
PERSPECTIVE
published: 09 June 2020

doi: 10.3389/fendo.2020.00378

Frontiers in Endocrinology | www.frontiersin.org 1 June 2020 | Volume 11 | Article 378

Edited by:

Magalie A. Ravier,

INSERM U1191 Institut de Génomique

Fonctionnelle (IGF), France

Reviewed by:

Simone Baltrusch,

University Medicine Rostock, Germany

Melkam Alamerew Kebede,

University of Sydney, Australia

*Correspondence:

Craig S. Nunemaker

nunemake@ohio.edu

Specialty section:

This article was submitted to

Diabetes: Molecular Mechanisms,

a section of the journal

Frontiers in Endocrinology

Received: 20 January 2020

Accepted: 12 May 2020

Published: 09 June 2020

Citation:

Whitticar NB and Nunemaker CS

(2020) Reducing Glucokinase Activity

to Enhance Insulin Secretion: A

Counterintuitive Theory to Preserve

Cellular Function and Glucose

Homeostasis.

Front. Endocrinol. 11:378.

doi: 10.3389/fendo.2020.00378

Reducing Glucokinase Activity to
Enhance Insulin Secretion: A
Counterintuitive Theory to Preserve
Cellular Function and Glucose
Homeostasis
Nicholas B. Whitticar 1,2,3 and Craig S. Nunemaker 2,3*

1 Translational Biomedical Sciences Program, Graduate College, Ohio University, Athens, OH, United States, 2Diabetes

Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens OH, United States, 3Department of Biomedical

Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States

Pancreatic beta-cells are the only cells in the body that can synthesize and secrete

insulin. Through the process of glucose-stimulated insulin secretion, beta-cells release

insulin into circulation, stimulating GLUT4-dependent glucose uptake into peripheral

tissue. Insulin is normally secreted in pulses that promote signaling at the liver. Long

before type 2 diabetes is diagnosed, beta-cells become oversensitive to glucose,

causing impaired pulsatility and overstimulation in fasting levels of glucose. The resulting

hypersecretion of insulin can cause poor insulin signaling and clearance at the liver,

leading to hyperinsulinemia and insulin resistance. Continued overactivity can eventually

lead to beta-cell exhaustion and failure at which point type 2 diabetes begins. To prevent

or reverse the negative effects of overstimulation, beta-cell activity can be reduced.

Clinical studies have revealed the potential of beta-cell rest to reverse new cases of

diabetes, but treatments lack durable benefits. In this perspective, we propose an

intervention that reduces overactive glucokinase activity in the beta-cell. Glucokinase is

known as the glucose sensor of the beta-cell due to its high control over insulin secretion.

Therefore, glycolytic overactivity may be responsible for hyperinsulinemia early in the

disease and can be reduced to restore normal stimulus-secretion coupling. We have

previously reported that reducing glucokinase activity in prediabetic mouse islets can

restore pulsatility and enhance insulin secretion. Building on this counterintuitive finding,

we review the importance of pulsatile insulin secretion and highlight how normalizing

glucose sensing in the beta cell during prediabetic hyperinsulinemiamay restore pulsatility

and improve glucose homeostasis.
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INTRODUCTION

An important part of normal insulin secretion is proper
glucose sensing; as blood glucose rises, insulin secretion
needs to increase in a dose-dependent manner. Insulin
secretion also needs to become pulsatile in the proper range
of glucose, having small amplitude or non-existent pulses
when fasting and larger amplitude pulses postprandially (1,
2). Pulsatile secretion of insulin is a hallmark feature of
healthy beta-cells and is caused by oscillations in beta-
cell metabolic and electrical activity (3). Pulsatility inhibits
glucose production at the liver and maintains high sensitivity
of its receptors more effectively than continuous insulin
delivery, highlighting the importance of pulsatility in lowering
blood glucose levels (1, 4, 5). In beta-cells, oscillations
are important for proper insulin granule trafficking and
endoplasmic reticulum function, among other proposed benefits
(6, 7).

While it is still up for debate if hyperinsulinemia or
insulin resistance happens first in the pathogenesis of type 2
diabetes (T2D) (8–12), it is well-established that islets become
hypersecretory before glycemic control is lost (13–16). As beta-
cell activity increases, glucose sensing becomes aberrant and
causes hyperinsulinemia along with the loss of pulsatile insulin
secretion within its normal range of glucose stimulation (17–
20). The gradual loss of pulsatile insulin secretion precedes
the onset of T2D, with type 2 diabetics having no discernable
pulses in insulin (21). For this reason, loss of pulsatility has
been proposed as a cause of diabetes pathogenesis rather than
an effect (22, 23). We have previously shown that endogenous
pulsatility is not fully lost in newly diabetic mouse islets,
however, their glucose sensing range is left-shifted (18). This
left shift refers to islets’ increased sensitivity to low levels
of glucose, causing them to be pulsatile in hypoglycemic
levels of glucose and to be overactive and non-oscillatory in
postprandial levels. These factors along with the cumulative effect
of worsening hyperinsulinemia and insulin resistance can lead
to exhaustion and failure of the cells (17). As beta-cell mass
and function decrease, circulating insulin levels decrease and
hyperglycemia ensues.

Hyperinsulinemia has been shown as a strong predictor
of diabetes in numerous populations (14, 24–26). Current
treatment strategies do not diagnose a problem until a patient is
prediabetic, at which time islets have already lost an estimated
50–80% of endogenous function (17, 27, 28). Since current
diabetes management aimed at lowering A1C has not been
successful at reducing the prevalence of T2D, intervening
earlier in the progression of the disease may prevent the
islets from becoming exhausted and failing in the diabetes-
prone population (27, 28). Additionally, hypersecretion of
insulin can cause weight gain and make weight loss more
difficult since the body is constantly signaling a “fed” state,
so lipolysis is decreased and lipid storage is increased (29,
30). Many studies have shown hyperinsulinemia as a driver
of insulin resistance (8, 13, 14, 24), in which case attacking
the root cause of diabetes and insulin resistance would
mean reducing hyperinsulinemia. Targeting early pathological

changes in the beta-cell has the potential to prevent or
reverse T2D.

REDUCING GLYCOLYTIC ACTIVITY TO
NORMALIZE CELLULAR FUNCTION IN
OVERACTIVE BETA CELLS

In an effort restore normal function to overactive beta
cells, the glucokinase enzyme (GK) is a target with many
implications. Calcium-dependent release of insulin granules is
largely dependent on the change in the ATP-to-ADP ratio in
beta cells (31). Since glucokinase is the first and rate-limiting
step of glycolysis, this hexokinase isoenzyme has proven to be
an important factor regulating the rate of insulin secretion.
Because facilitated glucose transport allows more glucose into
the cells than GK can phosphorylate, the enzyme is the true
“glucose sensor” that provides the sigmoidal insulin response to
physiological levels of blood glucose (32–34).

Due to its ability to control insulin secretion, the sustained
catalytic activation of GK in the beta cell has been proposed as
a culprit for the increased sensitivity to glucose seen early in the
disease (35, 36). Indeed, hyperinsulinemia caused by increased
GK activity has been confirmed in several rodent models (35–
39). In disease models with increased GK activity, GK mRNA
expression can remain unchanged but the enzyme will have an
augmented response to glucose, and thus a lower threshold for
insulin secretion (35, 38, 40). Other studies have reported an
increase in GK at the protein level because posttranslational
modifications can stabilize the enzyme to slow turnover and
reduce oxidative inactivation (41–44). Another set of studies
showed that prolactin increases GK expression and insulin
secretion which may partially explain the increased beta-cell
activity seen in pregnancy (45, 46). Enzymatic activity can be
enhanced post-translationally by numerous factors including
increased cytoplasmic calcium, increased plasma free fatty acids,
insulin signaling, and the cooperative binding of glucose (37, 47–
51); all of which become elevated early in the disease. Therefore,
GK may play an etiological role driving beta-cell exhaustion in
susceptible populations.

We propose that peripheral influences cause GK to be more
sensitive to glucose, as opposed to underlying mutations in
GK driving islet overactivity and exhaustion. In this state of
heightened glucose sensitivity, islets secrete insulin in sub-
stimulatory glucose but cannot secrete enough insulin in
postprandial glucose levels (52, 53). Fasting hyperinsulinemia can
be detected 10–20 years before T2D diagnosis (54), indicating
that a slow but progressive increase in GK activity would be
a prime suspect. A potential trigger for a left shift in glucose
sensitivity is the prolonged exposure to excess glucose and
lipids seen in individuals at risk for T2D. Studies show that
exposing islets to high glucose over a period of days can
potentiate insulin secretion in response to glucose (53, 55, 56),
and certain durations and types of free fatty acids can do the
same (57–59).

Treating islets in high glucose increases GK Vmax, a change
that is sustained when normal glucose levels are restored (41,
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43, 60). Since GK expression remains relatively constant, the
shift in GK activity is thought to be caused by posttranslational
modifications (43). While the S0.5 is unaltered, raising the Vmax

augments the insulin response to glucose and causes a left
shift in the EC50 of insulin secretion (41). This is contrary to
small molecule GK activators that decrease the S0.5 and may
or may not increase the Vmax (61, 62). A constant S0.5 with
an increased Vmax causes a steeper slope and inflection point
where glycolytic flux and insulin secretion would be amplified.
Numerous posttranslational modifications have been found to
increase the activity of GK including interaction with PFK-
2/FBPase-2, S-nitrosylation, interaction with BCL 2-associated
death promoter (BAD), GK ubiquitination, and SUMOylation, as
reviewed in (63).

While these modifications act on the order of minutes
to allow for cooperative kinetics, some modifications may be
sustained and augment glucose phosphorylation. Collectively,
these modifications can cause more GK to be available in the
cytosol in a highly active conformation, independently of the
amount of glucose present in cell. For example, S-nitrosylation
dissociates GK from insulin granules, allowing for more GK
in the cytosol and increased cellular GK activity (51, 64).
Increasing GK expression left shifts the response curve, so
having more available GK in the cytosol may do the same
(65). S-nitrosylation of GK can be enhanced by GLP-1 which
partially mediates its insulinotropic effects and lowers the set
point for insulin secretion (68). As another example, PFK-
2/FBPase-2 interaction with GK increases its Vmax, indicating

that increased expression or protein binding activity of this
bifunctional enzyme could potentially explain the increased Vmax

and unaltered S0.5 after treating islets in high glucose (41, 43,
66, 67), although a causative role of PFK-2/FBPase-2 has not
been established. Numerous posttranslational mechanisms can
shift GK to a more active state which may be brought on
by excess nutrient load (57, 58), the need to adapt to insulin
resistance and hyperglycemia (55, 60), or another mechanism
not yet identified (12). In sum, GK activity can be increased by
posttranslational modifications that increase the amount of the
enzyme in the cytoplasm or change its conformation into a more
active state. Such modifications can cause an increase in Vmax,
which is consistent with changes found after treating islets in
high glucose.

The GK enzyme in the beta-cell completes the first step
of glycolysis by phosphorylating glucose. After this rate
limiting step is completed, phosphorylated glucose is fed to
phosphofructokinase (PFK) which is believed to be the key
enzyme responsible for slow glycolytic oscillations (3, 69).
Oscillations can occur only when GK activity levels are in a
specific range; if the glucose phosphorylating capacity is above
or below this range, pulsatile insulin secretion is diminished
(Figure 1A) (19, 69). This range is estimated to be ∼5–20mM
glucose in islets from non-diabetic mice (70, 71). Shifting GK
activity by altering cellular content or enzyme conformation will
also shift the threshold of insulin secretion and subsequently the
range at which oscillations can occur (55, 58). Pharmacologically
decreasing GK activity in high glucose can restore oscillations,

FIGURE 1 | (A) Glucokinase phosphorylates glucose and feeds the endogenous oscillator. (i). Permissive levels of glucose enter the beta cell through facilitated

glucose transport from the blood. (ii). Glucokinase phosphorylates varying amounts of glucose depending on the quantity and activity level of the enzyme along with

the blood glucose level. Glucokinase activity levels are largely dependent on the amount of glucose present in the cell but can be augmented in pathological

conditions such as hyperinsulinemia and diminished late in the disease process. (iii). High, medium, or low levels of phosphorylated glucose move to the next steps of

glycolysis and can activate the endogenous oscillator in the correct range (∼5–20mM glucose in islets from non-diabetic mice). (B) In vitro evidence that GK has high

control over islet activity and oscillations. Calcium imaging of islets isolated from CD-1 control mice give proof of concept that reducing glucokinase activity in 20mM

glucose can restore pulsatility. Conversely, stimulating glucokinase activity in 3mM glucose can generate pulsatility and increase intracellular calcium to the point that

no calcium oscillations can occur. This adds support that glucose transporters allow permissive levels of glucose into the cell for glucokinase to be the true glucose

sensor. Scale bars represent changes in intracellular calcium (fura-2 am 340/380 nm) as a function of time (min). This figure is based on previously published data

in (19).
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while increasing GK activity in low glucose can also stimulate
oscillations (Figure 1B). This finding was originally reported
in (19).

Previous pharmacologic interventions have aimed to activate
glucokinase activity to stimulate insulin secretion (72). This
concept is based on studies that show a profound decrease in
GK and GLUT1-3 expression in the later stages of the disease,
likely due to dedifferentiation caused by long term abuse of the
islets (17, 73–75). Glucokinase activators have not been successful
in long term clinical trials due to lack of durability (72, 76).
A similar situation to the pharmacological activation of GK is
seen in some cases of persistent hyperinsulinemic hypoglycemia
of infancy where a mutation in GK lowers its S0.5 for glucose,
which can lead to beta-cell dysfunction and diabetes later in life
(77). Some case studies have shown a link between GK activating
mutations and early onset diabetes, providing evidence that long-
term beta-cell overactivity caused by augmented GK activity
may contribute to beta-cell dysfunction (78–80). Alternatively,
since GK catalyzes the rate-limiting step of glycolysis, reducing
its activity will decrease downstream glucose-stimulated insulin
secretion. Intervening at this vital point can feed PFK the correct
amount of glucose-6-phosphate to produce oscillations.

A competitive inhibitor of GK is D-mannoheptulose (MH),
a naturally occurring sugar found in the avocado whose
implications in diabetes have been studied for decades (81–
83). Due to its inhibitory nature, most studies have used MH
to counter hyperinsulinemic hypoglycemia caused by diseases
such as insulinoma, though more recent studies suggest it may
have other uses (18, 84, 85). We recently reported that MH can
restore normal glucose sensing in pancreatic islets from newly
diabetic mice. Decreasing glycolysis ∼20–40% by treating islets
acutely or overnight with MH can normalize left-shifted glucose
sensitivity (18, 19). By decreasing cellular activity only slightly,
pulsatility can be restored within the normal range of blood
glucose. Along with these findings, we discovered that insulin
secretion, ATP levels, and NAD(P)H flux were paradoxically
increased in diabetic islets treated with MH (19). This finding is
counterintuitive considering GK activators have been developed
to increase insulin secretion but a GK inhibitor at the appropriate
concentration actually enhanced insulin secretion. A paradoxical
increase in insulin secretion has also been shown when reducing
the glucose level perfused through pancreases from diabetic rats
(39) and when treating obese mice with MH in vivo (81). Paired
in vitro data and mathematical modeling show that treating islets
in high glucose causes a sustained increase in GK Vmax and
that adding MH can partially correct the curve by reducing the
Vmax and increasing the S0.5 (43, 86). While these studies give
proof of concept that normal stimulus-secretion coupling can be
restored by reducing GK activity, MH likely holds little value
clinically since it is active in the millimolar range and would
also inhibit hepatic glucokinase. Nonetheless, MH was able to
normalize glucose sensitivity, restore oscillations, and increase
insulin secretion in islets from newly diabetic mice.

Genetic mutations have given us examples of what happens
when GK activity is chronically higher or lower than it
should be. Inactivating mutations in the GK gene cause
maturity onset diabetes of the young type 2 and permanent
neonatal diabetes mellitus, whereas activating mutations cause

some forms of congenital hyperinsulinism (87, 88). These
mutations can alter the S0.5 and Kcat, which effectively shifts the
threshold for insulin secretion and results in various degrees of
hyper or hypoglycemia (89, 90). Some mutations may restrict
posttranslational modifications such as the interaction with
PFK-2/FBPase-2 or S-nitrosylation (63). Whereas glucokinase
diseases are present from birth, our approach would be
moving the high glycolytic activity seen in hyperinsulinemia
back down to a typical range, thereby normalizing stimulus-
secretion coupling in the beta cell. However, this remains
hypothetical and may be difficult to titer using inhibitory
compounds in vivo.

BENEFITS OF NORMALIZING ISLET
FUNCTION TO RESTORE PULSATILITY

Normalizing glucose sensing in diabetic islets may provide
numerous benefits at the cellular level (Figure 2A), with
improved intracellular calcium handling being particularly
valuable. Islets from prediabetic mice are overstimulated and
have chronically elevated basal intracellular calcium levels in
fasting levels of glucose (18, 91), which can lead to cytotoxicity
and subsequent apoptosis through calcium dependent proteases
(92–94). Other genes shown to be affected by either high
calcium or membrane depolarization include those associated
with dedifferentiation, loss of cell adhesion, and beta-cell
failure (95, 96). By reducing glycolysis and the downstream
influx of calcium, gene expression associated with viability
may be maintained. Additionally, cellular stress caused by
proinflammatory cytokines can be reduced once glucose sensing
is corrected since hypersensitivity to glucose magnifies these
negative effects (18, 94, 97).

Along with right-shifting glucose sensing comes a return of
oscillations and pulsatile insulin secretion within postprandial
glucose levels. In a study of islets isolated from db/db mice
in the early stages of diabetes, the increased insulin secretion
observed after treatment with MH correlated closely with
the amplitude of intracellular calcium oscillations (19). It
remains to be seen if this is due to a decrease in the ratio
of proinsulin-to-insulin secretion caused by a reduction in
ER stress or by allowing more time for replenishment of
the readily releasable pool between pulses (6, 7, 98, 99).
Regardless, pulsatility has clear implications in proper insulin
secretion in rodents and humans alike (20, 22, 100–102).
Another beneficial facet of insulin pulsatility is the proper
suppression of glucagon secretion from alpha cells through
paracrine signaling (103, 104). Decreased insulin pulse mass
early in the disease causes impaired intra-islet communication
and postprandial hyperglucagonemia (103–105). Insufficient
amounts of insulin paired with excess glucagon is a recipe
for hyperglycemia.

Outside of the islets, pulsatile insulin secretion at the liver
is paramount for a proper physiological response (Figure 2A).
Insulin delivered in pulses has been repeatedly shown to block
the production of glucose better than continuous delivery (5,
106). Since the liver is a central component of blood glucose
regulation, more efficiently blocking glucose production can
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FIGURE 2 | (A) Schematic showing the benefits of restoring pulsatility in the beta-cell and hepatocyte. Numerous beneficial effects may take place in the beta cell (left)

and hepatocyte (right) after glucokinase activity is normalized and pulsatility is restored. (B) Shifting glucose dose-response curves based on changing levels of

glycolytic activity. (i). Long before diabetes is diagnosed, glucose sensing becomes left-shifted due to excess glucose phosphorylation by glucokinase. This leads to

hyperinsulinemia and lowers the threshold for oscillations (dashed portion of line). (ii). Slightly reducing beta-cell activity (right-shift) by reducing glucokinase activity can

restore normal glucose sensing and pulsatility in an appropriate range of glucose (dashed portion of line). (iii). Full inhibition during beta-cell rest does not permit

oscillations and almost completely stops insulin secretion in physiological blood glucose levels.

have beneficial effects on the whole body. In fact, restoring
pulsatility instead of allowing constantly high levels of insulin
secretion has the potential to upregulate insulin receptors at
the liver, thus reducing systemic insulin resistance by improving
hepatic insulin clearance (107, 108). Therefore, pulsatility has
the potential to physiologically increase insulin sensitivity in
the liver and peripheral tissues instead of pharmacologically,
such as with metformin. Sufficient transcriptional expression of
GK in the liver is also dependent on pulsatile insulin signaling,
showing decreased expression when pulsatility is lost (5). While
glucose is the primary regulator of pancreatic GK expression,
insulin signaling has the greatest stimulatory effect on GK in
the liver, creating a cross-talk between glucokinase regulation in
separate organs (33, 40). GK in the liver acts as a key regulator of
net glucose flux so maintaining high expression of the enzyme
can increase glucose storage and decrease glucose production
(109, 110).

During treatment with inhibitory compounds, glucose
sensitivity is right shifted and pulsatile instead of hyperactive,
which may simultaneously lower secretory stress on the cell
while improving whole-body glycemia. It remains to be seen if
this can be done in vivo to compare directly to other methods
of beta-cell rest. If successful, restoration of pulsatility could
provide better signaling at the liver, less proinsulin secretion
due to improved insulin granule trafficking, and decreased
apoptosis as a result of normalized intracellular calcium levels.
At least one clinical study has successfully shown that reducing
islet activity can restore pulsatile insulin secretion, indicating
that the ability is not lost in newly diabetic patients (111). It
has also been shown that hyperinsulinemia precedes insulin
resistance in the development of T2D (13, 24, 112). Therefore, if
hyperinsulinemia and islet overactivity is corrected early in the
disease, insulin resistance may not progress as rapidly. In this
way, modifying cellular metabolism of the beta cell may improve
whole-body metabolism.

CLINICAL IMPLICATIONS

A considerable amount of research has examined the beneficial
effects of resting beta cells. The theory of beta-cell rest has
been studied since the 1940’s when patients with type 1 diabetes
showed brief remission after a course of intensive insulin therapy
(113, 114). Now known as the “honeymoon phase,” this return
of endogenous insulin secretion gave initial insight into the
cellular benefits of reducing secretory demand. In the 1970’s
diazoxide was used to directly rest beta-cells in patients with T2D
which led to a significant increase in insulin secretion following
treatment (115). Since then, the importance of maintaining
beta-cell function in T2D has become increasingly evident,
and several new mechanisms of resting the cells have emerged
(28, 116, 117).

In clinical studies, beta-cell rest involves decreasing secretory
stress on the beta-cells, hoping for a return of function that
continues once the treatment is stopped. The period of rest is
thought to allow time for replenishment of the readily releasable
pool of insulin (99, 111), a reduction in oxidative stress (118–
120), or recovery of normal GK activity levels (41, 43, 121).
Many clinical studies discussing beta-cell rest focus on the use
of oral medications that restore euglycemia, therefore indirectly
lowering the demand on the beta cell to secrete insulin while
also decreasing the effects of glucotoxicity. While lowering blood
glucose is beneficial to peripheral tissues, classes of medications
such as second-generation sulfonylureas and incretin mimetics
achieve blood glucose control mainly by increasing beta-cell
activity, and therefore should not be regarded as agents of beta-
cell rest. Sulfonylureas have been shown to increase the rate
of beta-cell functional decline along with inducing apoptosis,
highlighting the importance of resting instead of stimulating beta
cells (122, 123).

The ability of medications to induce beta-cell rest have been
recently reviewed elsewhere and highlight the many benefits of
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decreasing secretory stress (116, 122, 124). Collectively, these
studies have shown a modest increase in beta-cell function
during and after treatment, which is typically lost as the disease
progresses and the use of additional medications and insulin
becomes necessary. The short-lived benefits after providing
transient beta-cell rest may be enhanced if the objective is
to restore normal function to the islets long-term rather than
fully inhibit them. Additionally, in most studies regarding
beta-cell rest the intervention begins after patients have been
diagnosed with T2D. If implemented early enough, restoring
normal function could prevent diabetes before it progresses to the
point of apoptosis and dedifferentiation causing loss of beta-cell
mass and downregulation of critical beta-cell genes (122, 125).
Otherwise, susceptible patients will have a lifetime dependency
on insulin. Perhaps the early use of an SGLT2 inhibitor or
lifestyle intervention can reduce hyperinsulinemia by reducing
blood glucose with no stimulatory effect on the beta cell. Further
investigation into the beneficial aspects of beta-cell rest and how
to best implement it is warranted.

DISCUSSION AND FUTURE RESEARCH
AVENUES

The beta cell has repeatedly shown its ability to regain function
when rested or removed from a toxic environment (126, 127).
Perhaps restoring healthy levels of function by normalizing
glucokinase activity can aid in proper insulin secretion without
overworking the cells. GK is a unique enzyme due to its
high control over insulin secretion. It has implications early
in diabetes acting to left-shift islet’s sensitivity to glucose,
and late in the disease to contribute to glucose insensitivity
once dedifferentiation occurs. GK also acts as an important
regulator of glycolytic flux to allow PFK and other downstream
mechanisms to produce oscillations. Although MH has shown
proof of concept in vitro that oscillations can be restored, the
competitive inhibitor is effective in the millimolar range which
limits its clinical potential. Additionally, MH would inhibit GK
present in the liver which would cause impaired glucose storage
and lead to a rise in blood glucose (83). However, this basic
research finding opens an avenue of research into other methods
of decreasing GK activity during hyperinsulinemic states since
most pharmacological research thus far has focused on activating
the GK enzyme late in the disease. Other compounds that reduce
GK activity more selectively and potently in overactive beta
cells would hold value. Given the importance of pulsatility in
insulin signaling and degradation at the liver, targeting the loss
of pulsatility could delay or avoid a key pathological change in
the progression of diabetes.

Alternatively, other cellular components of glucose-
stimulated insulin secretion can be targeted to directly rest
the islets. Some studies have shown KATP channel conductance
to be decreased as part of the left-shift phenomenon, so
KATP channel activators may be another useful target that
act independently of glucose (55, 56). In addition, the long-
acting somatostatin analog octreotide can effectively reduce
hyperinsulinemia, which also allowed for enhanced weight loss

in patients (128). Another clinical study showed that pulsatility
could be restored temporarily after overnight inhibition of
insulin secretion with somatostatin (111); although we propose
a long-term reduction in overactivity rather than short-term full
inhibition. Whatever the mechanism, lowering activity through
an agent acting directly on the beta-cell would be of great benefit
and has been proposed elsewhere (24, 29, 129). Future studies in
our lab will look at the best methods of restoring normal glucose
sensing and move to study the method in vivo.

An obvious caveat to our therapeutic concept is that
decreasing insulin secretion by directly inhibiting the beta-cell
in an insulin resistant individual would cause blood glucose
to increase rapidly. However, in our studies we have seen
a paradoxical increase in insulin secretion when GK activity
was slightly decreased due to a strong correlation to pulse
amplitude (19). Similar patterns of insulin release were reported
as glucose was lowered in the perfused pancreas of Zucker
Diabetic Fatty rats (39). Additionally, if pulsatility is restored
in a normal range of glucose sensing, the liver would be able
to transduce insulin signaling more effectively and clear more
insulin in the first pass before the rest is released into circulation.
Other studies that propose hyperinsulinemia as the primary
driver of insulin resistance allude to the chance of decreasing
hyperinsulinemia as a mechanism to decrease insulin resistance
(8, 29, 30). Decreasing insulin secretion an appropriate amount
with diazoxide can reduce insulin resistance and improve weight
loss without the loss of glycemic control (13, 29, 30). This shows
that hyperinsulinemia is not necessary to maintain euglycemia,
but rather this level of insulin is excessive (8).

Another option is to treat the two main components of T2D
pathogenesis separately. Beta-cell oversecretion can be managed
with an inhibitor while the potential increase in blood glucose
is managed with an oral hypoglycemic agent until metabolic
homeostasis is restored. This would cause a beneficial right-
shift back to normal glucose sensing while maintaining blood
glucose and insulin levels in a normal range. Again, this two-
pronged approach may not be necessary if the liver responds
appropriately (129), and the caveats to our proposals in vivo
can be managed with existing therapies as needed. An additional
consideration is that T2D does not only involve a functional
change in GK activity. It is a multifaceted disease with many
peripheral issues that occur simultaneously to those seen in the
beta-cells. Pathogenic changes outside the beta-cell may proceed
to the point that insulin secretion is still insufficient to maintain
glucose homeostasis.

The current methods of treating T2D have not been successful
in reducing the prevalence of disease so novel avenues need to
be explored. Current drug classes and treatment strategies aim
to reduce HbA1C while suggesting healthy lifestyle habits. While
this avoids the complications associated with high blood sugar
it most often fails and necessitates multiple drug combinations
or exogenous insulin (130). Thus, we have proposed two main
points. First, treatment targeting pathological changes in beta-
cells should begin during the hyperinsulinemic stage before beta-
cell mass and function are irreversibly compromised. Second,
GK provides an attractive target for normalizing function and
restoring pulsatility early in the disease, and that it is at least
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partially responsible for increased islet sensitivity to glucose and
hyperinsulinemia (Figure 2B). Through sharing this perspective
on diabetes treatment, we hope to open new avenues of basic and
translational research to lessen the incidence of type 2 diabetes
and metabolic syndrome.
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