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A B S T R A C T   

Adprhl2 (OMIM: 610624) mutation associated stress-induced childhood-onset neurodegeneration 
with variable ataxia and seizures (CONDSIAS, OMIM: 618170) is a sporadic neurodegenerative 
disease with poor prognosis. ADPRHL2 encodes ADP-ribosylhydrolase 3 (ARH3), which partici-
pates in ADP-ribosylation to remove poly-ADP ribose (PAR). We found a new compound het-
erozygous mutation in the ADPRHL2 gene c.580C > T (p.Gln194Ter) and c.803-1G > A in a 30- 
month-old boy, who showed gait instability, abnormal EEG, and developmental delay after res-
piratory infection. He died of convulsions 4 months after onset. By constructing a mutant plasmid 
and using Western blot to detect the expression of ARH3 and PAR, it was demonstrated that the 
ADPRHL2 gene c.580C > T (p.Gln194Ter) and c.803-1G > A is pathogenic according to ACMG 
guidelines.   

1. Introduction 

CONDSIAS is caused by a mutation in the ADPRHL2 gene (OMIM: 6106240). The main clinical manifestations include gait ab-
normalities, ataxia, epilepsy, and neurological degeneration [1]. The ADPRHL2 gene is located on chromosome 1p34.3 and encodes 
ADP-ribosylated hydrolase protein 3 (ARH3). ARH3 plays a role in DNA damage repair by primarily engaging in ADP-ribosylation, a 
reversible post-translational modification of proteins crucial for preserving genome integrity and facilitating the repair of DNA damage 
in cells [2–5]. Poly ADP ribose polymerase 1 (PARP1) modifies proteins by chains of repeating ADP-ribose units that are referred to as 
poly(ADP-ribose) (PAR). PARP1 enzymatic activity is activated explicitly by binding to DNA breaks, which promotes timely DNA 
repair [6]. However, the excessive migration of PAR to the cytoplasm triggers mitochondrial-dependent PAR binding to the 
apoptosis-inducing factor (AIF) PAR binding site, releasing AIF from mitochondria into the nucleus, leading to DNA breakage and cell 
death [7,8]. In mammals, two enzymes can reverse PARylation, namely ARH3 and poly ADP ribose glycohydrolase (PARG). PARG has 
both exonuclease and endonuclease activities, acting on the terminal and internal sites of PAR, respectively, and can hydrolyze ADP 
ribose long chains. ARH3 has the crucial function of removing mono-ADP ribose units from proteins at the serine site, which PARG 

* Corresponding author. 
** Corresponding author. 

E-mail addresses: caixiaofang72@163.com (X. Cai), bloveriver@163.com (D. Sun).   
1 co-First authors. 

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2024.e32945 
Received 19 March 2024; Received in revised form 12 June 2024; Accepted 12 June 2024   

mailto:caixiaofang72@163.com
mailto:bloveriver@163.com
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e32945
https://doi.org/10.1016/j.heliyon.2024.e32945
https://doi.org/10.1016/j.heliyon.2024.e32945
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 10 (2024) e32945

2

does not have [9]. ARH3 knockout cells survived well under non-stress conditions. However, after DNA damage induced by hydrogen 
peroxide (H2O2), these cells exhibited an accumulation of PAR. Therefore, ARH3 is a critical enzyme in DNA damage repair, which 
controls the PAR content and determines the cell fate during the reaction [7,10]. 

Our previous study first reported CONDSIAS induced by compound heterozygous variants in the ADPRS gene. A two-and-a-half- 
year-old male patient exhibited gait instability after a respiratory tract infection, rendering him incapable of autonomous ambula-
tion. Neurological assessment unveiled acute cerebellar ataxia, aberrant EEG readings, and a marginally expanded cerebellar fissure on 
cerebral MRI imaging. Notably, the cerebrospinal fluid glucose test yielded a positive result. Laboratory analysis indicated diminished 
levels of thyroid-stimulating hormone alongside elevated plasma lactate and serum creatine kinase concentrations. Tragically, four 
months post-onset, the boy succumbed to sudden seizures. Through comprehensive next-generation sequencing, we discerned two 
novel compound heterozygous ADPRS variants: c.580C > T (p.Gln194Ter) and c.803-1G > A (referred to as 580 and 803 hereafter). 
RNA-seq implicated the 580 mutation in potential nonsense-mediated mRNA decay. Conversely, the 803 variant emerged as a splice 
site mutation, precipitating intron 5 retention. This investigation aims to delve deeper into the functional ramifications of these two 
variants. 

2. Methods 

2.1. Western blot analysis 

Mutant sites were introduced into the pcDNA3.1 plasmid via homologous recombination, amplified, and subsequently transfected 
into HEK293 cells for expression. Cell lysates from HEK293 cells were subjected to SDS-PAGE analysis. The separated peptides were 
transferred onto a PVDF membrane (Millipore, USA), followed by Western blotting using a standard protocol. Immunoreactive pro-
teins were visualized using an enhanced chemiluminescence (ECL) reagent kit (Powerful Biology, China). 

2.2. Statistical analysis 

Grayscale values of protein bands were quantified using ImageJ software. Each protein band recorded the values of three sites. 
Statistical analyses were performed using SPSS version 23.0. Group comparisons were conducted using t-tests, with significance set at 
p < 0.05. 

3. Results 

3.1. Expression of ARH3 with different mutations in ADPRHL2 

To investigate the effect of 580 and 803 mutations in ADPRHL2 on ARH3 expression, we constructed 580 mutant (580), 803 mutant 
(803), 580 + 803 mutant (580 + 803) and wild-type (WT) plasmids were transfected into 293T cells. After 48h by transient trans-
fection, total cellular proteins were extracted from cells cultured under conditions of 37 ◦C and 5 % CO2. The intracellular expression 
levels of mutant and wild-type ARH3 were detected by Western blotting(WB)(All antibodies were sourced from literature [11]). Since 
the ADPRHL2 is expressed in multiple cells throughout the body [10], a group of 293T cells was not transfected with the plasmid 
(control). The WT was transfected with ADPRHL2 plasmid expression, which was equivalent to overexpression of ARH3. The control 
group still had a trace expression of ARH3, while the WT group overexpressed ARH3 protein, and the expression level was very 
significant. The expression levels of ARH3 in 580 and 803 decreased, while the expression levels of concurrent mutations (580 + 803) 
were almost similar to 580. A significant difference was observed in the total protein expression of ARH3 between the WT and 
ADPRHL2 mutant (580, 803) groups (p < 0.01). There was also a significant difference in the total protein expression of ARH3 between 
580 and 803 (p < 0.01). The ADPRHL2 gene 580, 803 mutation affected the expression of ARH3 in 293T cells (Fig. 1). 

3.2. Expression of ARH3 with different mutations in ADPRHL2 under H2O2 stress 

Furthermore, to investigate the function of ARH3 under exogenous stress conditions, we treated cells with 2 mM H2O2, a known 

Fig. 1. WB results of wild type and mutant ARH3 protein(****p < 0.01). The expression of ADPRHL2 in control, wild type (WT), 580, 803 and 
double variant (580 + 803). 
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inducer of oxidative stress, for 10 min. Total ARH3 expression showed a significant difference between the WT + H2O2 group and the 
ADPRHL2 mutant (580+ H2O2, 803+ H2O2) group (p < 0.01), as well as between the 580 and 803 groups (p < 0.01). Compared to the 
groups without H2O2, ARH3 protein expression was increased in the control (control + H2O2), wild type (WT + H2O2) and mutant 
(580+ H2O2, 803+ H2O2) groups under a short duration oxidative stress condition of 10 min (Fig. 2). 

We further investigate the effect of 580 and 803 mutations in ADPRHL2 on PAR expression, with cells treated with DMSO for 8 
days. The 580 expressed increased amounts of PAR compared to the WT. However, The intracellular expression levels of total PAR in 
the WT and 580 groups showed no significant difference (p > 0.05), and the interference of other hydrolytic enzymes could not be 
excluded. The 803 expressed a reduced amount of PAR compared to the WT, with a significant difference in PAR expression between 
WT and 803 (p < 0.01). The 803 variant did not affect the ARH3 structure and could still partially express ARH3 hydrolyzed PAR; 
normally, the expression was decreased. Additionally, a significant difference in total PAR expression was observed between 580 and 
803 (p < 0.01).The ADPRHL2 gene 580, 803 mutations affected PAR expression in 293T cells expression (Fig. 3). 

Humans have two genes that encode specific PAR-degrading enzymes: ADPRHL2 and PARG [10,12]. While PARG exhibits higher 
hydrolytic activity against long PAR chains in vitro, ARH3 is also capable of removing PAR, albeit with lower efficiency [9]. To 
investigate whether these two enzymes collaborate in regulating cellular PARylation levels, all groups of cells were treated with the 
PARG inhibitor (PARGi). The cells were either treated with DMSO for 8 days or with 25 mM PARGi for the specified duration [13]. 
After the addition of PARGi, the expression levels of PAR in all groups decreased compared to Fig. 2, but the overall expression trend 
remained the same. It can be considered that ARH3 showed more significant activity in hydrolyzing PAR than PARG. The degree of 
functional differentiation or fusion between the ARH3 protein encoded by the ADPRHL2 gene and the PARG protein encoded by the 
PARG gene is still unclear [7]. A significant difference was observed in the total protein expression of PAR between WT + PARGi and 
803+PARGi (p < 0.01), as well as between WT + PARGi and 580+PARGi. Additionally, there was a significant difference in the total 
protein expression of PAR between 580+PARGi and 803+PARGi (p < 0.01) (Fig. 4). 

4. Discussion 

The disease associated with the ADPRHL2 gene is a newly discovered neurodegenerative disorder in recent years, characterized by 
variable ataxia and seizures [1]. In the report, the majority of patients come from families married to close relatives. CONDSIAS 
patients are born normally and develop symptoms after infection, mainly in infancy and adolescence, with a rapidly progressing course 
that worsens with each infection or stress. The mortality rate is high, and deaths are often caused by respiratory failure after infection, 
sudden death during sleep, and asphyxia caused by seizures. At present, the reported clinical phenotypes include motor and language 
lag or regression, gait abnormalities, ataxia, seizures, organ abnormalities (such as head, spine, eyes, heart, etc.), gastrointestinal 
reactions, etc [14]. In terms of auxiliary examination, the more characteristic changes are brain MRI and neuroelectrophysiological 
examination. Brain MRI often indicates cerebellar atrophy, and a few cases of combined cerebral cortex or spinal cord atrophy exist. 
Electromyography or muscle histology examination shows damage to the myelin sheath and/or axon of peripheral nerve sensory and 
motor fibers. The current reported genotypes are all homozygous mutations. The patient has a typical clinical phenotype of CONDSIAS, 
which is consistent with the gene mutation. Due to the acute course of the disease after onset and seeking medical attention, cerebellar 
atrophy and peripheral nerve damage have not been found yet. Durmus et al. [15] proposed a novel biallelic mutation in the ADPRHL2, 
c.838G > A (p.Ala280Thr), causing ataxia, motor neuropathy with pyramidal signs, Episodic psychosis, with a focus on episodic 
psychobehavioral abnormalities that need to be distinguished from this. Other articles have reported mutations in the ADPRHL2 
leading to CONDSIAS, but there are no reports of 580 and 803 mutation sites [16–19]. 

In previous reports, both 580 and 803 were confirmed to be pathogenic mutations through RNA-seq [20]. In this experiment, the 
aim was to verify the pathogenicity of mutations at protein expression levels. This study transfected 293T cells with plasmids con-
taining 580 mutant, 803 mutant, and 580 + 803 mutant, respectively, to compare the expression levels of ARH3. Due to the expression 
of ARH3 in various human cells, overexpression of ARH3 serves as a wild-type control. The results showed that the expression levels of 
580 mutant and 803 mutant were lower than those of the wild-type, with statistical differences. There was also a statistical difference 
in ARH3 expression between the 580 mutant and the 803 mutant, suggesting that the 580 mutation disrupts the protein results and is 
more pathogenic than the 803 (Fig. 1). Due to the unreported heterozygous mutation in the patient, a plasmid transfection expression 
was constructed with simultaneous mutations at two sites. The results showed that the expression level of ARH3 at both sites was 
almost the same as that at 580. Since the 580 mutation caused glutamine to become a termination codon, transcription was terminated 

Fig. 2. WB results of wild type and mutant ARH3 protein (post H2O2 stress) (****p < 0.01). After exposure to H2O2 stress, the expression of 
ADPRHL2 in control, wild type (WT), 580, 803, and double variant (580 + 803). 
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prematurely, and expression could not proceed to position 803. CONDSIAS often develops under conditions such as infection or stress. 
Therefore, we cultured well-expressed cells in 2 mM H2O2 for 10 min. The results showed that the expression levels in the 803 mutant 
group and the wild-type group increased compared to before. Considering that ARH3 reactivity may increase after experiencing short 
periods of stress, 580 affects the ARH3 structure and cannot continue to express (Fig. 2). In previous studies, it has been demonstrated 
that ARH3 exhibits a protective effect against H2O2-induced cell death. This could explain the observed increase in ARH3 protein 
expression following H2O2 treatment [21,22]. 

ARH3 is an ADP ribohydrolase that hydrolyzes PAR and completes DNA repair. If ARH3 expression decreases, the PAR expression 
will increase. Therefore, the expression levels of PAR were compared between 580 mutant, 803 mutant, and wild-type. The results 
indicated an increase in the expression level of the 580 mutant and a decrease in the expression level of the 803 mutant. However, there 
was statistical significance between the expression level and the wild-type. c. 803-1G > A did not affect the structure of ARH3 and can 
still partially express ARH3 hydrolyzed PAR normally, resulting in a decrease in expression level. After experiencing oxidative stress, 
PAR cannot be hydrolyzed and accumulates, resulting in cell death. After culturing in 2 mM H2O2 for 10 min, the expression of PAR in 
293T cells as a control group increased, while wild-type and c.580C > T mutant decreased in response to increased ARH3 reactivity 
(Figs. 3 and 4). 

The functional divergence or convergence between ADPRHL2 and PARG is not well understood, partly due to a lack of detailed 
comparative expression analysis and biochemical function studies. Both ARH3 and PARG play a critical role in safeguarding the cell 
from excessive PARylation, with ARH3 responsible for removing initial serine-ADPr attachments and PARG for hydrolyzing their 
elongation products [11]. In other experiments, PARG has shown a more pronounced specific activity than ARH3 in removing PAR 
from proteins [10], and the loss of PARG in mice results in embryonic lethality [23]. However, in our experiments, PAR expression 
decreased in all groups after the addition of PARGi inhibitors compared to the previous ones, and it could be assumed that ARH3 
exhibits more significant activity compared to PARG in hydrolyzing PAR. 

Our research has identified that the mutation 803 may lead to two abnormal splicing events, resulting in a 1-bp deletion in exon 6 
and 321-bp retention in intron 5, ultimately causing premature termination of the protein due to frameshift. The proteins resulting 
from these two abnormal splicing events were not detected in our analysis of the mutated protein, possibly due to our gel electro-
phoresis resolution not being sufficient to distinguish proteins of similar sizes. 

This study demonstrates that mutations such as 580 (p.Gln194Ter) and 803 have an impact on ADPRHL2 signal transduction and 
the expression of ARH3 and PAR, thus proving to be pathogenic mutations in this child. However, due to time and technical reasons, 
the failure to construct ARH3 knockout 293T cells may have an impact on the experimental results. This study is only conducted at the 
cellular level, and animal models can also be established for experimental verification of new genes or novel mutations in genes. 

Ethics Statement 

The research involving human participants underwent a comprehensive review and received approval from the Ethics Committee 
of Wuhan Children’s Hospital (2021R185-E01). Written consent for participation was obtained from the legal guardians or relatives of 

Fig. 3. WB results of wild type and mutant PAR protein(****p < 0.01). The expression of PAR in control, wild type (WT), 580, and 803.  

Fig. 4. WB results of wild type and mutant PAR protein (add PARG inhibitor) (****p < 0.01). After treatment with PARGi, the expression of 
ADPRHL2 in control, wild type (WT), 580, and 803. 
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