.3 The Seifert graph of an oriented link diagram

Given a diagram D of an oriented link L, if we “smooth” every crossing in D (as in the case

of D0 in Fig 6), then we obtain a collection of disjoint topological circles called Seifert circles.
One can construct a graph GD in which each vertex corresponds to a Seifert circle of D, and

two vertices in GD are connected by k edges if there are k crossings between the two Seifert cir-

cles corresponding to these vertices. Fig 7 shows an oriented link diagram, its Seifert circle

Fig 7. The figure-eight knot, its Seifert circle decomposition and the corresponding Seifert graph.

https://doi.org/10.1371/journal.pone.0228855.g007
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decomposition and its corresponding Seifert graph. It is easy to prove that the Seifert graph of

any link diagram is bipartite (hence loopless) and planar. On the other hand, given any plane

bipartite graph G, one can construct an alternating link diagram D such that its Seifert graph

GD is G.

3 The main results for double crossover polyhedral links

DNA is a double helix formed by base pairs attached to a sugar-phosphate backbone. The ori-

entations of the two strands in the double helix are antiparallel. A nanostructure used by DNA

can have many link component pairs with antiparallel orientations. A double crossover poly-

hedral link L is an alternating link that is constructed from its Seifert graph by the following

procedure. We first start from a simple plane graph G that is loopless, called the template
graph. We then construct the Seifert graph of the link L from G by replacing its vertices and

edges with some particular kind of cycles. More specifically, we define the following types of

cycles. A Type (1A) cycle is a cycle of even length with two of its vertices marked (we call these

vertices attaching vertices), and the two paths between them both have odd length. A Type

(1B) cycle is a cycle of even length with two attaching vertices, and the two paths between the

attaching cycles both have even length. Finally, a Type (2) cycle of degree j� 2 has j attaching

vertices, and the path between any two adjacent attaching vertices contains an even number of

edges. We note that the cycles and the paths between adjacent attaching vertices of these cycles

can have different lengths. We can now construct two types of double crossover polyhedral

links L(G) by constructing their Seifert graphs G� first from a template graph G as shown in

Fig 8, followed by detailed descriptions.

Type A double crossover polyhedral link. Let G be a simple bipartite plane graph and we

construct the Seifert graph G� of L as follows: each edge of G is replaced with a Type (1A)

Fig 8. The attaching vertices are marked by large dots. Top: how G� is constructed from the graph G by using 12

Type (1A) circles with length 10 and 8 Type (2) circles with length 12 and 3 attaching vertices. Bottom: how G� is

constructed by using Type (1B) cycles of length 8 and Type (2) cycles either with length 6 and 3 attaching vertices, or

with Type (2) cycles with length 4 and 2 attaching vertices.

https://doi.org/10.1371/journal.pone.0228855.g008
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cycle, and each vertex of degree j� 2 in G is replaced by a Type (2) cycle with j attaching verti-

ces, and then identifying the corresponding attaching vertex pairs in a natural way.

Type B double crossover polyhedral link. Ditto the construction of G� for a Type A double

crossover polyhedral link above, however in this case Type (1B) cycles are used in the place of

Type (1A) cycles and G does not have to be bipartite.

Notice that it is a necessary condition for G to be bipartite in the case of a Type A double

crossover polyhedral link (since G� is bipartite). An alternating link L(G) so constructed is

apparently minimum as it has no nugatory crossings. A double crossover cube link with 4.5

turn is a Type A double crossover polyhedral link, while a double crossover cube link with 4

turn is a Type B double crossover polyhedral link. The top of Fig 8 shows how the Seifert

graph of a double crossover cube link with 4.5 turn is constructed from a 3-regular template

graph G using Type (1A) cycles of length 10 and Type (2) cycles of length 12. The Seifert circle

decomposition of the corresponding link, which is the link shown in Fig 3, is shown in Fig 9.

The bottom of Fig 8 shows how the Seifert graph of a double crossover cube link with 4 turn is

constructed from a template graph G that is not bipartite nor regular using Type (1B) cycles of

length 8 and Type (2) cycles either with length 6 and 3 attaching vertices, or with Type (2)

cycles with length 4 and 2 attaching vertices.

A main motivation of this paper is to solve the braid index problem for a double crossover

polyhedral link L(G) with 4.5 turn, we have succeeded in achieving this goal. In fact, we have

obtained more general results concerning the braid index of a double crossover polyhedral

link of any given turn number. In particular, for some special classes of G, we can express

b(L(G)) in terms of a simple formula using the numbers of vertices and edges in G. We state

one such result below.

Theorem 1 Let G be a simple, k-regular (k� 3) plane graph. If G is bipartite and L(G) is a
Type A double crossover polyhedral link with G as its template graph and by replacing its edges
by Type (1A) cycles of length 2m1 with m1� 2, and replacing its vertices by Type (2) cycles of
length 2km2 with m2� 1, then b(L(G)) = (km2 + 1)n(G) + (m1 − 1)e(G). On the other hand, if

Fig 9. The Seifert circle decomposition of the link L�
0

(as shown in Fig 3) whose Seifert graph corresponds to G� on

the top of Fig 8: each simple closed curve in the figure (drawn in different sizes and shapes, with the crossings

ignored) is a Seifert circle.

https://doi.org/10.1371/journal.pone.0228855.g009
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L(G) is a Type B double crossover polyhedral link with G as its template graph and by replacing
its edges by Type (1B) cycles of length 2m1 with m1� 2, and replacing its vertices by Type (2)
cycles of length 2km2 with m2� 1, then b(L(G)) = (km2 + 1)n(G) + (m1 − 1)e(G) + f(G) − 1,

where f(G) is the number of faces of G.

We shall delay the proof of Theorem 1 to Section 4. In the following we state a few results

that are immediate consequences of Theorem 1. These include the previously open case of

double crossover polyhedral links with 4.5 turn.

Corollary 1 Let G be a simple, k-regular plane bipartite graph. Let L(G) be a double crossover
polyhedral links with 4.5 turn, then bðLðGÞÞ ¼ ð2kþ 1ÞnðGÞ þ 4eðGÞ ¼ 8þ 2

k

� �
eðGÞ. On the

other hand, if L(G) is a double crossover polyhedral links with 4 turn, then b(L(G)) = (2k + 1)n
(G) + 3e(G) + f(G) − 1 = 2kn(G) + 4e(G) + 1 = 8e(G) + 1.

Notice that in the case of 4.5 turn and k = 3, c(L(G)) = e(G�) = 12n(G) + 10e(G) = 18e(G)

hence b(L(G)) = (13/27)c(L(G)). In the case of 4 turn, c(L(G)) = 12n(G) + 8e(G) = 16e(G)

hence b(L(G)) = (1/2)c(L(G)) + 1.

Proof. In the case of 4.5 turn, the Type (1A) cycles are used and have length 10. The Type

(2) cycles have length 12. Thus m1 = 5 and m2 = 2, it follows that

bðLðGÞÞ ¼ ðkm2 þ 1ÞnðGÞ þ ðm1 � 1ÞeðGÞ

¼ ð2kþ 1ÞnðGÞ þ 4eðGÞ:
ð6Þ

In the case of 4 turn, Type (1B) cycles are used and have length 8. Thus m1 = 4 and m2 = 2, it

follows that

bðLðGÞÞ ¼ ðkm2 þ 1ÞnðGÞ þ ðm1 � 1ÞeðGÞ þ f ðGÞ � 1

¼ ð2kþ 1ÞnðGÞ þ 3eðGÞ þ f ðGÞ � 1:
ð7Þ

By the fact that n(G) = (2e(G))/k for any k-regular graph G and the Euler’s formula n(G) + f(G)

= e(G) + 2, we can then simplify (6) to

bðLðGÞÞ ¼ ð2kþ 1ÞnðGÞ þ 4eðGÞ ¼ 8þ
2

k

� �

eðGÞ

and (7) to

bðLðGÞÞ ¼ ð2kþ 1ÞnðGÞ þ 3eðGÞ þ f ðGÞ � 1

¼ ð2kþ 1ÞnðGÞ þ 3eðGÞ þ eðGÞ � nðGÞ þ 1

¼ 8eðGÞ þ 1:

For example, for the link L�
0

given in Fig 3, we have e(G) = 12, thus

bðLðGÞÞ ¼ 8þ 2

3

� �
� 12 ¼ 104. On the other hand, if L(G) is the link L0 with 4 turn given in

Fig 2, then we obtain b(L(G)) = 8 × 12 + 1 = 97, which is the same as (1/2)c(L(G)) + 1 since c(L
(G)) = 192.

4 The main results and proofs for the general cases

Let L(G) be a Type A or Type B double crossover polyhedral link constructed from the tem-

plate graph G. Let us start this section by first introducing an operation called a reduction
move. The total sum of all reduction move is called by reduction number. The top of Fig 10

illustrates how a strand can be re-routed to obtain a new diagram with one less Seifert circle.

The middle of Fig 10 shows the effect of a reduction move on the corresponding Seifert graph

when the middle vertex is not an attaching vertex. Notice that the reduction move affects three

The braid index of DNA double crossover polyhedral links
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vertices on the Seifert graph of the link and the middle vertex cannot be an attaching vertex.

The total number of such reduction moves we can take on G� is called the reduction number of

L(G) and denoted by r(L(G)). In the following we would like to determine r(L(G)).

In the case that L(G) is a Type A double crossover polyhedral link, the reduction operation

can be repeated j times on a path of length 2j + 1 connecting two attaching vertices. The top of

Fig 11 shows an example of how a path of length 5 connecting two (distinct) attaching vertices

is reduced to a single edge connecting the two attaching vertices, with two vertices attached

(by multiple edges) to one of the attaching vertices. Thus in the case of a Type (1A) cycle Cj

with 2j1 + 1 and 2j2 + 1 edges on the two paths connecting the two attaching vertices, we can

perform exactly j1 + j2 = ℓ(Cj)/2 − 1 reduction moves (where ℓ(Cj) = 2j1 + 2j2 + 2 is the length

of Cj), and in the Seifert graph of the resulting diagram, the two affected attaching vertices are

connected by two edges hence no more reduction moves can be made on Cj. So the reduction

number of Cj is rðCjÞ ¼ j1 þ j2 ¼
‘ðCjÞ

2
� 1, which is the contribution of Cj to r(L(G)).

On the other hand, in the case of a path of even length 2j� 2 connecting two distinct

attaching vertices, j reduction moves can be applied and the result is a “petal graph” with

the leaf vertices attached to the attaching vertex as shown in the middle of Fig 11. Finally, in

Fig 10. The re-routing of the top strand at a single crossing reduces the number of Seifert circles by one.

https://doi.org/10.1371/journal.pone.0228855.g010

Fig 11. How the repeated reduction move changes a path of odd length (top) and even length (middle), and a cycle

(bottom).

https://doi.org/10.1371/journal.pone.0228855.g011
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the case of a cycle of length 2j� 2 with only one attaching vertex, j − 1 reduction moves

can be applied and the result is also a “petal graph” with the leaf vertices attached to the

attaching vertex as shown in the bottom of Fig 11. Thus for a Type (2) cycle Cj with 2j1,

2j2, . . ., 2jkj edges on the paths connecting the adjacent attaching vertices, we can apply

rðCjÞ ¼ � 1þ
P

1�i�kj
ji ¼

‘ðCjÞ

2
� 1 reduction moves and the resulting Seifert graph is a petal

graph.

It follows that if L(G) is a Type A double crossover polyhedral link with C1, C2, . . ., Ck being

the Type (1A) and Type (2) cycles used in its construction (k = n(G) + e(G)), then

rðLðGÞÞ ¼ � kþ
X

1�j�k

‘ðCjÞ

2
ð8Þ

with ℓ(C1), ℓ(C2), . . ., ℓ(Ck) being the lengths of C1, C2, . . ., Ck.

In the case that L(G) is a Type B double crossover polyhedral link with C0
1
, C0

2
, . . ., C0k0 (k0 =

e(G)) being the Type (1B) cycles and C@
1
, C@

2
, . . ., C@

k@ (k@ = n(G)) being the Type (2) cycles used

in its construction, then each C@
j still contributes ‘ðC@

j Þ=2 � 1 to r(L(G)) as before. If we choose

any spanning tree T of G, then for each Type (1B) cycle C0j used to replace an edge on T, we

can perform ‘ðC0jÞ=2 � 1 reduction moves. At the end all attaching vertices in G� are combined

into a single attaching vertex. For any Type (1B) cycle C0j that is used to replace an edge of G
that is not on T, the two paths connecting its two attaching vertices now have both become

cycles with one attaching vertex, hence we can only perform a total of ‘ðC0jÞ=2 � 2 reduction

moves. Since G has f(G) − 1 edges not on T, the total contribution of the Type (1B) cycles to r
(L(G)) is � f ðGÞ þ 1þ

P
1�j�k0rðC

0
jÞ (keep in mind that rðC0jÞ ¼ ‘ðC

0
jÞ=2 � 1). Notice that at

the end we obtain a petal graph with its leaf vertices attached to a single attaching vertex by

multiple edges. Thus if we rename the Type (1B) and Type (2) cycles as C1, C2, . . ., Ck (k = k0 +
k@ = e(G) + n(G)), then

rðLðGÞÞ ¼ � f ðGÞ þ 1þ
X

1�j�k

ð
‘ðCjÞ

2
� 1Þ; ð9Þ

where f(G) is the number of faces in G.

The above discussion then leads to the following lemma.

Lemma 1 Let L(G) and r(L(G)) be as defined in (8) or (9), then L(G) admits a different link
diagram L0 such that s(L0) = s(L(G)) − r(L(G)), or equivalently, n(G0) = n(G) − r(L(G)), where G0

is the Seifert graph of L0.
Now let us consider a sequence of three consecutive Seifert circles connected by single

crossings as shown in Fig 12 as part of an alternating link diagram. If one crossing is “flipped”,

then a Reidemeister move II can be applied afterward to reduce the number of crossings by 2.

This reduces the number of Seifert circles by 2 and the resulting link diagram is still alternat-

ing, whose corresponding Seifert graph is obtained from the previous one by contracting the

Fig 12. Flipping a crossing followed by a Reidemeister move II reduces the number of Seifert circles by two, and

corresponding to a special contraction on the corresponding Seifert graph.

https://doi.org/10.1371/journal.pone.0228855.g012
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two edges as shown in Fig 12. Let us call the above operation on the link diagram this a special
contraction if the middle vertex is not an attaching vertex.

By comparing the special contraction with the reduction move (defined in the proof of

Lemma 1), we have the following two cases.

(a) If L(G) is a Type A double crossover polyhedral link, then we can perform exactly

r(L(G)) special contractions, and the resulting link diagram contains no lone crossings (a lone

crossing is the only crossing between two Seifert circles). The resulting Seifert graph G0 is the

graph obtained from G by doubling each edge of G into two parallel edges, and attaching a ver-

tex to each vertex of G by two edges. An example is shown in Fig 13 for the link L�
0

given in

Fig 3.

(b) If L(G) is a Type B double crossover polyhedral link, we can also perform r(L(G)) special

contractions where r(L(G)) is defined in (9). The Seifert graph of the resulting link diagram is

a petal graph with its leaf vertices attached to a single attaching vertex by multiple edges. Fig 14

shows an example of a template graph G, a link diagram constructed from it using Type

(1B) and Type (2) cycles, and how its Seifert graph is changed to a petal graph by performing

r(L(G)) special contractions.

Let q = r(L(G)), D(q) = L(G), D(q−1) be the (alternating) link diagram obtained from D(q) by

performing one special contraction, D(q−2) be the link diagram obtained from D(q−1) by per-

forming one special contraction, and so on, and finally D(0) be the link diagram obtained from

D(1) by performing the last available special contraction. We shall call the link diagrams Dj

(0� j� q) pseudo double crossover polyhedral links. It is clear that the reduction number of

D(p) (0� p� q) is p. Furthermore, L(G) and any D(p) are the special alternating link diagram

Fig 13. The end product of the Seifert graph of the link L�
0

given in Fig 3, after all possible special reductions are

performed.

https://doi.org/10.1371/journal.pone.0228855.g013
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as defined in [31]. As such, all crossings in L(G) and D(p) have the same sign. Since passing to

the mirror image of a link does not change the braid index, we can assume all crossings in

L(G) are positive in the rest of this section. Thus the main theorem (Theorem 1) holds as well

when the crossings in L(G) are negative. Since the following well-known lemma is needed in

the proof of our main result (Theorem 1), we state it here for completeness.

Lemma 2 [32, 33] Let L be any link diagram with only positive crossings, then γ(L) = s(L) −
w(L) − 1, where w(L) is the writhe of L.

Recall that the writhe w(L) of L is simply the sum of the signs (±1) of all crossings in L.

Since L has only positive crossings, we have w(L) = c(L) where c(L) is the number of crossings

in L.

Lemma 3 Let L be any link diagram with only positive crossings and let r(L) be the maximum
number of Seifert circles that can be reduced by the reduction operations as described in Fig 10,

then α(L)� −s(L) − w(L) + 1 + 2r(L). Furthermore, if α(L) = −s(L) − w(L) + 1 + 2r(L), then
b(L) = s(L) − r(L).

Proof. By Yamada [24] and Lemma 1, we have b(L)� s(L) − r(L). Combine this with

Lemma 2 and the MFW inequality, we have

gðLÞ � aðLÞ þ 2 � 2bðLÞ � 2sðLÞ � 2rðLÞ:

It follows that

aðLÞ � gðLÞ þ 2 � 2sðLÞ þ 2rðLÞ

¼ sðLÞ � wðLÞ � 1þ 2 � 2sðLÞ þ 2rðLÞ

¼ � sðLÞ � wðLÞ þ 1þ 2rðLÞ:

Fig 14. The process of reducing the Seifert graph G� of a Type B double crossover polyhedral link L(G) to a petal

graph using special contractions.

https://doi.org/10.1371/journal.pone.0228855.g014
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If α(L) = −s(L) − w(L) + 1 + 2r(L), then the MFW inequality becomes b(L)� s(L) − r(L), the

last statement of the lemma follows since we also have b(L)� s(L) − r(L).

Finally, before we state and prove our main result of this section (namely Theorem 2), we

state the following lemma. It is a known result. A proof of this for general link diagrams can be

found in [32], while a proof for the case of special alternating link diagrams can be found in

[31].

Lemma 4 [32, 33] If L is an alternating link diagram such that its Seifert graph does not con-
tain any single edge, that is, two vertices in its Seifert graph either are not connected by any edge,
or are connected by more than one edge, then γ(L) = s(L) − w(L) − 1 and α(L) = −s(L) − w(L) +

1. In particular, b(L) = s(L).

Theorem 2 Let D be a pseudo double crossover polyhedral link, then b(D) = s(D) − r(D),

where r(D) is defined by either (8) or (9), depending on the type of the double crossover polyhe-
dral link.

Proof. Let q = r(L(G)), D(q) = L(G), D(q−1), D(q−2), . . ., D(1), D(0) be the pseudo double cross-

over polyhedral links obtained from L(G). Recall that the reduction number of D(p) (0� p�
q) is p. It suffices to prove that α(D(p)) = −s(D(p)) − w(D(p)) + 1 + 2p for any p, 0� p� q. We

will prove this by induction on p.

If p = 0, D(0) is a positive alternating link diagram without any lone crossings, and the state-

ment follows from Lemma 4.

Assume that the induction hypothesis holds for some p0� 0, that is, α(D(p)) = −s(D(p)) − w
(D(p)) + 1 + 2p holds for any p such that 0� p� p0, to prove the theorem, it suffices for us to

show that α(D(p0 + 1)) = −s(D(p0 + 1)) − w(D(p0 + 1)) + 1 + 2(p0 + 1).

Choose a crossing corresponding to an edge in the special contraction taking D = D(p0 + 1)

to D(p0) and apply the skein relation (4) to it. Notice that D = D+ = D(p0 + 1) and D− simplifies

(via a Reidemeister II move) to D(p0) with sð~D � Þ ¼ sðDÞ � 2 and wð~D � Þ ¼ wðDÞ � 2. As an

easy exercise, we leave it to our reader to verify that r(D0)� p0 + 2, s(D0) = s(D) and w(D0) = w
(D) − 1. By the induction hypothesis we have:

� 2þ aðD� Þ ¼ � 2þ ð� sð~D � Þ � wð~D � Þ þ 1þ 2rð~D � ÞÞ

¼ � 2 � ðsðDÞ � 2Þ � ðwðDÞ � 2Þ þ 1þ 2p0

¼ � sðDÞ � wðDÞ þ 1þ 2ðp0 þ 1Þ:

On the other hand, by Lemma 3 we have:

� 1þ aðD0Þ � � 1þ ð� sðD0Þ � wðD0Þ þ 1þ 2rðD0ÞÞ

� � 1 � sðDÞ � ðwðDÞ � 1Þ þ 1þ 2ðp0 þ 2Þ

¼ � sðDÞ � wðDÞ þ 3þ 2ðp0 þ 1Þ

> � sðDÞ � wðDÞ þ 1þ 2ðp0 þ 1Þ:

It follows that a� 2PD�
ða; zÞ is the only term on the right side of (4) making the lowest power α

(D) = −s(D) − w(D) + 1 + 2(p0 + 1) contribution to PD(a, z), hence α(D) = −s(D) − w(D) + 1 +

2(p0 + 1), that is, α(D(p0 + 1)) = −s(D(p0 + 1)) − w(D(p0 + 1)) + 1 + 2(p0 + 1).

Theorem 2 enables us to compute the braid index of any pseudo polyhedral link easily since

the reduction number of such a link is easy to find. Furthermore, since the set of all double

crossover polyhedral links with any given turn number is a subset of the set of all pseudo poly-

hedral links, the proof of Theorem 1 is a simple application of it, which we give below. In par-

ticular, for specific double crossover polyhedral links constructed using either special template

graphs such as regular graphs, or double crossover polyhedral links with specific turn

The braid index of DNA double crossover polyhedral links
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numbers, their braid indices can be formulated using information only depending on the tem-

plate graphs.

Proof of Theorem 1. In the case that Type (1A) cycles are used, we have s(L(G)) = (2m1)e(G)

+ 2km2n(G) − 2e(G) = 2(m1 − 1)e(G) + 2km2n(G). By Lemma 1, r(L(G)) = (m1 − 1)e(G) + (km2

− 1)n(G). It follows that

bðLðGÞÞ ¼ sðLðGÞÞ � rðLðGÞÞ

¼ 2ðm1 � 1ÞeðGÞ þ 2km2nðGÞ

� ðm1 � 1ÞeðGÞ � ðkm2 � 1ÞnðGÞ

¼ ðkm2 þ 1ÞnðGÞ þm1eðGÞ:

On the other hand, if Type (1B) cycles are used, then by the definition (9) of r(L(G)), r(L(G)) =

(m1 − 1)e(G) + (km2 − 1)n(G) − f(G). Again by Lemma 1 and Theorem 2, we have

bðLðGÞÞ ¼ sðLðGÞÞ � rðLðGÞÞ

¼ ðkm2 þ 1ÞnðGÞ þm1eðGÞ þ f ðGÞ;

as desired.

5 Further discussions and ending remarks

In this paper, we provide explicit braid index formula for a large class of links that include all

double crossover polyhedral links, an application of this result leads to the solution of a braid

index problem unreachable by previous approaches such as the method used in [21]. As we

had already mentioned, Theorem 1 is valid for any double crossover polyhedral link with any

given number turn. That is, the braid index of a double crossover polyhedral link with any

given number turn has now been completely determined. We would like to compare the

results obtained here with some previous results.

In [21], Cheng and Jin studied a class of double crossover polyhedral links with 4 turn

based on connected, bridgeless and loopless plane template graph G (the DNA polyhedra cor-

responding to these links have been synthesized [10, 16–20]). A main result in [21] is the fol-

lowing theorem which relates the braid index of L(G) to its minimum crossing number c(L
(G)) by a simple formula.

Theorem 3 [21] Let G be a connected, bridgeless and loopless plane graph and L(G) a double
crossover polyhedral links with 4 turn using G as its template graph, then b(L(G)) = c(L(G))/2 +

1.

A special case of this result has already been established in Corollary 1. We will provide a

proof of this more general result using Theorem 2.

Proof. Let v1, v2, . . ., vn be the vertices of G with degrees d1, d2, . . ., dn respectively (where n
= n(G)). Keep in mind for a double crossover polyhedral links with 4 turn, Type (1B) cycles of

length 8 are used to replace edges of G, and the path between any two adjacent attaching verti-

ces of a Type (2) cycle is of length 4. Thus each edge of G contributes 8 crossings to c(L(G))

and a vertex of degree dj contribute 4dj crossings to c(L(G)). So we have

cðLðGÞÞ ¼ ð4d1 þ 4d2 þ � � � þ 4dnÞ þ 8eðGÞ ¼ 16eðGÞ;

where e(G) is the number of edges in G. Similarly, we have

sðLðGÞÞ ¼ ð4d1 þ 4d2 þ � � � þ 4dnÞ þ 6eðGÞ ¼ 14eðGÞ:

On the other hand, each edge of G corresponds to a Type (1B) cycle of length 8, hence it makes

a contribution of 3 to the reduction number of L(G), while a vertex of degree dj corresponds to
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a Type (2) cycle of length 4dj, hence making a contribution of 2dj − 1 to the reduction number

of L(G). Thus (by the definition of r(L(G)), since Type (1B) cycles are used):

rðLðGÞÞ ¼ 3eðGÞ þ
X

1�j�n

ð2dj � 1Þ � f ðGÞ þ 1

¼ 7eðGÞ � nðGÞ � f ðGÞ þ 1:

It follows that

bðLðGÞÞ ¼ sðLðGÞÞ � rðLðGÞÞ

¼ 14eðGÞ � 7eðGÞ þ nðGÞ þ f ðGÞ � 1

¼ 7eðGÞ þ nðGÞ þ f ðGÞ � 1:

By Euler’s formula, n(G) − e(G) + f(G) = 2, hence n(G) + f(G) = e(G) + 2 and we arrive at

bðLðGÞÞ ¼ 7eðGÞ þ nðGÞ þ f ðGÞ � 1

¼ 7eðGÞ þ eðGÞ þ 1

¼ 8eðGÞ þ 1

¼
cðLðGÞÞ

2
þ 1:

In the case that Type (1A) cycles are used,

cðLðGÞÞ ¼ ð4d1 þ 4d2 þ � � � þ 4dnÞ þ 10eðGÞ ¼ 18eðGÞ;

sðLðGÞÞ ¼ ð4d1 þ 4d2 þ � � � þ 4dnÞ þ 8eðGÞ ¼ 16eðGÞ

and

rðLðGÞÞ ¼ 4eðGÞ þ
X

1�j�n

ð2dj � 1Þ

¼ 8eðGÞ � nðGÞ:

A proof similar to the proof of Theorem 3 leads to the following new result, which is sum-

marized in Theorem 4.

bðLðGÞÞ ¼ sðLðGÞÞ � rðLðGÞÞ

¼ 16eðGÞ � 8eðGÞ þ nðGÞ

¼ 8eðGÞ þ nðGÞ

¼ 9eðGÞ � f ðGÞ þ 2

¼
cðLðGÞÞ

2
� f ðGÞ þ 2:

Theorem 4 Let G be a connected, bipartite plane graph and L(G) a double crossover polyhe-
dral links with 4.5 turn using G as its template graph, then b(L(G)) = c(L(G))/2 − f(G) + 2, where
c(L(G)) is the crossing number of L(G) and f(G) is the number of faces of G.

If we apply this theorem to L�
0

(given in Fig 3), then c(L(G)) = 18e(G) = 18 × 12 = 216,

f(G) = 6 hence b(L(G)) = c(L(G))/2 − f(G) + 2 = 108 − 6 + 2 = 104, as we have obtained earlier

after Corollary 1.

We end this paper with the following remark. As we mentioned earlier, the class of pseudo

polyhedral links is large compared to the double crossover ones. For example, for each
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template graph G that is k-regular, there is exactly one double crossover polyhedral link L(G)

with 4.5 turn using G as the template graph (with c(L(G)) = 4kn(G) + 10e(G) = 18e(G)), but the

number of pseudo Type A double crossover polyhedral links with G as their template graph

and with 18e(G) as their crossing number can be roughly estimated in the order of 33e(G). A

precise enumeration is beyond the scope of this paper and will be addressed in a future work.

This means that in general, the number of pseudo double crossover polyhedral links grows

exponentially as a function of the crossing number. However, we need to point out that the

class of pseudo polyhedral links is nonetheless a very special class of links among all links of

the same crossing number. It is a subset of the intersection of several well known classes of

links: the alternating links, the special links (defined and studied by Murasugi in [30]) and the

positive (negative) links. We note that although there have been studies concerning the braid

index of links in these classes, these studies do not contain results that can be readily applied to

the pseudo double crossover polyhedral links.
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