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Abstract: Immune complexes containing citrullinated fibrinogen are present in the sera and synovium
of rheumatoid arthritis patients and potentially contribute to synovitis. However, fibrinogen can
inhibit the osteoclastogenesis of precursor cells. We investigated the direct effect of citrullinated
fibrinogen on osteoclastogenesis to understand the role of citrullination on bone erosion of rheumatoid
arthritis patients. We evaluated the fibrinogen citrullination sites using mass spectrometry and quantified
osteoclast-related protein and gene expression levels by Western blotting, microarray, and real-time
polymerase chain reaction. Differences in spectral peaks were noted between fibrinogen and citrullinated
fibrinogen at five sites in α-chains, two sites in β-chains, and one site in a γ-chain. Transcriptome
changes induced by fibrinogen and citrullinated fibrinogen were identified and differentially expressed
genes grouped into three distinctive modules. Fibrinogen was then citrullinated in vitro using
peptidylarginine deiminase. When increasing doses of soluble fibrinogen and citrullinated fibrinogen
were applied to human CD14+ monocytes, citrullination restored osteoclastogenesis-associated
changes, including NF-ATc1 and ß3-integrin. Finally, citrullination rescued the number of osteoclasts
by restoring fibrinogen-induced suppression of osteoclastogenesis. Taken together, the results indicate
that the inhibitory function of fibrinogen on osteoclastogenesis is reversed by citrullination and suggest
that citrullinated fibrinogen may contribute to erosive bone destruction in rheumatoid arthritis.

Keywords: citrullinated fibrinogen; osteoclastogenesis; rheumatoid arthritis

1. Introduction

Fibrinogen is a 340 kDa triglobular glycoprotein produced in the liver and comprising pairs of α, β,
and γ chains linked by disulfide bonds [1–3]. Fibrinogen has a bifunctional domain structure and plays
an important role not only in the blood coagulation system, but also in inflammation and tissue repair [3].
As part of the pro-inflammatory response, fibrinogen induces phagocyte recruitment via interaction
with complement receptors (CD11b/CD18) and Toll-like receptor 4 (TLR4) [4]. A conformational change
in fibrinogen has been shown to regulate the CD11b/CD18 receptor-binding site at the γ C-terminal
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end [5]. Based on a previous study, fibrinogen has an osteoprotective effect on bone and osteoclast
precursor cells [6]. Specifically, fibrinogen binding to CD11b/CD18 results in strong inhibition of
osteoclastogenesis induced by the receptor activator of nuclear factor kappa-B ligand (RANKL).

The pathogenesis of rheumatoid arthritis (RA) involves chronic inflammation accompanied by
bone erosion in synovial joints. The presence of anti-citrullinated protein/peptide antibodies (ACPAs) is
associated with the severity and prognosis of RA, and both in vitro and in vivo studies have shown that
ACPAs contribute to bone destruction [7,8]. The targets of these ACPAs include post-translationally
modified proteins in which the amino acid arginine is deiminated by the enzyme peptidylarginine
deiminase (PAD) to form citrulline [9]. The epitopes of various target proteins, such as fibrinogen,
fibronectin, collagen, and enolase, are citrullinated within the synovium of RA patients [10,11]. Among
the citrullinated proteins, fibrinogen is predominant and detected as a circulated antigen [12–15].
Several studies have described citrullination of human fibrinogen at multiple sites, mainly by human
PAD isoforms (PAD2 and PAD4), but also by rabbit skeletal muscle PAD (PAD2) [3,16,17]. The classical
role of fibrinogen as an autoantigen of ACPAs has been studied, but not its direct effect on bone. Based on
our previous research of the negative effect of fibrinogen on osteoclast formation, we hypothesized that
citrullinated fibrinogen can function as an arthritogenic protein in RA and, in contrast to fibrinogen,
promote bone destruction.

2. Materials and Methods

2.1. Preparation of Human Synovial Fluid

Synovial fluid samples were obtained from patients with RA (n = 5) or osteoarthritis (OA,
n = 5) at Seoul National University Hospital. All RA patients fulfilled the 2010 American College of
Rheumatology/European League against Rheumatism classification criteria for RA [18]. The synovial
fluid samples were diluted 1:3 in Tris-buffered saline and sonicated for analysis.

2.2. Mapping of Fibrinogen Citrullination

2.2.1. Fibrinogen Separation

The fibrinogen and citrullinated fibrinogen solutions containing 0.1 M dithiothreitol (DTT) were
centrifuged at 9000 rpm for 20 min using an Amicon Ultra device (Millipore, Billerica, MA, USA).
We added 6 M urea and centrifuged the solutions again three times. We performed isoelectric focusing
(IEF) using a 7-cm immobilized pH gradient (IPG) strip (pH 5–8, nonlinear gradient; Bio-Rad, Hercules,
CA, USA) and a Protean IEF Cell (Bio-Rad). Fibrinogen (50 µg) was mixed with lysis buffer (6 M
urea, 2 M thiourea, 50 mM DTT, 2% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate,
0.5% Triton X-100, 40 mM Tris, 0.2% Bio-lyte 3/10 ampholyte; Bio-Rad) to a total volume of 130 µL and
loaded onto the IPG strip. After active rehydration (50 V, 15 h), proteins were focused at 10 kV for a total
voltage of 60 kV. The IPG strip was placed in equilibration solution (6 M urea, 2% SDS, 0.375 M Tris-HCl,
pH 8.8, 20% glycerol, 130 mM DTT) for 10 min and then transferred twice to another equilibration
solution that did not contain DTT. Two-dimensional SDS-polyacrylamide gel electrophoresis was
carried out with a 10% acrylamide gel using a Mini-Protean 3 Cell system (Bio-Rad) running a suitable
buffer (25 mM Tris, 192 mM glycine, 0.1% SDS). The gel was stained with Coomassie Brilliant Blue
R-250 (Bio-Rad).

2.2.2. In-Gel Digestion

The spots excised from the gel were washed with 50 mM ammonium bicarbonate for 5 min,
and then with 50 mM ammonium bicarbonate/100% acetonitrile (1:1) for 20 min. The liquid was
discarded and washing repeated. The gel pieces were shrunk by dehydration in acetonitrile for 3 min,
dried in a SpeedVac concentrator (Thermo Scientific, Rockford, IL, USA), swollen in 10 µL of 25 mM
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ammonium bicarbonate buffer containing 10 µg/mL trypsin (Sigma-Aldrich, St. Louis, MO, USA), and
incubated overnight at 37 ◦C.

2.2.3. In-Solution Digestion and Modification with Phenylglyoxal Monohydrate (PGM)

Fibrinogen was dissolved in deimination buffer (80 mM Tris-HCl, pH 7.6, 8 mM CaCl2, 4 mM DTT)
to a concentration of 1 mg/mL. Citrullinated fibrinogen was digested by trypsin at 37 ◦C overnight,
and we mixed 10 µL of the digested solution with 30 µL of trifluoroacetic acid (Sigma-Aldrich).
Next, we added 10 µL of 50 mM PGM (Sigma-Aldrich) and left the mixture to act at 37 ◦C for 3 h.
The reaction mixture was dried in a SpeedVac concentrator and resuspended in 10 µL of distilled
water. Subsequently, we purified the modified peptides for mass spectrometric analysis using Ziptip
(Millipore, Watford, UK).

2.2.4. Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) Mass
Spectrometry (MS)

We mixed 1 µL of the sample with 1 µL of matrix solution (10 mg of α-cyano-4-hydroxycinnamic
acid, from Sigma-Aldrich; 0.1% trifluoroacetic acid in 1 mL of acetonitrile/distilled water, 7:3, v/v) and
loaded 1 µL of the mixture onto the plate. After drying under vacuum, MALDI mass spectra were
obtained using an Autoflex α MALDI-TOF mass spectrometer (Bruker Daltonics, Bremen, Germany).

2.3. In Vitro Citrullination of Fibrinogen

To obtain citrullinated fibrinogen, bovine fibrinogen (Sigma-Aldrich) and human fibrinogen
(Sigma-Aldrich) were each solubilized in phosphate-buffered saline (1 mg/mL) and citrullinated in vitro
using either PAD2 (2U; Sigma-Aldrich) or human recombinant PAD4 (PAD4; 2U; ModiQuest Research,
Nijmegen, The Netherlands). The reaction mixtures were incubated at 37 ◦C for 2 h [19].

2.4. Cell Culture and Osteoclast Differentiation

Peripheral blood mononuclear cells (PBMCs) were isolated from healthy donors and the buffy coat
separated using Ficoll-Paque (GE Healthcare, Little Chalfont, United Kingdom). CD14+ monocytes
were selected using beads, as recommended by the manufacturer (Miltenyi Biotec, Bergisch Gladbach,
Germany). Monocytes were cultured with 20 ng/mL macrophage colony-stimulating factor (M-CSF;
Sigma-Aldrich) for 1 day in Minimum Essential Medium Eagle—Alpha Modification (α-MEM; Gibco,
BRL, Breda, the Netherlands). Monocyte-derived osteoclast precursor cells were plated in 96-well plates
at a cell density of 1 × 106 cells per well. The precursor cells were cultured for an additional 5 days,
with cytokines M-CSF and RANKL (40 ng/mL; Peprotech, Rocky Hill, NJ, USA) being replenished
every other day. M-CSF and RANKL were supplemented in the control cells. On day 6, cells were
fixed and stained for the tartrate-resistant acid phosphatase (TRAP) assay as recommended by the
manufacturer (TRAP kit, Sigma-Aldrich).

2.5. Western Blot Analysis

On day 7, protein was extracted from cells using Mammalian Protein Extraction Reagent
(Thermo Scientific) according to the manufacturer’s instructions. Protein samples were resolved
using the iBlot 2 Dry Blotting System (Life Technologies, Carlsbad, CA, USA). Membranes were treated
with the following primary antibodies: anti-NF-ATc1 (Santa Cruz Biotechnology, Santa Cruz, CA,
USA), anti-β3-integrin (Cell Signaling Technology, Danvers, MA, USA), anti-GAPDH (Santa Cruz
Biotechnology), and anti-citrullinated fibrinogen (ModiQuest Research). The membranes were then
treated with the corresponding secondary antibodies. Detection was performed using the Luminata
Forte Western HRP Substrate (Millipore).
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2.6. Immunoprecipitation

For protein sample preparation, RA (n = 2) and OA (n = 2) synovial fluids were digested
with 2 µg/mL hyaluronidase (Sigma-Aldrich) and centrifuged at 15,000 rpm for 15 min at 4 ◦C.
Anti-fibrinogen antibody (Abcam, Cambridge, UK) was added to synovial fluid samples and incubated
overnight at 4 ◦C. They were immunoprecipitated over 2 h at 4 ◦C with protein G (Roche, Basel,
Switzerland) and centrifugated. SDS-PAGE sample buffer was added to the beads and heated for
10 min at 95 ◦C. Then, the supernatants were collected after centrifugation and immunoblotted with
anti-modified citrulline antibody (Sigma-Aldrich).

2.7. Bone Resorption Assay

Bone resorption activity was determined using the OsteoLyse assay kit (Lonza, Allendale, NJ,
USA) according to the manufacturer’s protocol. Briefly, human CD14+ monocytes were cultured on a
calcium phosphate-coated 96-well plate (5 × 104 cells/well) in the presence of M-CSF (30 ng/mL) and
soluble RANKL (100 ng/mL) with different concentrations of human fibrinogen (Sigma-Aldrich) or
citrullinated human fibrinogen (Cayman Chemical, Ann Arbor, MI, USA) for 6 days. The wells of the
bone plates were rinsed with water and then incubated for 5 min at room temperature with 5% sodium
hypochlorite. Wells were then rinsed with water, and cells were removed by mechanical agitation.
Microscopy images were then acquired using a Leica (DM2500) and pit area was calculated using the
Metamorph image-analysis software.

2.8. Gene Expression Analysis

2.8.1. Real-Time Polymerase Chain Reaction (PCR)

On day 4, cells were collected and RNA extracted using the RNeasy Mini Kit (Qiazen, Hilden,
Germany). Complementary DNA was obtained using the GoScript Reverse Transcription System
(Promega, Fitchburg, WI, USA). The TaqMan Gene Expression Assay (Thermo Scientific) was used to
quantify the expression of the NF-ATc1 (NFATC1), β3-integrin (ITGB3), TRAP (TRAP), cathepsin K
(CTSK), osteoclast-associated receptor (OSCAR), and calcitonin receptor (CALCR) genes.

2.8.2. Microarray

CD14+ monocytes were treated with M-CSF in the presence of fibrinogen or citrullinated
fibrinogen. After 24 h, the total RNA in each group was amplified and purified using an Ambion
Illumina RNA amplification kit (Ambion, Austin, TX, USA) to yield biotinylated cRNA according to
the manufacturer’s instructions. Arrays were scanned using an Illumina bead array reader confocal
scanner according to the manufacturer’s instructions. The quality of the hybridization and overall
chip performance were monitored by visual inspection of both internal quality control checks and the
raw scanned data. Raw data were extracted by the software provided by the manufacturer (Illumina
GenomeStudio v2009.2 (Gene Expression Module v1.5.4), San Diego, CA, USA). For the analysis of
transcriptional regulation, we used the web-based software TRRUST ver 2 for gene set enrichment
analysis (GSEA) and the TRRUST database [20]. GSEA 4.0.3 software was used to perform the GSEA
with a ranked list of genes originating from a previously reported osteoclast-specific gene set [21].

2.9. Statistical Analysis

Statistical analyses were performed using SPSS Statistics software V. 22.0 (IBM, Armonk, NY,
USA). We obtained means and standard deviations. In the osteoclastogenesis study, group means
were compared using the Kruskal–Wallis test. The Wilcoxon’s signed-rank test was used to determine
significant differences between fibrinogen and citrullinated fibrinogen in osteoclast gene expression.
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3. Results

3.1. Mapping of Fibrinogen Citrullination Sites in the Presence and Absence of PAD

We compared the extent of citrullination of synovial fluid fibrinogen in patients with active
seropositive RA and OA. As predicted, a higher amount of citrullinated fibrinogen was observed in
RA than in OA synovial fluid (Figure 1A).

Previous studies have described citrullinated sites on fibrinogen andα-enolase. We used two-dimensional
SDS-PAGE and MALDI-TOF MS to detect the sites and extent of citrullination on fibrinogen.
Modification of arginine residues to citrulline caused a pI change in SDS-PAGE and shifted spots on the
electrophoresis gel to a lower pH. Compared to the spots obtained in the absence of PAD2, the spots
obtained from PAD2-treated fibrinogen were shifted toward a lower pH for all three chain types (α, β,
and γ; Figure 1B,C upper rows) [22]. To identify citrullination sites, spots of the relevant chain were cut
and processed through gel digestion. Notably, PAD2-treated fibrinogen had darker spots in positions
‘5′ and ‘6′, whereas two spots newly appeared at a lower pH in positions ‘7′ and ‘8′. Corresponding
changes were observed by Western blotting (Figure 1B,C lower rows). The successive decrease in spot
intensity was indicative of successive citrullination of different arginine residues.

1 

 

 

Figure 1. Cont.
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Figure 1. Citrullination of fibrinogen at α, β, and γ chains in the presence of peptidylarginine deiminase
(PAD). (A) Level of citrullinated fibrinogen in synovial fluid (SF) from two osteoarthritis (OA SF1,
OA SF2) and two rheumatoid arthritis (RA SF1, RA SF2) patients was detected by immunoprecipitation
(IP) with anti-fibrinogen antibody and Western blot (WB) using anti-modified citrulline antibody.
Coomassie, corresponding to each WB, of total protein in synovial fluid. Arrows indicate corresponding
bands for α, β, and γ chains of fibrinogen. Fibrinogen from RA SF was more citrullinated than OA
SF. (B,C) Spots for the α, β, and γ chains shifted in two-dimensional mapping of fibrinogen in the
absence (B, upper row) or presence (C, upper row) of PAD2 (PAD). Shifts due to citrullination were
confirmed by WB using anti-citrullinated fibrinogen antibody (lower rows of B and C). Arrows indicate
corresponding spots between two-dimensional electrophoresis (2DE) and WB at a designated pH.
(D) Citrullination sites (five in α, two in β, and one in γ chains) were detected by mass spectrometry via
modification with phenylglyoxal monohydrate (PGM). Top panel = bovine fibrinogen (Fib.), Middle
panel = Fib. + PAD, Bottom panel = Fib. + PAD + PGM.

Spots that shifted after the addition of PAD2 to fibrinogen were evaluated by MS (Figure 1D).
Because the peptide bond after citrulline cannot be cleaved by trypsin, mass peaks resulting from
citrullination cannot be distinguished from those caused by miscleavage [23]. However, by modifying
citrulline with PGM under acidic conditions, arginine residues that have been citrullinated can be
identified based on a 116-Da increase in mass [24]. Using this approach, five sites were identified in
α-chains, two sites in β-chains, and one site in a γ-chain (Table 1). Both arginine residues in the β-chains
were citrullinated by PAD2, though only one of the two sites was detected in some experiments.
When similar tests were run with PAD4 instead of PAD2, seven citrullinated sites were detected, six of
which were the same as those resulting from the addition of PAD2.
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Table 1. Citrullinated peptide sequences in the fibrinogen α, β, and γ chains.

m/z Ratio Residue Number Peptide Sequence MH+ Comparison to PAD4

α-chain
(1) 1276.77 139-146 SRIEILRR 1042.65 SRIEILRR
(2) 1400.87 91-100 LRDSLFNYQK 1283.67 LRDSLFNYQK
(3) 1509.69 111-122 NIVELMRGDFAK 1392.73
(4) 1579.67 229-241 MSTITGPVPREFK 1462.77 MSTITGPVPREFK

β-chain
(5) 1542.76 16-28 VGLGARGHRPYDK 1425.77 VGLGARGHRPYDK
(6) 1659.69 16-28 VGLGARGHRPYDK 1425.77 VGLGARGHRPYDK

KEEAPSLRPVPPPISGGGYR
γ-chain

(7) 1787.71 169-183 IHDVTGRDCQDVANK 1670.79 -

R = citrulline (site citrullinated by PAD2), m/z ratio = mass-to-charge ratio, MH+ = positive ion mode.

3.2. Citrullinated Fibrinogen and Its Effect on the Gene Expression Profile of Human CD14+ Monocytes

We compared transcriptome changes induced by vehicle, fibrinogen, and citrullinated fibrinogen
treatments on CD14+ sorted monocytes between two healthy human donors. First, we found 4127 genes
significantly changed by fibrinogen compared to vehicle. This is shown as a heatmap including a group
treated with citrullinated fibrinogen for each donor (Figure 2A). Using K-means clustering analysis, we
found four distinguished gene sets among the fibrinogen-upregulated or -downregulated genes in each
donor that had reversed patterns of gene expression with citrullinated fibrinogen (Figure 2A, yellow
boxes). Based on the genes with a concordant pattern of expression between donors 1 and 2, we classified
1072 genes as significantly upregulated and 1172 genes as significantly downregulated (Figure 2B).
Fibrinogen-upregulated and -downregulated genes were further classified by three modules according
to the responsiveness to citrullination. Module 1 (n = 660) included the genes upregulated by fibrinogen
and not affected by citrullination; module 2 (n = 130) included the genes upregulated or downregulated
by fibrinogen but reversed significantly by citrullination; and module 3 (n = 937) included the genes
downregulated by fibrinogen and not affected by citrullination. No gene significantly changed by
fibrinogen was concordantly up- or downregulated by citrullination. Therefore, module 2 was the
gene set with expression that was reactive to fibrinogen but perturbed by citrullination.

Next, we performed GSEA of the three modules for transcription factor-associated pathways.
For module 1, the pathways associated with TREF1, SREBF1/2, FOXO4, and HDAC9 were significantly
enriched (Figure 2C, left). Intriguingly, module 2 was significantly enriched in NFKB-related
pathways (NFKB1, NFKBIA) and JUN-family member-associated pathways (JUN, JUNB, JUND;
Figure 2C, middle). Module 3 was enriched in the pathways associated with transcription
factors, including NFE2L2, TFAP2C, and PPARD (Figure 2C, right). We also performed GSEA
using the gene list originating from differentially expressed genes between osteoclasts and CD14+

monocytes [21]; only module 2 was significantly enriched (Figure 2D). Collectively, the results indicate
that fibrinogen-regulated genes perturbed by citrullination were associated with NFKB pathways and
may contribute to osteoclastogenesis.
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Figure 2. Differentially expressed genes (DEGs) in CD14+ sorted monocytes from two peripheral blood
donors in the presence of fibrinogen or citrullinated fibrinogen. (A) Heatmap of DEGs. Veh = vehicle,
Fib = bovine fibrinogen, Cit-Fib = bovine fibrinogen citrullinated by PAD2. Six different clusters of
DEGs were presented by K-means clustering analysis. Yellow boxes indicate the clusters associated with
restoration of fibrinogen-induced change by citrullination. (B) Fibrinogen-regulated genes perturbed
by citrullination correspond to DEGs in the yellow box in (A). UP = upregulated genes, NC = no change
in expression, DN = downregulated genes. (C) Gene set enrichment analysis of the module 1, 2, or 3
using the human TRRUST transcription factor database. Dashed line = p-value 0.05. (D) Gene set
enrichment analysis of the module 1, 2, or 3 using osteoclast-specific gene set originated from ref. 21.
NES = normalized enrichment score, FDR-q = q-value of false discovery rate.

3.3. Citrullination Affects Fibrinogen-Induced Changes in Osteoclastogenesis-Related Gene Expression

To confirm the microarray findings from Figure 2D, we performed real-time PCR to quantify the
mRNA expression of six canonical osteoclast marker genes (Figure 3A). PAD2 reaction with fibrinogen
resulted in a significant increase in the expression of NFATC1 and ITGB3. Expression of TRAP, CTSK,
OSCAR, and CALCR also tended to increase with the addition of PAD2 or PAD4, but the difference
was not significant. Evaluation of NF-ATc1 and β3-integrin levels by Western blotting showed that
PAD2 induced reversion of the fibrinogen-induced dose-dependent decrease (Figure 3B).
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Figure 3. Gene and protein expression in osteoclasts in the presence of PAD. (A) Real-time PCR of cells
cultured in the absence or presence of PAD2 or PAD4 at a dose of 1.0 µg/mL (n = 8). * p < 0.05; ** p < 0.01;
ns—not significant. Individual values are plotted, and error bars represent SD. (B) Western blot of
NF-ATc1, β3-integrin, and GAPDH. M-CSF and RANKL were supplemented in the control group.

3.4. Citrullinated Fibrinogen Reverses the Inhibition of Osteoclastogenesis

Previous studies have shown that fibrinogen inhibits osteoclastogenesis in a dose-dependent
manner [6]. To confirm this, CD14+ monocytes were supplemented with fibrinogen and the cells
stained for TRAP on day 6 of culture (Figure 4A, upper row). To observe the effect of citrullinated
fibrinogen on osteoclast formation, fibrinogen was reacted with PAD2 prior to being added to the
monocytes. Though the number of osteoclasts significantly decreased with increasing fibrinogen dose
(in the absence of PAD2), osteoclastogenesis was less inhibited when citrullinated fibrinogen was
applied (Figure 4A). Similarly, citrullinated fibrinogen hindered the resorptive capacity of osteoclasts
less (Figure 4B). We observed a significant difference in the number of osteoclasts between the two
groups (i.e., osteoclastogenesis in the absence and presence of PAD2) at fibrinogen doses 0.5 µg/mL
and 1.0 µg/mL (Figure 4C). Doses higher than 1.0 µg/mL inhibited osteoclast formation in both groups
(data not shown), which may be attributable to factors other than PAD.



Cells 2020, 9, 2720 10 of 14

Figure 4. Reversion of dose-dependent inhibition of osteoclastogenesis in the presence of PAD. (A) Left:
monocytes were cultured in the absence or presence of PAD2 (PAD) and stained for TRAP on day
6 (n = 6). M-CSF (20 ng/mL) and RANKL (40 ng/mL) were replenished every 3 days. M-CSF and
RANKL were supplemented in the control group. Fib = bovine fibrinogen. Scale bar 200 µm. Right:
number of TRAP-positive osteoclasts in the absence or presence of PAD. * p < 0.05. Individual
values are plotted, and error bars represent SD. (B) Left: bone resorption activity in the presence of
fibrinogen or citrullinated fibrinogen for 6 days. Fib = human fibrinogen, Cit-Fib = citrullinated human
fibrinogen. Scale bar 100 µm. Right: area of resorption pits (%). * p < 0.05; ** p < 0.01. (C) Number
of TRAP-positive osteoclasts according to fibrinogen dose. * p < 0.05. Individual values are plotted.
(D) Western blot using an antibody against citrullinated fibrinogen and protein from reaction mixtures
containing PAD with human fibrinogen or bovine fibrinogen incubated at 37 ◦C for 2 h.

Previous studies have shown that either PAD2 or PAD4 was effective in citrullinating fibrinogen [17,25].
We tested the efficacy of PAD2 and level of citrullination of fibrinogen by reacting PAD2 with both
human and bovine fibrinogen. Fibrinogen in its natural form is already citrullinated to a certain extent,
which is greater in human blood than in bovine blood (Figure 4D). PAD2 modified fibrinogen to the
citrullinated form regardless of whether fibrinogen was of human or bovine origin.

4. Discussion

RA is characterized by progressive destruction of articular cartilage and bone erosion. Fibrinogen
is abundant in RA synovial fluid, but deiminated fibrinogen in synovial fluid is not specific for RA,
as it is also detected in psoriatic arthritis, ankylosing spondylitis, and osteoarthritis [11]. Fibrinogen
has been described as having an “anti-osteoclastogenic effect” [6,10]. In this study, we demonstrated
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that fibrinogen has an inhibitory effect on osteoclastogenesis, but its citrullinated form loses this
osteoprotective property.

Previous studies on bone loss in RA have focused on fibrinogen as an autoantigen of the ACPA immune
response [26]. Osteoclastogenesis and bone resorption have been induced by autoantibodies against
citrullinated vimentin [27], and ACPAs have been shown to enhance osteoclast differentiation through
PAD-dependent interleukin-8 [28]. However, a time-resolved kinetics study showed that osteoclast
activation is inhibited by the early addition of a PAD inhibitor, even in the absence of ACPAs. As such,
citrullinated fibrinogen may affect osteoclasts and precursor cells in an ACPA-independent manner.

Citrullinated fibrinogen could alter the inhibitory effect of fibrinogen on osteoclastogenesis. In an
in vitro model of bone loss, increased citrullinated fibrinogen levels inhibited osteoclast formation less
in a dose-dependent manner, which contrasts the effect of one or more immunogenic epitopes that may
generate autoantibodies specific to RA. Citrullination of fibrinogen precedes osteoclast differentiation
of the monocyte lineage, and the functional changes relative to bone are reflected in osteoclast-specific
gene and protein expression. Citrullinated fibrinogen is more abundant in synovial fluid from RA
patients than the synovial fluid from OA patients. Furthermore, in its natural form, fibrinogen of
human and bovine origin is already citrullinated to a certain extent. The addition of PAD leads to
increased production of citrullinated fibrinogen, further suggesting RA-specific elevation of the levels
in synovial fluid. The increased amount of citrullinated fibrinogen detected in RA synovial fluid may
be attributable to the severity or characteristic bone damage of RA. Therefore, abundant citrullinated
fibrinogen is presumed to cause bone resorption in a RANKL-dependent pathological condition specific
to RA [29,30].

Both types of PAD used in this study had similar sites of modification. Bovine fibrinogen has
71% sequence homology with human fibrinogen. The sequences adjacent to the newly citrullinated
arginine in bovine fibrinogen are highly homologous to that of human fibrinogen (Figure S1). Thus,
it is highly probable that the citrullination sites identified in bovine fibrinogen are also targets of
citrullination in human fibrinogen. When we tested the peptides of citrullinated fibrinogen obtained
from MS (Table 1) separately to evaluate the effect of each identified citrullination site, we observed no
significant differences in osteoclast formation (data not shown). These findings suggest that the effect
of citrullinated fibrinogen on osteoclast formation may be due to citrullination of sites important for
receptor binding. Sokolove et al. demonstrated that citrullinated fibrinogen stimulates macrophages
and enhances tumor necrosis factor (TNF) production via TLR4 and Myd88 [31]. A more recent study
observed another pro-inflammatory effect of citrullinated fibrinogen; in addition to the classical way
of triggering autoimmunity, citrullinated fibrinogen impaired the immunomodulatory function of
bone marrow mesenchymal stem cells by triggering TLR [32]. Fibrinogen has also been linked to joint
disease through the integrin αMβ2 binding motif [33]. As such, further study is needed to elucidate
the mechanism of fibrinogen-receptor binding.

This study has several limitations. First, in vitro citrullination and osteoclast differentiation may
not accurately reflect the physiological processes that occur in vivo. Second, we were not able to
elucidate the nature of fibrinogen-receptor binding or whether fibrinogen within the synovial fluid
acts in peptide form. The effect of citrullination on the function of fibrinogen in osteoclastogenesis
may be the result of different binding affinities between fibrinogen and CD11b/CD18, or of fibrinogen
binding to an array of receptors that produce a net effect of bone resorption. Finally, the effect of other
citrullinated proteins, such as vimentin or enolase, on bone was not observed.

The role of citrullinated proteins in the pathophysiology of RA is not fully understood [27], but we
provide another perspective of the role of fibrinogen on bone destruction within the framework of
immunological activation and inflammatory pathways characteristic of RA, stressing the importance
of further study of this perspective. Taken together, our data suggest that the function of fibrinogen
is altered in the presence of PAD, and citrullination results in a loss of the osteoprotective effect
of fibrinogen.
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