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Abstract: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer
worldwide and includes squamous cell carcinomas of the oropharynx and oral cavity. Patient prognosis
has remained poor for decades and molecular targeted therapies are not in routine use. Here we
showed that the overall expression of collagen subunit genes was higher in cancer-associated fibroblasts
(CAFs) than normal fibroblasts. Focusing on collagen8A1 and collagen11A1, we showed that collagen
is produced by both CAFs and tumour cells, indicating that HNSCCs are collagen-rich environments.
We then focused on discoidin domain receptor 1 (DDR1), a collagen-activated receptor tyrosine kinase,
and showed that it is over-expressed in HNSCC tissues. Further, we demonstrated that collagen
promoted the proliferation and migration of HNSCC cells and attenuated the apoptotic response to
cisplatin. Knockdown of DDR1 in HNSCC cells demonstrated that these tumour-promoting effects of
collagen are mediated by DDR1. Our data suggest that specific inhibitors of DDR1 might provide
novel therapeutic opportunities to treat HNSCC.
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1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide
and includes squamous cell carcinomas of the oropharynx and oral cavity (OPSCC and OSCC,
respectively) [1,2]. HNSCC is caused primarily by tobacco and alcohol usage, but a significant
proportion of OPSCCs in Western countries are associated with human papillomavirus (HPV)
infection [3]. Although patients with HPV-related disease respond better to chemo-radiotherapy and
have a more favourable prognosis, approximately 50% of patients with HPV-negative HNSCC die
within 5 years. Molecular targeted therapies are not in routine use and innovations in the therapeutic
approach are urgently needed.

The molecular basis of HNSCC has been intensively investigated and a number of mutations in
oncogenes (e.g., PIK3CA, RAS) and tumour suppressor genes (e.g., p16, p53, FAT1, NOTCH1) have
been identified in subsets of tumours [4], but the identification of druggable targets has proved to be
challenging. Like all solid tumours, HNSCCs are complicated structures representing interactions
between the malignant tumour cells with normal cells and extracellular matrix (ECM) proteins within
the tumour microenvironment. Cancer-associated fibroblasts (CAFs) are often the most abundant cells in
the HNSCC microenvironment and serve to promote tumour progression by secreting cytokines/growth
factors and ECM proteins [5]. Importantly, high levels of CAFs within OSCCs predict a worse patient
prognosis [6], which suggests that therapeutic strategies to inhibit CAF function might be beneficial.

Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that specifically binds to and
is activated by collagen [7]. DDR1 binding to collagen occurs through the discoidin domains of
DDR1 and is integrin independent. Following activation by collagen, DDR1 triggers the activation of a
number of downstream signalling pathways [8], which induces the expression of pro-inflammatory
mediators as well as matrix degrading enzymes. The overexpression of DDR1 has been reported in
a number of cancer types [8], including breast and lung cancers, and is often associated with more
migratory and invasive phenotypes [9,10]. Preliminary evidence from micro-array analysis indicated
that DDR1 was over-expressed in SCCs of the tongue [11], but further studies to confirm mRNA or
protein expression in HNSCC have not been reported and the role of DDR1 in the pathogenesis of
HNSCC has not been examined.

Here we showed that HNSCCs are collagen-rich environments, with individual collagen subtypes
being expressed by both CAFs and malignant epithelial cells. Further, we demonstrated that DDR1 is
over-expressed in HNSCC tissues and that collagen promotes the proliferation and migration of
HNSCC cells and attenuates the apoptotic response to cisplatin via DDR1. Specific inhibitors of DDR1,
therefore, might provide novel therapeutic opportunities to treat HNSCC.

2. Results

2.1. Collagen Expression in CAFs and HNSCCs

To identify pathways relevant to the pro-tumorigenic effects of CAFs in HNSCC, we used RNA
sequencing (RNAseq) to compare global gene expression in a panel of CAFs derived from HNSCCs
with that in a panel of normal human oral fibroblasts (NHOF). Gene set enrichment analysis (GSEA)
of genes differentially expressed between NHOFs and CAFs revealed that the most significantly
enriched gene ontology (GO) term was extracellular structure organization (Figure 1A). As the genes
encoding the individual collagen subtypes represented approximately 10% of the genes in this GO
term, we examined the expression of individual collagen subtypes in more detail. Whilst there was
heterogeneity in the expression of individual collagen subunit genes, we observed that the overall
expression of collagen subunit genes was higher in CAFs compared to NHOFs (Figure 1B–D, Figure S1).

As COL8A1 and COL11A1 had previously been shown to also be up-regulated in senescent
OSCC-derived CAFs [12], we selected these collagen subtypes for further investigation and their
expression in fibroblast strains was first validated by RT-qPCR (Figure 1E). The expression of
COL8A1 and COL11A1 was also detected in HNSCC-derived cell lines, although expression levels
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were heterogeneous and unrelated to HPV status (Figure 1F). We next examined whether COL8A1 and
COL11A1 were expressed in HNSCC tissues. A series of OPSCC tissue samples were dual-stained
for COL8A1 or COL11A1, together with alpha-smooth muscle actin (α-SMA), which is a marker of
fibroblast activation. Both COL8A1 and COL11A1 were found to be expressed by OPSCC cells and
CAFs (Figure 2). Specifically, 73% (32/44) of OPSCCs and 91% of the associated CAFs (40/44) expressed
detectable levels of COL8A1, and 100% of OPSCCs (55/55) and 98% of the associated CAFs (54/55)
expressed COL11A1. Similarly, both collagens were expressed by tumour cells (100% of cases) and
CAFs (97% of cases) in OSCCs (Figure S2).
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Figure 1. Collagen expression in cancer-associated fibroblasts (CAFs) and head and neck squamous cell
carcinoma (HNSCC) cells. (A) Extracellular structure organization was the most significantly enriched
gene ontology (GO) term identified by gene set enrichment analysis (GSEA) of genes differentially
expressed between normal human oral fibroblasts (NHOFs) and CAFs, as determined by RNAseq.
(B) Heatmap highlighting the elevated expression of collagen subtypes in CAFs. (C) Total collagen
expression (average expression of all collagen subtypes from RNAseq) was higher in the majority of
CAF strains compared to normal fibroblasts. (D) Expression of COL8A1 and COL11A1 in NHOFs and
CAFs, as determined by RNAseq. (E) RT-qPCR was used to confirm the expression of COL8A1 and
COL11A1 in fibroblast strains. (F) RT-qPCR analysis showed COL8A1 and COL11A1 were also
expressed in some HNSCC cell lines. Data for the RT-qPCR experiments are shown as mean +/− SD
values of triplicates.
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Figure 2. Expression of COL8A1 and COL11A1 in oropharyngeal squamous cell carcinoma (OPSCC).
Photomicrographs show expression of COL8A1 (top panel) and COL11A1 (lower panel) in OPSCC
tissues. Tissues were multiplex-stained with COL8A1 or COL11A1 (fluorescein, green), together with
α-smooth muscle actin (α-SMA) (Cy3, red) antibodies and 4′,6-diamidino-2-phenylindole (DAPI) (blue).
The expression of COL8A1and COL11A1 was detected in OPSCCs and cancer-associated fibroblasts.
Representative images are shown and were captured with a confocal laser microscope (Zeiss, Carl Zeiss
AG, Oberkochen, Germany; magnification × 63). Examples of COL8A1and COL11A1 expression in
oral squamous cell carcinoma tissues are shown in Supplementary Figure S2.

The expression of COL8A1 or COL11A1 was examined in the context of clinico-pathological
parameters. Low expression of COL8A1 in OPSCCs (p = 0.004) and CAFs (p = 0.048) was
significantly associated with the low-risk-of-death group by univariate logistic regression (Table
S1). Survival analyses indicated that high expression of COL8A1 in OPSCCs and CAFs was associated
with worse survival, but this was not statistically significant under Kaplan–Meier analyses (data not
shown). The expression of COL11A1 was not associated with any clinico-pathological parameters and
no associations were found for either COL8A1 or COL11A1 in OSCCs.

2.2. DDR1 Is Over-Expressed in HNSCCs

Having demonstrated collagen expression in both tumour cells and CAFs, we next examined the
expression of DDR1, a collagen-activated tyrosine kinase receptor. DDR1 mRNA and protein were
readily detected in HNSCC cell lines (Figure 3A, Figure S3) and the data indicated that the expression
of DDR1 was higher in HNSCC cell lines than immortalized normal human oral keratinocytes and
non-malignant epidermal keratinocytes (Figure S4). To investigate DDR1 expression in HNSCC
tissues, we first used expression data from The Cancer Genome Atlas (TCGA). DDR1 was significantly
over-expressed in tumours relative to normal samples, and this was the case for both HPV-negative
(p = 0.0006) and HPV-positive tumours (p = 0.0012; Figure 3B). To confirm these data at the protein
level, we first used immunohistochemistry to examine the expression of DDR1 in a small series of
cases comprising 5 cases of normal oral mucosa, 6 cases of OPSCC and 6 cases of OSCC (Figure 3C).
Normal epithelium showed weak cytoplasmic staining, whilst the majority of squamous cell carcinomas
(8 of 12) showed increased DDR1 expression in comparison to adjacent normal epithelium (Table S2).
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Figure 3. Discoidin domain receptor 1 (DDR1) was over-expressed in head and neck squamous cell
carcinoma (HNSCC). (A) DDR1 is readily detectable in HNSCC cell lines by RT-qPCR and western
blotting. (B) Analysis of The Cancer Genome Atlas (TCGA) expression data revealed that DDR1 is
significantly over-expressed in tumours relative to normal samples. There was no statistically significant
difference in DDR1 expression between human papillomavirus (HPV)-negative and HPV-positive tumours.
(C) Immunohistochemical analysis of DDR1 protein revealed that normal epithelium showed weak
cytoplasmic staining (i and ii), whilst the majority of squamous cell carcinomas (8 of 12) showed increased
DDR1 expression in comparison to normal epithelium (iii and iv). (Original magnification × 100).

We next examined the tissue and subcellular localisation of DDR1 in more detail using multiplex
immunofluorescence staining of formalin-fixed paraffin-embedded tissue sections. Pan-cytokeratin
was used to highlight the epithelium. DDR1 expression was localised to the malignant keratinocytes
and was detected in the majority of OPSCCs (95%, 53/56) of OPSCC tissues examined and the staining
was cytoplasmic and membraneous or predominantly membraneous (Figure 4A,B). The staining
pattern was similar in OSCCs (Figure S5) and DDR1 was expressed in 97% (41/42) of OSCCs examined.

For OPSCCs, univariate logistic regression analyses indicated that low DDR1 expression was
significantly associated with the low-risk-of-death group (p = 0.036; Table S1). In support of these data,
Kaplan–Meier survival analysis demonstrated that, in this small cohort (53 OPSCC cases with survival
data), patients with high DDR1 expression had a significantly worse survival outcome (p = 0.022)
compared to cases showing low expression (Figure 4C). Survival data were available for only 25 OSCC
cases, so meaningful comparisons were not possible.
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Figure 4. Expression of discoidin domain receptor 1 (DDR1) in oropharyngeal squamous cell
carcinoma (OPSCC). Tissues were multiplex-stained with pan-cytokeratin cocktail AE1/AE3 (Cy3, red)
and DDR1 (fluorescein, green) antibodies, plus 4′,6-diamidino-2-phenylindole (DAPI) (blue) nuclear
counterstain. DDR1 expression in OPSCCs was (A) cytoplasmic and membraneous or (B) membraneous.
Representative images are shown and were captured using Metamorph Pathology Imaging System (Nikon,
Tokyo, Japan; magnification ×60). Examples of DDR1 expression in oral squamous cell carcinoma tissues
are shown in Supplementary Figure S5. (C) High DDR1 expression in OPSCC patients was correlated with
worse survival. Patients with high DDR1 expression have a lower 5-year survival rate (33%) than that of
patients with low DDR1 expression (78%), log-rank (Mantel–Cox) (p = 0.022).
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2.3. Collagen Stimulates Proliferation and Migration and Suppresses the Response of HNSCC Cells to Cisplatin

Having shown that HNSCCs exist in a collagen-rich environment, we examined the effects of
exogenous type I collagen, which is frequently used as an activator of DDR1, on the behaviour of
HNSCC cell lines (SCC040, SCC154, VU040T and VU147T) using assays of cell growth, migration and
response to chemotherapy in vitro. To examine the effect of collagen on proliferation, cells were grown
in the absence and presence of collagen and cell growth measured by cell counting. The exogenous
addition of collagen significantly promoted the growth of all four cell lines compared to cells grown in
the absence of collagen (Figure 5A).Cancers 2019, 11, x 8 of 17 
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Figure 5. Collagen promoted the proliferation and migration of head and neck squamous cell carcinoma
(HNSCC) cells and suppressed the response to cisplatin. (A) Collagen significantly increased the
growth of the HNSCC cell lines, SCC040, SCC154, VU040T and VU147T. (B) Pre-treatment of cells
with collagen significantly enhanced the migration of cells through fibronectin-coated membranes.
(C) Cells pre-treated with collagen were significantly less sensitive to cisplatin, as determined by
Annexin V-FITC/Propidium Iodide staining following treatment with 50 µM cisplatin for 72 hours.
Results shown are mean +/− standard deviation values of triplicates. *, **, ***, **** denote p < 0.05,
p < 0.01, p < 0.001 and p < 0.0001 respectively.
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Transwell assays were used to investigate the effects of collagen on the migration of HNSCC cells.
The migration of the cells pre-treated with collagen was significantly higher than cells pre-treated with
gelatin or untreated controls (p < 0.001; Figure 5B).

Next, we examined whether collagen affected the response of VU040T and VU147T cells to
cisplatin. Cells were pre-treated with or without collagen or gelatin for 24 hours prior to treatment with
cisplatin. Apoptosis was measured by flow cytometric analysis of annexin V staining. Pre-treatment of
both VU040T and VU147T cells with collagen significantly suppressed apoptosis following treatment
with cisplatin compared to the controls (p < 0.01; Figure 5C).

2.4. The Effects of Collagen Are Mediated through DDR1 in HNSCC Cells

We next investigated the role of DDR1 in mediating the biological effects of collagen on HNSCC
cells. To do this, we generated cells that stably expressed short hairpin RNA (shRNA) targeting DDR1.
We transduced SCC040, SCC154, VU040T and VU147T cells with two different shRNAs or with a
non-targeting shRNA (NS) as a control. Reduced expression of both DDR1 mRNA and protein was
confirmed by RT-qPCR and Western blot analyses, respectively (Figure 6A and Figure S6).

Knockdown of DDR1 significantly inhibited the growth of VU040T and VU147T cells grown in
the presence of collagen (Figure 6B). Transwell assays were performed to determine the migratory and
invasive capabilities of VU040T and VU147T cells following DDR1 knockdown. DDR1 knockdown
significantly suppressed collagen-stimulated migration (p < 0.0001; Figure 6C) and significantly
inhibited invasion through matrigel-coated membranes (p < 0.0001; Figure 6D) in both cell lines.
Finally, we examined whether the effects of collagen on cisplatin sensitivity were mediated by
DDR1. Collagen pre-treatment significantly inhibited the cytotoxicity of cisplatin of NS control cells
(p < 0.001) and these effects were abolished in cells following DDR1 knockdown (p < 0.01; Figure 6E).
DDR1 knockdown resulted in similar effects in the absence of exogenous collagen, although these
effects were less marked, presumably due the effects of endogenous collagen production and autocrine
signalling (Figure S6). Taken together, these results demonstrate that the tumour-promoting effects of
collagen are mediated via DDR1.
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Figure 6. The effects of collagen are mediated by discoidin domain receptor 1 (DDR1). (A) Knockdown
of DDR1 following stable transduction of VU040 and VU147T cells with two independent short hairpin
RNAs. RT-qPCR showed a marked reduction in DDR1 mRNA (top panel) and total DDR1 protein levels
(bottom panel). The expression of DDR1 mRNA in NS (control) cells was normalized to 1. (B) Following
DDR1 knockdown, VU040 and VU147T cells grew slower compared to NS controls in the presence of
collagen. (C) Knockdown of DDR1 inhibited the migration of VU040T and VU147T cells pre-treated with
collagen in Transwell assays. (D) Knockdown of DDR1 inhibited the invasion of VU040T and VU147T cells
through matrigel-coated filters in Transwell assays. (E) The protective effects of collagen on cisplatin-induced
apoptosis were reversed following DDR1 knockdown. Results shown are mean +/- standard deviation
values of triplicates. *, **, *** denotes p < 0.05, p < 0.01 and p < 0.001 and p < 0.0001 respectively.
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3. Discussion

It is now recognised that proteins secreted from both carcinoma cells and the non-malignant
cells within the tumour microenvironment influence epithelial tumour development and progression.
Here, we showed that the expression of collagen is higher in HNSCC-derived CAFs than in normal
fibroblasts, although there was considerable heterogeneity in the expression of the individual collagen
subtypes between CAF strains. Our data support those of Lim and colleagues [12] who showed that
the expression of COL8A1 and COL11A1 were elevated in CAFs with a high percentage of senescent
cells compared to those with fewer senescent cells. Similar results were obtained in our study, although
we found that COL8A1 levels were also higher in some CAFs with a low percentage of senescent cells.
We further showed that COL8A1 and COL11A1 are expressed by some HNSCC cell lines and are
expressed by both tumour cells and CAFs in HNSCC tissues. Elevated COL11A1 expression in HNSCCs
and CAFs has been reported to enhance tumour cell proliferation, migration and invasion [13] and
elevated levels of COL11A1 are associated with the progression of carcinomas of different types [14].
There are only a limited number of studies that have investigated the role of COL8A1 in cancer,
but COL8A1 expression has been reported to be correlated with the progression and prognosis
of colon cancer [15] and knockdown of COL8A1 reduces invasion in hepatocarcinoma cells [16].
Interestingly, we showed that low expression of COL8A1 in OPSCC tumours and CAFs was significantly
associated with low risk of death (i.e., HPV-positive, non-smokers). Taken together, these data indicate
that HNSCCs are collagen-rich environments and that collagen is produced by HNSCC cells and CAFs,
which is likely to be relevant clinically. The significance of collagen in HNSCCs is further supported by
reports describing collagen fibre organisation and increased expression of COL3A1 in HNSCCs are
associated with poor prognosis [17,18].

To investigate possible mechanisms by which collagen could influence the pathogenesis of HNSCC,
we examined the expression of DDR1, a receptor tyrosine kinase that is specifically activated by
collagen. Our results showed that DDR1 mRNA and protein are over-expressed in both HPV-positive
and -negative HNSCCs compared to normal control tissues. Furthermore, in the present study,
DDR1 expression was detected in more than 90% of HNSCCs and high expression was associated with
a high risk of death from OPSCC and a worse survival outcome, although we acknowledge that our
patient cohort was small. Our data are supported by previous studies which showed high expression
of DDR1 is associated poor patient prognosis in lung [9], pancreatic [19] and gastric [20] cancers.

To explore the functional relevance of collagen in the pathogenesis of HNSCC, we treated HNSCC
cell lines (both HPV-positive and HPV-negative) with collagen and examined the effect on tumour
cell behaviour. Collagen stimulated the proliferation and migration of all cell lines examined in vitro,
results that are consistent with reports in other tumour types [8]. Knockdown of DDR1 with shRNAs
demonstrated that these effects were mediated by this receptor. Collagen activation of DDR1 also
attenuated the response of HNSCC cells to cisplatin, a chemotherapeutic drug used frequently to treat
patients. This is consistent with previous reports that showed that the inhibition of DDR1 can improve
the efficacy of chemotherapy in pancreatic ductal carcinoma [21] and that the ectopic expression of
DDR1 significantly increased the survival of lymphoma cells after chemotherapeutic drug treatment [22].
These results are important because the development of cisplatin resistance is a common cause of
treatment failure in HNSCC patients, particularly those with advanced disease [23,24]. Our data
suggest that the inhibition of DDR1 activation by collagens could be useful as a therapeutic strategy
and might enhance the therapeutic response to cisplatin. With regards to the suitability of DDR1 as
a therapeutic target, it is important to note that DDR1-null mice are viable, but these animals show
glomerular defects and exhibit a high incidence of osteoarthritis [25,26]. The role of DDR1 in normal
adult tissues is less well understood, but DDR1 is widely expressed in the epithelial cells of many
tissues and transcripts are also detectable at high levels in brain, lung, spleen and placenta [27].
Therefore, short-term use of DDR1 inhibitors or strategies to target DDR1 in tumour cells might be
required to limit toxicity.
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4. Materials and Methods

4.1. Cell Lines and Tissue Samples

A series of human oral fibroblasts cell lines that included normal human oral fibroblasts (NHOF4,
NHOF6, NHOF7) and human HNSCC CAFs (BICR3F, BICR31F, BICR59F, BICR63F, BICR66F, BICR69F,
BICR70F, BICR73F, BICR78F) were used. The derivation and culture of these fibroblast strains has been
described previously [12,28].

Four well-characterized human HNSCC cell lines were used. Of these, two were HPV negative
(SCC040, VU040T) and two were HPV type 16 positive (SCC154, VU147T). The culture of these lines
has been described previously [29,30].

Formalin-fixed paraffin embedded (FFPE) OPSCC samples (n = 56) were obtained from the
Institute of Head and Neck Studies and Education (InHANSE), Institute of Cancer and Genomic
Sciences, University of Birmingham, United Kingdom. The cases were divided into three groups with
regards to the risk of death (i.e., low, moderate and high), taking into consideration the tumour stage,
nodal status, pack years of tobacco smoking and HPV status [31]. FFPE OSCC samples (n = 44) were
obtained from the Malaysian Oral Cancer Database and Tissue Bank System (MOCDTBS) managed by
the Oral Cancer Research and Coordinating Centre (OCRCC), University of Malaya. Ethical approval
for this study was obtained for the use of OPSCCs (REC reference 10/H1210/9) and OSCCs (REC
reference: DF OB1602/0026(U)). Selected socio-demographic and clinico-pathological parameters of
the OPSCC and OSCC cases are shown in Tables S3 and S4, respectively.

4.2. RNA Sequencing and Bioinformatics

Total RNA was extracted from the fibroblast strains and, after rRNA removal and library preparation,
RNA sequencing (HiSeq 2000, Illumina, San Diego, CA, USA) was performed by BGI Tech Solutions (Hong
Kong) Co Ltd. Sequence reads were aligned to hg19 reference sequence using subread aligner and mapped
sequencing reads were assigned to hg19 refGene genes using featureCounts. RefGene exon coordinates
were obtained from the University of California Santa Cruz (UCSC) table browser. Gene symbol and
description was obtained from the NCBI gene database. The total number of mapped human sequence
reads were used for the calculation of counts per million (CPM) of human genes. Differentially-expressed
genes were identified using the voom-limma [32] method with the criteria of p-value < 0.05, absolute
fold change >1.5 and read count ≥10 in at least two samples. The primary data are available in the Gene
expression Omnibus database; accession number GSE135975).

A heatmap of relative collagen gene expression was produced using the gplots library in R.
Only collagen genes for which the average CPM was at least 1.0 across all samples were used.
CPM values for each relevant gene were first centred (at zero) and scaled (and capped at +/− 3).
The Euclidean distance measure was then used in conjunction with the Ward.D2 clustering algorithm.
For comparing average expression of the same genes across all samples, first the average CPM across
the three NHOF samples was calculated for each relevant gene. Then, for each sample the ratio of that
sample’s CPM to the average NHOF CPM was calculated for each relevant gene, and the average of
these values across all genes was taken. Finally, these values were converted to log(base2) scale.

For gene set enrichment analysis, GSEAv3.0 was used [33,34] in conjunction with the MSigDB
database of gene ontology terms (input table = “c5.bp.v6.2.symbols.gmt”) [35]. Genes were pre-ranked
according to sign of fold change divided by p-value taken from the differential expression analysis.
Default parameters were used except for “Enrichment statistic” which was set as “classic”.

4.3. Analysis of DDR1 Expression in the Cancer Genome Atlas HNSCC Data Set

Data from TCGA were downloaded using the “Data matrix” option within the TCGA data
portal [36]. Level 3 RNA sequencing data, based on the Illumina HiSeq 2000 RNA Sequencing platform
(Version 2; Illumina, San Diego, CA, USA), were downloaded along with all available clinical data in
the “Biotab” format. Tumour samples were categorized as either “HPV-negative” or “HPV-positive”
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according to the data item “HPV status” provided in TCGA’s clinical data. In total there were
400 HPV-negative tumour samples (282 male, 118 female) and 94 HPV-positive samples (84 male,
10 female) for which RNAseq data were also available. In addition, RNAseq data were available for 44
“normal” samples, 37 of which were matched to HPV-negative tumour samples and 6 to HPV-positive
tumour samples.

The RNAseq files labelled “rsem.genes.results” contained unnormalised read counts for over
20,000 genes. Read counts were normalised between samples and converted to CPM reads for each
gene using the edgeR package [37] in R [38]. Differential expression analysis was also performed using
edgeR. A significance level of 5% was used in all statistical tests.

4.4. Western Blotting

Cells were lysed in ice-cold NP40 lysis buffer (150mM NaCl, 1% IGEPAL®CA-630, 50mM Tris-HCl
(pH 8.0)) containing protease inhibitors (cocktail set III; Calbiochem, Merck Millipore, Darmstadt,
Germany) and phosphatase inhibitors (Halt phosphatase inhibitor cocktail; Thermo Scientific, Waltham,
USA). The primary antibodies used in this study were anti-DDR1 (DIG6 XP; 1:1000; Cell Signaling
Technology, Danvers, MA, USA) and anti-GAPDH (ab371681; 1:1000; Abcam, Cambridge, UK).
Bound antibodies were detected with peroxidase conjugated secondary antibodies and enhanced
chemiluminescence reagents (Advansta, Menlo Park, CA, USA). Signal intensities were measured
using ImageJ software.

4.5. Immunohistochemistry

Immunohistochemistry (IHC) was performed using standard protocols. For chromogenic detection
of DDR1, DAKO REAL EnVision Detection was used (Dako, Agilent Technologies, Santa Clara, CA,
USA). Multiplex immunofluorescence (IF) was performed using Opal 7-Plex Kit (NEL791001KT;
Perkin-Elmer, Waltham, MA, USA). For antibody stripping between each step, slides were microwaved
in pH6 citrate buffer, with controls omitting individual antibody steps to ensure adequate stripping.
The primary antibodies used were anti-DDR1 (DIG6 XP, 1:1000; Cell Signaling Technology, Danvers,
MA, USA), anti-pan-cytokeratin AE1/AE3 (CK AE1/ AE3, 1:1000; Dako, Agilent Technologies, Santa
Clara, CA USA), anti-α-SMA (1:1000; Dako, Agilent Technologies, Santa Clara, CA, USA), anti-collagen
VIII alpha 1 (COL8A1, 1:200; Sigma-Aldrich, St Louis, MO, USA) and anti-collagen XI alpha 1 (COL11A1,
1:200; Sigma-Aldrich, St Louis, MO, USA). Validation of the specificity of the DDR1 antibody is shown
in Figure S7.

Multiplex fluorescent staining on tissue sections was quantitatively evaluated using Metamorph
Microscopy Automation and Image Analysis software (Molecular Device LLC, San Jose, CA, USA).
The area and co-localised integrated intensity of dual fluorescent probes were measured quantitatively
for the degree of overlap. The total staining intensity, average intensity and maximum and minimum
intensities were obtained by region statistics and region measurements. Means from random five fields
were used in analyses for each case.

4.6. Cell Proliferation Assays

1 × 105 cells per dish were seeded into 60 mm dishes in triplicate. Media were changed every
4 days over a period of 14 days. To examine the effect of collagen, the cells were treated with
100 µg/mL of collagen (Merck Millipore, Darmstadt, Germany) and cell numbers determined at 4-day
intervals by trypsinisation and cell counting using a Luna Automated Cell Counter (Logos Biosystems,
Gyeonggi-do, Korea).

4.7. Transwell Migration and Invasion Assays

Cells were grown in 75 cm2 flasks to reach 80% confluence and incubated with or without
collagen (Merck Millipore, Darmstadt, Germany) or gelatin (Sigma-Aldrich, St Louis, MO, USA) for
24 hours. Prior to use, the cells were treated with a final concentration of 10 µg/mL mitomycin C
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(Merck Millipore, Darmstadt, Germany) at 37 ◦C for 2 hours to negate the effects of cell proliferation.
Polycarbonate inserts of 8 µm pore size (Transwell, Corning, Cambridge, MA, USA) in 24-well plates
were coated with 200 µL of 10 µg/mL fibronectin (Thermo Scientific, Waltham, USA) at 37 ◦C for
2 hours prior to use. 1 × 106 cells in 200 µL medium were seeded into the upper chambers and 500 µL
of medium enriched with 20% FBS was loaded into the lower chamber. Migrated cells were stained
with 0.1% crystal violet and counted in five random fields. For invasion assays, pre-coated invasion
chambers (Corning Matrigel Invasion Chamber, 8 µm pore size, Corning, Cambridge, MA, USA) were
used and cells allowed to invade for 48 h.

4.8. Annexin V-FITC/ Propidium Iodide (PI) Apoptosis Assays

Cells treated with Cisplatin (Tocris Bioscience, Minneapolis, MN, USA) with or without collagen
(Merck Millipore, Darmstadt, Germany) pre-treatment were collected using Accutase Cell Detachment
Reagent (BD Biosciences, San Jose, CA, USA) together with the dead cells in the medium. Apoptosis was
examined using an Annexin V: FITC apoptosis detection kit (BD Biosciences, San Jose, CA, USA).The
cells were stained with Annexin V-FITC and Propidium Iodide (PI) and analysed using a BD FACS
Canto II Flowcytometer (BD Biosciences, San Jose, CA, USA). Apoptosis was quantified by expressing
the total number of cells in early (Q2) and late (Q4) apoptosis as a percentage of the total number of
cells (Q1–Q4).

4.9. Reverse Transcription-Quantitative PCR (RT-qPCR)

Total RNA was extracted using an RNeasy Mini Kit (Qiagen, Hilden, Germany) and subjected
to reverse transcription using High-Capacity cDNA Reverse Transcription kit (Applied Biosystems,
Foster City, CA, USA). Q-PCR was performed in triplicate using the ABI Prism 7000 Sequence
Detection System and TaqMan Gene Expression Assays (Applied Biosystems, Foster City, CA,
USA; COLVIIIa1; Hs00156669_m1: COLXIa1; Hs01097664_m1: DDR1; Hs01058430_m1: GAPDH;
4326317E). GAPDH was amplified in the same reaction to serve as an internal control for normalization.
Fold changes in gene expression were measured using the comparative threshold cycle method (∆∆Ct).

4.10. Knockdown of DDR1

Two DDR1 shRNA lentiviral plasmids (pLKO.1/shDDR1_10084, pLKO.1/shDDR_1121293) and the
non-targeting (control) shRNA (pLKO.1/NS) were obtained from Sigma Aldrich (Sigma-Aldrich,
St Louis, MO, USA). Briefly, 293T cells were transfected with the lentiviral construct using
polyethylenimine together with the packaging plasmid (psPAX2) and envelope plasmid (pMDG2).
After 48 hours the cells were incubated with viral supernatants containing polybrene (8 µg/mL) for
18 hours. The virus-containing media were then removed and the cells cultured in Roswell Park
Memorial Institute (RPMI) 1640/10% fetal bovine serum for an additional 48 hours before selection
with 2 µg/mL puromycin.

4.11. Statistical Analyses

Apart from the bioinformatics analyses described separately, all the statistical analyses were
carried out using GraphPad PRISM 5.0 software (GraphPad Software, San Diego, CA, USA) and
SPSS version 22. Statistical analysis for the IHC was undertaken by categorizing the means of
final immunoreactive scores into 2 groups. The cut-off points for these groupings were derived
based on the optimal sensitivity and specificity obtained from receiver operating characteristic (ROC)
curve analyses. The associations between the expression of COL8A1, COL11A1 and DDR1 with
selected clinico-pathological parameters were analysed using univariate and multivariate logistic
regression. Survival curves were plotted using the Kaplan–Meier analysis to correlate survival
with DDR1 expression and the survival probability differences were compared by log-rank tests.
Differences between groups were evaluated by ANOVA, followed by the Dunnett’s test for post hoc
analysis. p-values less than 0.05 were considered to be statistically significant.
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5. Conclusions

In summary, we report for the first time that DDR1 is over-expressed in HNSCCs and is likely
to be activated in vivo by collagen produced by tumour cells and CAFs to promote tumorigenesis
and chemotherapy resistance. Selective inhibitors of DDR1 are being developed and show efficacy in
preclinical models of fibrosis and cancer [21,39,40]. Our data suggest that inhibition of collagen-induced
DDR1 activity could represent a novel therapeutic strategy for the treatment of HNSCC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/11/1766/s1,
Figure S1: Expression of collagen in NHOFs and CAFs, Figure S2: Expression of COL8A1 and COL11A1 in
OSCC, Figure S3: Figure 3A full blot, Figure S4: Expression of DDR1 in HNSCC cell lines and non-malignant
keratinocytes, Figure S5: Expression of DDR1 in OSCC, Figure S6: Effect of DDR1 knockdown on cell proliferation,
migration and response to cisplatin, Figure S7: Validation of the specificity of the antibody against DDR1, Table
S1: Association between DDR1 and COL8A1 protein expression with OPSCC risk of death groups, Table S2:
Overexpression of DDR1 in HNSCC, Table S3: Socio-demographic and clinico-pathological characteristics of
OPSCC cases, and Table S4: Socio-demographic and clinico-pathological characteristics of OSCC cases.
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