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ABSTRACT

Tertiary lymphoid structures (TLS) are ectopic cellular aggregates that resemble secondary lymphoid organs
in their composition and structural organization. In contrast to secondary lymphoid organs, TLS are not
imprinted during embryogenesis but are formed in non-lymphoid tissues in response to local inflammation.
TLS structures exhibiting a variable degree of maturation are found in solid tumors. They are composed of
various immune cell types including dendritic cells and antigen-specific B and T lymphocytes, that together,
actively drive the immune response against tumor development and progression. This review highlights the
successive steps leading to tumor TLS formation and its association with clinical outcomes. We discuss the
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role played by tumor-infiltrating B lymphocytes and plasma cells, their prognostic value in solid tumors and
immunotherapeutic responses and their potential for future targeting.

Introduction

The composition and quality of tumor infiltrating immune cells
directly dictates patient’s outcomes and therapeutic efficiencies."
Strong anti-tumor immune responses are achieved through the
interplay between innate and adaptive immune cells which drive
the expansion and activation of tumor antigen-specific cytotoxic
T cells and the production of antibodies by plasmablasts and
plasma cells (collectively termed antibody-secreting cells
(ASCs)).> However, the latter has not been extensively investi-
gated in the tumor context until recently.’” At steady-state,
secondary lymphoid organs (SLO) act as central hubs where
dynamic immune cell interactions can occur continuously
between sentinel cells, such as dendritic cells, which migrate to
the lymph nodes through dedicated vessels, called high endothe-
lial venules (HEV),® and lymph node-resident immune lympho-
cytes (B and T cells). These innate-adaptive immune cell
interactions allow screening of the body surfaces for detection
of, and appropriate response to, potential immune threats. The
coordination of optimal cell positioning to enable these interac-
tions depends on chemokines that control the migratory patterns
of these cells.” When a threat is detected, such as an epithelial cell
transformation that may lead to tumor development, the local
immune response may be insufficient, and the generation of an
efficient adaptive immune response then relies on the capacity of
activated dendritic cells to migrate to the closest draining lymph
node and to present MHC-antigen-derived peptide complexes to
CD4" and CD8" T cells leading to antigen-specific T cell expan-
sion and activation.® In addition, the production of antibodies
results from the activation of antigen-specific B cells following
cognate interactions with CD4" T cells to help drive B cell expan-
sion, germinal center formation and ASC differentiation.” "

In cancer, these effector cells then egress the regional lymph
node to infiltrate the tumor microenvironment where they can
pinpoint and eradicate cancer cells. Several groups have
revealed that, in addition to this pathway, in some tumors, an
adaptive immune response is generated in situ that mirrors the
pattern normally associated with SLO. This happens within
spatially well-organized structures called tertiary lymphoid
structures (TLS). De novo TLS formation in tumors requires
optimal cytokine and chemokine concentration and specialized
immune cell types.'””> TLS formation can occur at both the
margins and in the core of tumors. Similar to SLOs, mature
TLS are composed of T and B cell zones and germinal centers.
These compartmentalized structures contain innate immune
cells and adaptive lymphocytes and may include dendritic cells,
neutrophils, macrophages, helper CD4" and cytotoxic CD8"
T lymphocytes, B cells, plasmablasts and plasma cells.""" In
addition, HEV often colocalizes with TLS in tumors allowing
the initial immune cell recruitment, but also the egress of
activated immune cells from the TLS to the circulation.'*"

Our current understanding of the local anti-tumor immune
response is still fairly limited. For example, in melanoma, it is
not unusual to observe partial or even complete spontaneous
regression of primary tumors indicative of a potent ongoing
endogenous anti-tumor immune response. However, regres-
sion of metastatic melanoma lesions is extremely rare, suggest-
ing that the emergence of antigen-loss tumor variants that have
invaded distant organs overwhelms the initial anti-tumor
immune response.'® Thus, we can ask how is such a potent
outcome achieved early during tumor formation? What are the
local cellular and molecular events that lead to primary tumor
eradication? Does a tumor disappearance correlate with speci-

CONTACT Jacquelot N @ jacquelot.n@wehi.edu.au @ Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Tellier Julie @ tellier@wehi.edu.au @ Immunology

Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052

© 2021 The Author(s). Published with license by Taylor & Francis Group, LLC.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


http://orcid.org/0000-0003-0282-1892
http://orcid.org/0000-0003-2787-8174
http://orcid.org/0000-0002-0020-6637
http://orcid.org/0000-0002-9660-9587
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/2162402X.2021.1900508&domain=pdf&date_stamp=2021-03-28

e1900508-2 (&) J. NETAL

fic structures, such as TLS, that are engendered by tumor
development? Furthermore, what are the exact mechanisms
involved? and, most importantly, can we increase or induce
effective anti-tumor immune responses early in a response to
drive stronger, or complete, tumor eradication before the
spread of disease to distant organs? Successful cooperation
between tumor-infiltrating innate and adaptive immune cells
within TLS is certainly key to fruitful anti-tumor responses.
Such outcomes appear likely to be achievable in the near future
given our increased understanding of local and systemic
immune responses through the use of cutting-edge technolo-
gies, sophisticated models and the development of innovative
immunotherapies.

In this review, we explore the cellular and molecular
requirements for TLS formation and highlight the role and
impact of these ectopic lymphoid structures in cancer. As
tumor B lymphocyte infiltration is closely linked to the pre-
sence of intra-tumoral TLS, we further detail the prognostic
and therapeutic predictive value of B cells and ASCs in tumors,
particularly in light with the latest findings in melanoma, renal
cell carcinoma and sarcoma tumors.”> We will discuss the
possibility to further enhance anti-tumor immune responses
by increasing TLS formation and targeting B cells and the
antibody response in tumors.

1. Tertiary lymphoid structures - formation and
composition

TLS formation - paralleling SLO development

TLS formation necessitates the cooperation of stromal cells with
innate and adaptive immune cells, that together are positioned
within the tissues to induce TLS neogenesis.'> Similar to SLO
formation, TLS generation might requires the local accumula-
tion of CXCL13, RANKL and interleukin(IL)-7, which together
recruit and activate lymphoid tissue-inducer cells (LT
(Figure 1). LTi cells interact with stromal cells through the

pairing of lymphotoxin (LT) alp2, expressed on the surface of
LTi cells, with its receptor (LTBR) expressed on stromal cells.
Interleukin (IL)-17 production by LTi cells” together with
LTalP2-LTR interaction induce de novo secretion of chemo-
kines, angiogenic growth factors and the expression of adhesive
molecules by IL-17R* stromal cells.”” The expression of some of
these factors is further amplified by additional interactions with
other cell types, such as dendritic cells, CD8" T cells or natural
killer (NK) cells, culminating in the secretion of VEGFA,
VEGEFC, essential for HEV formation, the production of
CXCL12, CXCL13, CCL19 and CCL21, for immune cell recruit-
ment and the expression of ICAM1, VCAM1 and MADCAM1
for cell retention'®*>~*° (Figure 1). Of note, mice deficient for
Roryt (which fail to develop LTi cells), Cxcll3 and IL-7 Ra
(Cxc13™” x II7ra™" mice) or lymphotoxin a (Lta™" mice) expres-
sion, lack SLO formation, 2**!*? although some lymphoid tis-
sues such as the nasal-associated tissue (NALT)*® or the tear
duct-associated lymphoid tissue (TALT)* develop in the
absence of Roryt, LTPR or IL-7 R signaling. Collectively, these
studies demonstrate that while SLO formation relies on critical
cellular and molecular pathways during embryogenesis for their
formation, post-natal development of lymphoid structures such
as NALT or TALT does not follow these rules. This raises the
question whether TLS development, which occurs after birth in
chronic inflammatory responses, also depends on these path-
ways or alternatively, may use different cellular and molecular
mechanisms for their initiation and formation.

Is SLO the right model?

In various inflammatory contexts, B cells,” macrophages>® or
IL-17 expressing T cells’” can induce de novo TLS formation
even when mice are deficient for LTi cells and have defective
SLO. In mucosal tissues such as the gut, a fine balance between
pro- and anti-inflammatory immune cells and signaling mole-
cules is necessary to control microbiota diversity and composi-
tion and to maintain tissue homeostasis. Roryt-deficient mice
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Figure 1. Cellular and molecular signals that control TLS formation. The local accumulation of pro-inflammatory molecules and chemokines promotes the
recruitment of LTi cells to the inflammed site promoting their interaction with stromal cells to initiate TLS genesis and cytokine (IL-7, IL-17, RANKL, and LTa1f32) and
cytokine receptor (IL-7R, IL-17R, RANK and LTRR) expression. When LTi cells are absent, other immune cells such as macrophages, B lymphocytes and Th17 cells can also
interact with stromal cells to induce TLS formation. This interaction culminates in the production of chemokines (CCL19, CCL21, CXCL12 and CXCL13), pro-angiogenic
molecules (vascular endothelial growth factors VEGFA and VEGFC) and the expression of adhesion molecules which facilitate the recruitment of additional immune cell
types, their retention and organization into the nascent TLS. LTi cells, lymphoid tissue-inducer cells; Th17 cells, T helper cells secreting IL-17; LT, lymphotoxin; RANK,
receptor activator of nuclear factor-kB; ICAM, intercellular adhesion molecule 1; VCAM1, Vascular adhesion molecule 1; MADCAM, mucosal vascular addressin cell
adhesion molecule 1; VEGFC, vascular endothelial growth factor A/C; IL, interleukin; CCL19: C-C motif chemokine ligand 19; CXCL13, C-X-C motif chemokine ligand 13;

HEV, high endothelial venules.



have impaired intestinal SLO development resulting in the
absence of mesenteric lymph nodes and Peyer’s and colonic
patches, but also have defective cryptopatches and isolated
lymphoid follicles.”**®* While these lymphoid structures are
critical to mount appropriate immune responses, LTi-
deficient mice are still able to preserve their barrier integrity
and to maintain intestinal homeostasis, as TLS development
occurs in the colon of Roryt-deficient mice during inflamma-
tion and seems to be dependent on the gut microbiota.>
Similarly, inducible bronchus-associated lymphoid tissue
(iBALT) develops in lungs after LPS exposure or influenza-
infection in mice lacking SLO.*”*° In influenza-infected Lta™"
mice, local CXCL13 and CCL21 expression colocalizes with the
B cell-rich zone and PNAd-expressing HEVs, respectively, in
iBALT.* Similarly, Rorc™’™ and Id2™ mice exposed to LPS and
infected with influenza also form iBALT.%” Together, these
results demonstrate that local inflammation is a principal trig-
ger of TLS formation, and similar mechanisms are likely to
occur in tumors.*' These vascular structures together with local
chemotactic factors allow the recruitment and accumulation of
B and T cells sustaining the initial formation and the assembly
of the nascent TLS.?>** Overall, while a parallel between SLO
and TLS formation occurs, additional molecular and cellular
events principally dependent on sustained local inflammation
trigger TLS neogenesis.

Temporal development and recruitment of cells in TLS

The temporal development and recruitment of cells to intratu-
moral TLS are, to date, largely unknown. Recently, Meylan and
colleagues examined TLS formation in preneoplastic hepatic
lesions from cirrhotic livers to determine whether TLS neogen-
esis was induced in early hepatic lesions and its associated
immune profile.*> This group found that a quarter of these
preneoplastic hepatic lesions display TLS in cirrhotic
nodules.*> The presence of these structures was associated
with increased densities of T cells, B cells and mature dendritic
cells but lack CD21" follicular dendritic cells, indicating that
most TLS consisted of immature lymphocytic aggregates rather
than fully developed follicles.*> They further identified the
presence of immunosuppressive genes in lesions where TLS
were found suggesting that inhibitory signals that emerge
within cirrhotic nodules potentially inhibit ongoing immune
responses.”> However, for ethical and practical reasons, it was
impossible to correlate patient clinical outcomes with the pre-
sence of these TLS in preneoplastic hepatic lesions.
Nevertheless, this study has been critical in pinpointing that
TLS formation is likely to occur very early during tumor
development, in parallel with the early development of
inflammation.

TLS maturation, composition and diversity

TLS composition encompasses both innate and adaptive immune
cells that are surrounded by HEV. Using immunohistochemistry,
early studies in melanoma** and non-small lung cancer® found
tumor-associated structures resembling SLO that are composed of
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T cells (CD3"), mature DCs (DC-LAMP") and follicular B cells
(CD20™) (Figure 2). The immune cell composition of these struc-
tures differs, ranging from disorganized cellular aggregates, often
referred as immature or early TLS, to well-organized and struc-
tured organs containing follicles, mirroring SLO and populated by
germinal centers and tumor antigen-specific T and B cells (Figure
2). Recent analyses used additional markers to better characterize
the immune composition of TLS and follicles. Studies identified
proliferative (Ki67") germinal center B cells (CD23") expressing
AID, involved in somatic hypermutations and class switch recom-
bination, as well as Bcl6, a transcription factor involved in germ-
inal center B cell maturation (Figure 2).48 11y addition, follicular
dendritic cells (CD21" or CD23") were detected within germinal
centers with macrophages (CD68"), CD4" and CD8" T cells
(CD3"), follicular CD4" T cells (Bcl6"PD-1"ICOS'IL-21") and
plasma cells (CD38"CD138") often surrounding germinal centers
indicative of an ongoing humoral and cytotoxic immune
responses*>*’ (Figure 2).

2. Tertiary lymphoid structures in cancer -
prognostic and predictive values

TLS have been detected in numerous tumor types using immu-
nohistochemistry or chemokine gene signatures which tightly
correlated with the presence of TLS identified by
immunochemistry.*"**"* In particular, a 12-chemokine gene sig-
nature was correlated to increased survival in melanoma,™
colorectal’** and breast™ cancers. In addition, other gene signa-
tures containing 8 and 19 genes related to the presence of
T follicular helper cells, type 1 helper CD4™ T cells and B cells
were reported in breast™ and gastric™ cancers. Collectively, this
has led to the detection of TLS in lung,41’45’56’57 oral squamous cell
carcinoma,”® breast,”***®' colon,”"®* stomach,”>**** liver,*
sarcoma,**®” bladder,*® clear cell renal cell carcinoma,* ovarian
cancer’®® and melanoma®>'>****”° (Table 1). TLS formation
and densities vary between tumor types, and between patients.
While the presence of TLS are largely associated with favorable
outcomes, other studies do not see this positive association
between TLS and patient prognosis (Table 1). These inconsisten-
cies within a tumor type might be explained by TLS location
(tumor core versus stroma or invasive margin), tumor stage
(primary versus metastatic lesions), tumor subtype (e.g., highly
or lowly mutated tumors), patient treatment history which may
influence immune cell infiltration (e.g., immunogenic chemother-
apy) or TLS immune cell composition diversity, particularly in
T and B cell subsets”’ (Table 1). In addition, several studies have
reported the positive association between the presence of TLS and
B lymphocytes, and therapy responses. Particularly, three seminal
studies demonstrated the beneficial impact of TLS and
B lymphocytes in melanoma, renal cell carcinoma and sarcoma
tumors with response to immune checkpoint blockers.”™ This
observation has been recently extended to patients with advanced
urothelial cancer who received combination of anti-PD-1 and
anti-CTLA-4 antibodies before tumor resection.”” In this setting,
while no correlation was observed between the presence of TLS at
baseline and therapy response, all patients who experienced
pathological complete responses had enriched TLS after
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Figure 2. Different levels of TLS maturation and their composition. Tumor-associated TLS are heterogenous and range from poorly-organized cellular aggregates
(Early or immature TLS) to well-organized structures forming primary follicles or secondary follicles containing germinal centers surrounded by specific vessels called
high endothelial venules (PNad™"). Their cellular composition include stromal cells, innate and adaptive immune cells. In most of the analyses performed, cellular
composition has been determined using immunofluorescence or immunochemistry analyses and relies on the expression of cell-specific markers to identify the cell
types that form TLS. Mature secondary follicle-like TLS harbor a germinal center composed of proliferating mature germinal center B lymphocytes
(CD20*CD23*AID*Ki67*Bcl6*) and follicular dendritic cells (CD21*CD23*) surrounded by naive or follicular B cells (CD20*) and bordered by follicular helper T cells
(Bcl6*PD-17ICOS™IL-217). In addition, TLS are formed of CD4* and CD8" T cells (CD3"), plasma cells (CD38*CD138"), mature dendritic cells (DC-LAMP*) and
macrophages (CD68*). CD, cluster of differenciation; DC-LAMP, dendritic cell lysosomal associated membrane glycoprotein; PD-1, programmed cell death 1; ICOS,
Inducible costimulator; AID, activation-induced deaminase; Bcl6, B cell lymphoma 6 protein; PNad, peripheral node addressin.

treatment.”? Thus, TLS could be induced during immune check-
point treatment and favored the generation of local anti-tumor
immune responses.

3. B lymphocytes take the center stage in anti-tumor
immune responses

Unlike their T cell kin, the contribution of the B lymphocytes (B
cells and their progeny, the ASC) to the antitumor immune
response has only been acknowledged recently as their presence
has been increasingly reported in a wide variety of tumors'
(Table 2). Unexpectedly, both beneficial and detrimental roles
were described, and their exact function thus remains unclear
(Table 2). This complexity stems from the failure to appreciate
the diversity of the B cell lineage, and the often limited char-
acterization of the tumor-associated B Ilymphocytes.
Accumulating evidence now points to substantial heterogeneity
among B lymphocytes found within the tumor infiltrates, parti-
cularly in TLS, both in terms of maturation status and effector

functions. B lymphocytes are the sole producers of antibodies
making them critical to humoral immunity, but they also influ-
ence other immune and nonimmune cell subsets through the
production of various cytokines and cellular mediators in the
tumor microenvironment. For example, they secrete interferon
(IFN)-y and IL-12°* which may promote cytotoxic CD8* T cell
responses. In contrast, particularly in tumors, B lymphocytes
may produce immunosuppressive molecules triggering regula-
tory T cell development and differentiation of myeloid-derived
suppressor cells (MDSCs)."*'**> An emerging model posits that
the divergent prognostic outcomes linked B cells could be recon-
ciled by delineating subpopulations and clonality with pro- and
anti-tumor roles.

B lymphocyte properties associated with anti-tumor
responses

From the perspective of antitumor responses, the IgG1 anti-
body subclass exerts the most efficient effector activity. It fixes
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Figure 3. The dichotomy of tumor-infiltrating B lymphocytes. Both pro- and anti-tumoral roles can be attributed to B lymphocytes. IgG1* B cells promote the anti-
tumoral response by presenting antigens to T cells and secreting cytokines (IFN-y, IL-12) that polarizing the response toward an optimal Th1/CTL composition. These
B cells can exert direct cytotoxic functions through the expression of TRAIL and granzyme B. Furthermore, the IgG1 antibodies secreted by the ASC can bind to the FcyR
at the surface of NK cells, macrophages and dendritic cells allowing induction of ADCC, phagocytosis and antigen uptake, respectively. Furthermore, IgG1 antibodies fix
complement to trigger its cytotoxic cascade. In contrast, IgA* cells are associated with the secretion of inhibitory cytokines (IL-10, IL-35, TGF-) that create a suppressive
environment favoring the emergence of Treg, M2 macrophages and MDSC while repressing the function of the effector cells. In addition, the expression of lymphotoxin
by B cells supports tumor cell survival. ADCC, antibody-dependent cell-mediated cytotoxicity; ASC, antibody secreting cell; CTL, cytotoxic T lymphocyte; FcyR, Fc gamma
receptor; lg, immunoglobulin; IFN-y, interferon gamma; MDSC, myeloid-derived suppressor cells; MHC: major histocompatibility complex; PD-L1: progammed cell death
ligand 1; TGF-B, transforming growth factor-beta; TRAIL, tumor-necrosis-factor related apoptosis-inducing ligand; Treg, regulatory T cell.

complement efficiently, possesses a high affinity to the Fcy
receptors expressed at the surface of myeloid and NK cells,
and its binding triggers antibody-dependent cell cytotoxicity
(ADCC), phagocytosis and tumor antigen uptake by antigen-
presenting cells. Furthermore, IgG" memory B cells can drive
direct cytotoxic activity against tumor cells through the expres-
sion of TRAIL or the release of granzyme B (Figure 3). They
also secrete IFN-y, which drives Th1 and cytotoxic response by
polarizing macrophages, CD4" and CD8" T cells (Figure 3).
Hence, IgG" ASCs and memory B cells make a valuable con-
tribution to the antitumor response, and their presence is
positively correlated to increased survival in patients with high-
grade serious ovarian cancer, 114 hepatocellular carcinoma,”
melanoma,'%>'*? KRAS-mutant lung carcinoma,'”
pancreatic, gastric,“’126 breast®®!!>!27 and non-small
cell lung cancers.”™'”

124,125

Features of pro-tumor or regulatory B lymphocytes

In contrast to the IgG antibody subclass, both IgA and IgE
isotypes have been associated with poor prognosis for patients
with hepatocellular carcinoma,” melanoma,'” KRAS-mutant
lung carcinoma,'® prostate''® and bladder”* cancers. These iso-
types do not fix complement, or mediate the ADCC by NK cells.
IgA in particular is a neutralizing antibody that does not trigger
inflammatory responses. IgA™ ASCs, expressing suppressive
molecules such as progammed cell death ligand 1 (also known
as PD-L1) and IL-10, were described in both patient samples and
mouse models of hepatocellular and prostate cancer.”'"* These
cells inhibited the cytotoxic T cell response and were involved in
resistance to chemotherapy and checkpoint inhibitor therapy.
Like regulatory T cells, regulatory B cells can secrete IL-10,
transforming growth factor (TGF)-B or IL-35 that will favor
switching to IgA and the generation of new suppressive immune
cells."*" In addition, the secretion of lymphotoxin by B cells was

shown to favor tumor cell survival in prostate cancers'*® (Figure
3). Although under different designations and defined by various
markers, suppressive B lymphocytes have been described in
a wide variety of tumor types where they hinder antitumor
immune responses. These include hepatocellular carcinoma,'*-
130 gastric tumors, 131 squamous cell carcinoma,**melanoma’®?
and pancreatictumors.134

4, Strategies to enhance TLS formation and/or
anti-tumor B cell accumulation in cancers

The modulation of TLS or TLS-forming immune cells such as
B lymphocytes is an attractive option to (i) induce de novo local
antitumor immunity in poorly immunogenic tumors, (ii)
increase endogenous immune responses, and (iii) redirect
a suppressive immune microenvironment toward effective
antitumor immunity. Anti-cancer treatments, including
chemo- and radio-therapy, or targeted therapies such as
immune checkpoint inhibitors, all stimulate the immune sys-
tem to fight cancer cells. In various cancer types, the presence
of TLS has been associated with increased disease free- and
overall survival of patients treated with immune checkpoint
inhibitors,*>’>'*>1%¢  adjuvant trastuzumab  (anti-HER2
antibody)® or adjuvant and neoadjuvant chemotherapeutic
regimens.*"'*”!*® These observations indicate that enhancing
the formation, and/or maturation, of TLS in tumors could
further augment therapy responses and increase the prognosis
of cancer patients.

Several approaches have been successful in inducing TLS
formation  associated  with  anti-tumor immunity.
Vaccination of HPV-driven cervical cancer patients against
E6 and E7 proteins'* or pancreatic carcinoma patients
using irradiated allogenic GM-CSF-secreting pancreatic
tumor vaccine'** have been shown to induce TLS forma-
tion. In preclinical models, the overexpression of LTa



under the rat insulin promotor in non-tumor bearing mice
induced TLS formation in the pancreas and kidneys of
transgenic animals.'*' This was exacerbated in the pancreas
of mice overexpressing both LTa and LTP under the rat
insulin promotor I1** and drove T cells, B cells and folli-
cular dendritic cell recruitment which are structurally orga-
nized and mimic the configuration of SLO. More recently,
the targeting of LIGHT, a member of the TNF superfamily
which binds to the lymphotoxin receptor (encoded by
TNFSF14), to tumor vessels via a vascular targeting peptide
(LIGHT-VTP) was reported to induce TLS formation and
vasculature remodeling in mouse tumors.'** Importantly,
the combination of LIGHT-VTP with immune checkpoint
inhibitors increased anti-tumor responses and survival in
mice by inducing the recruitment of a large number of
effector and memory T cells into tumors.'** Different
approaches were also studied and notably, the injection of
dendritic cells engineered to deliver the cytokine IL-36,'*
or the chemokine CCL21,'**"'*” were both shown to pro-
mote intratumoral TLS formation.

The dichotomy between pro- and anti-tumor immune cell
populations such as B and T lymphocytes suggests that
patients could be better stratified based on the characteriza-
tion of TLS-forming cells rather than simply assessing the
presence or absence of TLS in tumors. One potential
approach is the eradication of the suppressive B cells with
an anti-CD20 antibody. However, the use of an anti-CD20
antibody in melanoma increased the development of mela-
noma metastases in lungs, and the growth of B16 primary
melanoma tumors when injected subcutaneously."**">! Thus,
the tumor context matters, and such strategies need to be
evaluated in every tumor type. ASCs, which no longer express
CD20 are more complicated to target. Proteasome inhibitors,
BAFF/APRIL antagonists (e.g., tacicept or tabalumab) or spe-
cific inhibitors of the pro-survival molecules Mcll/Bcl2 all
constitute logical strategies that need to be evaluated.
However, for the later, the targeting would also need to be
highly specific, depleting suppressive cells and leaving anti-
tumor immune subsets including cytotoxic CD8" T cells or
NK cells intact. The use of such approaches could be com-
bined with strategies to impair suppressive functions such as
checkpoint inhibitors to target PD-L1. Alternately, it could be
combined with engineered bifunctional fusion antibodies
such Bintrafusp Alfa (also known as M7824) that simulta-
neously neutralizes PD-L1 and TGF-p and results in the
activation of both innate and adaptive immune systems
thereby conferring potent anti-tumor immunity'>* and long-
term anti-tumor protection'> Alternatively, the reduction of
accessory suppressive populations, such as regulatory T cells
in TLS"* could divert the microenvironment away from pro-
tumor signals leading to tumor eradication.

Future perspectives and outstanding questions

Collectively, TLS and the associated T and B lymphocytes
might serve as biomarkers useful to select patients who might
better respond to immunotherapy. However, there are still

ONCOIMMUNOLOGY €1900508-11

many questions that remain to be answered before they can
be incorporated into clinical practice as prognostic tools.'*

Do immature and mature TLS differentially impact
a patient’s prognosis?

It is still unclear whether the degree of TLS maturation impacts
a patient’s prognosis or treatment efficacy. Indeed, whether
immature and disorganized TLS with sparse cellular aggregates
and no evidence of effective conventional adaptive immunity
convey similar prognostic value as mature and structurally
well-defined TLS harboring follicles and germinal centers
remains unclear. Recently, Li and colleagues (2020) endea-
vored to examine this issue in oral squamous cell carcinoma.
They found that the presence of TLS was associated with
increased 5 years overall- and relapse-free survival, and impor-
tantly, both immature and mature TLS conveyed equally posi-
tive outcomes.”® In contrast, Posch et al. (2018) delineated that
TLS in colorectal tumors exhibited different degrees of matura-
tion which were associated with differential prognostic
values.”’ In particular, mature TLS containing germinal centers
had a more positive prognostic outcome compared with imma-
ture TLS.*” Thus, evaluation of TLS maturation status in every
tumor type would bring TLS into focus as an accurate prog-
nostic tool for cancer treatment.

Can patient survival and response to treatment be
predicted based on prospective evaluation of TLS ?

In most cases, the presence of TLS in tumors and their correla-
tion with patient outcomes have been evaluated retrospectively.
Given the consistent positive correlation of TLS with the anti-
tumor immune response, prognosis and immunotherapeutic
responses, prospective studies are warranted to determine the
utility of measuring TLS presence, composition and density as
prognostic tools or predictive markers of therapy efficacy.

Does TLS composition differently impact patient
prognosis?

While the presence of TLS often positively impacts clinical out-
comes, TLS composition itself might dictate treatment efficacy,
tumor recurrence and patient survival. Indeed, Yamaguchi and
colleagues'* classified TLS into five categories based on their
immune cell composition and found that TLS enriched in helper
T cells were associated with disease relapse in advanced color-
ectal cancer. Another example is the diversity found among ASC
where IgA producing cells are almost exclusively associated with
a poor prognosis, while IgG™ secreting cells frequently correlated
with increased patient survival. Thus, better understanding of
the composition of the immune infiltrate and function of TLS-
forming cells, such as the isotype of ASC may be important.

Therapeutic intervention — can we specifically induce or
enhance TLS formation in tumors?

Strategies augmenting de novo TLS formation in patient tumors
could potentiate antitumor treatments leading to an increase in
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therapy response rates and patient progression- and overall-
survival. While a number of preclinical studies have demon-
strated the potential value of such treatments, additional studies
and clinical trials are necessary to determine the therapeutic
value conveyed by combining TLS- or B lymphocyte-specific
targeting with current immunotherapeutic treatments.

The development of new technologies that enable the inter-
rogation of more than 50 cellular markers simultaneously
allows the precise characterization of the cellular composition,
function and localization within tumors.”””™'**  Similar
approaches could be used to investigate in detail TLS composi-
tion and function. Recently, Schurch and colleagues'® ele-
gantly identified nine conserved distinct components
characteristic of colorectal cancer immune microenviron-
ment — described as ‘cellular neighbourhoods’ - which differ-
entially impact a patient’s survival. The expansion of our
capabilities to study a large number of parameters simulta-
neously might increase our understanding of the tumor micro-
environment. This is likely to shed light on the cellular and
molecular events associated with TLS formation and intratu-
moral T and B lymphocytes function associated with successful
anti-tumor immunity and therapy responses.
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