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Thermal spin fluctuations in 
CoCrFeMnNi high entropy alloy
Zhihua Dong1, Stephan Schönecker1, Wei Li1, Dengfu Chen2 & Levente Vitos   1,3,4

High entropy alloys based on 3d transition metals display rich and promising magnetic characteristics 
for various high-technology applications. Understanding their behavior at finite temperature is, 
however, limited by the incomplete experimental data for single-phase alloys. Here we use first-
principles alloy theory to investigate the magnetic structure of polymorphic CoCrFeMnNi in the 
paramagnetic state by accounting for the longitudinal spin fluctuations (LSFs) as a function of 
temperature. In both face-centered cubic (fcc) and hexagonal close-packed (hcp) structures, the 
LSFs induce sizable magnetic moments for Co, Cr and Ni. The impact of LSFs is demonstrated on the 
phase stability, stacking fault energy and the fcc-hcp interfacial energy. The hcp phase is energetically 
preferable to the fcc one at cryogenic temperatures, which results in negative stacking fault energy at 
these conditions. With increasing temperature, the stacking fault energy increases, suppressing the 
formation of stacking faults and nano-twins. Our predictions are consistent with recent experimental 
findings.

High entropy alloys (HEAs) are a new class of metallic materials composed of multiple principle elements in 
equal or near-equal atomic proportions1,2. They have been receiving significant research interest owing to their 
exceptional mechanical and functional properties; see, e.g., refs3–5. Among various reported HEAs, the equia-
tomic CoCrFeMnNi (Cantor alloy)6 is a popular and important prototype of HEAs based on 3d transition metals. 
Within a wide range of temperature below its solidus, it usually forms a chemically disordered solid solution 
in face-centered cubic (fcc) structure at ambient pressure6–9. A unique mechanical characteristic of the Cantor 
alloy is an enhanced strength-ductility combination with decreasing temperature, while maintaining outstanding 
fracture toughness at cryogenic temperatures, which was demonstrated to be closely related to the formation of 
nano-twins and stacking faults in deformation7,10–15. Furthermore, due to the irreversible pressure-induced phase 
transition from the fcc to the hexagonal close-packed (hcp) lattice, the presence of the hcp structure was recently 
observed at ambient conditions16–18. In the CoCrFeNi HEA belonging to the same family as the Cantor alloy, 
lamellae with hcp structure were also reported at ambient conditions when deforming at cryogenic temperatures 
below 77 K19. These experimental findings are in agreement with the recent theoretical prediction regarding the 
stability of hcp phase at low temperatures20.

In contrast to the intensive investigations of the mechanical properties of the Cantor alloy, understanding the 
magnetic properties remains very scarce in both the fcc and hcp phases. Among the limited number of works, 
two magnetic transitions from the disordered paramagnetic (PM) to spin glass, and eventually to the ordered 
ferromagnetic state were experimentally revealed at 93 and 38 K, respectively, in fcc CoCrFeMnNi21. The latter is 
comparable with the Curie temperature of the alloy predicted from ab initio calculations22,23, i.e., 20~27 K. These 
low magnetic transition temperatures indicate that the evolution of its mechanical and functional properties with 
temperature needs to be considered along with the thermally induced magnetic excitations in the PM state.

First-principles calculations based on density-functional theory (DFT) can provide a sound description 
of magnetic properties of materials with different crystal structures. However, at finite temperature, a proper 
account of magnetic excitations, both transversal and longitudinal spin fluctuations (LSFs), is of particular chal-
lenge for magnetic transition metals and alloys like the Cantor alloy, owing to the lack of a complete theory for 
itinerant electron magnetism24,25. Starting from the disordered local moment (DLM) theory26–28, which approxi-
mates a PM state with randomly oriented local magnetic moments within the mean-field approximation, several 
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ab initio methodologies have been recently proposed to properly describe the LSFs in the PM state29–33. The cru-
cial role of LSFs in the accurate description of finite-temperature magnetic properties has been demonstrated in a 
few magnetic metals including PM bcc (body-centered cubic) and fcc Fe, fcc Ni and fcc Co30–34, and in alloys such 
as PM fcc/hcp Fe-Mn and Fe-Cr-Ni systems29,35–38. It was reported that LSFs usually lead to sizable impacts on the 
temperature-dependent mechanical and physical properties of the metals and alloys, such as single-crystal elastic 
constants29,30,35, lattice expansion34 and intrinsic energy barriers associated with fundamental plasticity mecha-
nisms36–39. However, to our best knowledge, there has been no attempt yet to explore the role of thermal LSFs in 
PM CoCrFeMnNi HEA for neither the fcc nor hcp phase, in spite of its high fundamental and practical interest.

In this report, we put forward the first comprehensive description of the magnetic state of PM CoCrFeMnNi 
HEA in both the fcc and hcp phases by accounting for the LSFs as a function of temperature. The influence of 
LSFs on the phase stability, stacking fault energy and the fcc-hcp interfacial energy of the alloy are elaborated at 
finite temperature.

Results and Discussion
The contour plots in Fig. 1 display the mean magnetic moments {mI} (I = Co, Cr, Fe, or Ni) of alloy components 
in PM CoCrFeMnNi as a function of volume (represented by the Wigner-Seitz radius w) and temperature T for 
the fcc (upper panels) and hcp (lower panels) structures when considering the effect of LSFs. For comparison, the 
equilibrium magnetic moments μ{ }0

I  derived from the conventional floating spin (FS) calculations are presented 
in the left panels, which are solely volume-dependent emerging from the magneto-volume coupling.

For the FS calculations shown in the first column of Fig. 1, a somewhat similar magneto-volume coupling is 
observed in the fcc and hcp phases for the same alloy component. In particular, in both phases large spontaneous 
magnetic moments are obtained for Fe and Mn at all considered volumes, whereas those of Cr and Ni are always 
zero and a finite magnetic moment arises only at large volumes for Co. Comparing the magnitude of μ{ }0

I  in the 
two phases, Fe, Mn, and Co in the fcc phase exhibit larger magnetic moments than in the hcp phase at the given 
volumes. The maximum difference amounts to ~0.32, 0.64 and 0.28 μB for Fe, Mn and Co at the radius of ~2.62, 
2.62 and 2.68 Bohr, respectively.

Accounting for the LSFs at finite temperature (contour plots in Fig. 1), finite magnetic moments have been 
thermally induced for Cr, Ni and Co at all volumes even at the lowest temperature considered here (50 K) in both 
the fcc and hcp phases. The mean magnetic moment mI in both phases exhibits a monotonic dependency on 
volume and temperature. The mI of Fe and Mn, the two elements exhibiting large spontaneous static magnetic 
moments μ0

I, shows more pronounced dependency on volume with respect to that on temperature, whereas LSFs 
give the prevailing contribution to the mI of Co, Cr and Ni in both the fcc and hcp phases. As the volume 
increases, the impact of LSFs on mI weakens for all alloy components.

Taking the experimentally determined thermal lattice expansion40 into account (indicated by stars in the con-
tour plots in Fig. 1), the mean magnetic moments {mI} as function of temperature are shown in Table 1 for both 
the fcc and hcp phases. It is evident that {mI} in both phases significantly increase with temperature, and at the 
given temperatures the magnetic states of the alloy components in the fcc phase are very close to those in the hcp 
phase. At 100 K, the difference in mI between the two phases amounts to ~0.05, 0.03, 0.17 and 0.23 μB for Co, Cr, 
Fe, and Mn, respectively, and this difference slightly reduces with increasing temperature. Furthermore, mNi in the 
two phases is almost identical at the considered temperatures with difference less than 0.005 μB.

In the following, we elaborate on the influence of LSFs in PM CoCrFeMnNi in the sequence of the lattice sta-
bility, the intrinsic stacking fault energy γisf, and the interfacial energy σ between the fcc and hcp phases.

Figure 1.  Magnetic moments of alloy components in PM CoCrFeMnNi for the fcc (upper panels) and hcp 
(lower panels) structure. The first column shows the equilibrium magnetic moments {μ0

I} (I = Co, Cr, Fe, or Ni) 
as a function of volume obtained from the conventional FS calculations. The contour plots show the mean 
magnetic moments {mI} for the alloy components as a function of volume and temperature when accounting for 
the LSFs. The experimental volumes40 at 100, 300 and 900 K are indicated by stars.
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The free energy differences between the fcc and hcp phases, i.e., ΔF fcc→hcp = F hcp − F fcc, derived from the FS 
and LSF schemes are compared in Fig. 2. Both the FS and LSF results indicate that the lattice stability of PM 
CoCrFeMnNi noticeably changes with temperature and volume. The hcp phase is thermodynamically stable 
against the fcc one at low temperatures and small volumes. When the Wigner-Seitz radius is below (above) 
~2.64 Bohr (2.68 Bohr), the hcp (fcc) phase is energetically preferable at all considered temperatures ranging 
from 50 to 1200 K.

With respect to the ΔF fcc→hcp derived from the FS calculations, the LSFs at finite temperature systemically 
lower the absolute magnitude of ΔF fcc→hcp, and promote rather smooth dependencies of ΔF fcc→hcp on volume and 
temperature, as indicated by straight contour lines. As detailed in Fig. 1, the noticeable changes in the shape of 
contour lines in the FS calculations [indicated by the arrows in panel (a)] emerge from the distinct {μ0

I} in the fcc 
and hcp phases, amplified by temperature in the calculation of magnetic entropy. These changes are significantly 
eliminated by the gradually varying {mI} induced via LSFs in both the fcc and hcp phases. That is, the partial 
contributions to ΔF fcc→hcp, i.e., the magnetic entropy and internal energy, may be considerably altered by LSFs at 
finite temperature (see Fig. 3). Nevertheless, LSFs yield small influence on the phase boundary (defined here as 
ΔF fcc→hcp = 0) of PM CoCrFeMnNi. Referring to the experimental volumes40 indicated by stars, the critical tem-
perature of fcc-hcp phase transition at ambient pressure is determined to be ~430 K in the LSF calculations, 
compared to ~438 K in the FS calculations. The critical temperature predicted here is in good agreement with the 
experimental value of ~633 K, especially when taking into account the error bars stated in the experiments16 and 
also the fact that the explicit phonon effect is not considered in the present theory.

Considering an intrinsic stacking fault in fcc alloys as a two-layer embryo in the hcp structure embedded in 
the fcc matrix, the thermodynamic model proposed by Olson and Cohen41 was formulated to evaluate γisf in 
terms of the ΔF fcc→hcp and the interfacial energy σ between the two phases. Taking the computed ΔF fcc→hcp and 
a constant σ of 5 mJ m−2 (discussed below) as inputs to the model, we calculated the γisf of PM CoCrFeMnNi as a 
function of volume and temperature. The γisf derived from the LSF scheme is shown in Fig. 3(a), while the two 
partial contributions from the internal energy and magnetic entropy, i.e., γisf

int and γisf
mag, respectively, are com-

pared in Fig. 3(b) for the LSF and FS calculations.
It is evident that γisf monotonically increases with volume and temperature, showing a tendency to saturate at 

high temperatures and large volumes. Compared to the FS results (not shown), γisf accounting for LSFs decreases 
in the most fcc-stable region by an upper change of ~13.5 mJ m−2 (at 2.68 Bohr and 1200 K), whereas it increases 
in the most hcp-stable region by below ~6.2 mJ m−2 (at 2.62 Bohr and 300 K). Taking the experimentally deter-
mined lattice expansion (indicated by the stars) into account, the γisf of PM CoCrFeMnNi is predicted from 
the LSF calculations to increase from −17 mJ m−2 at 50 K, reach zero at ~260 K and keep rising to 31 mJ m−2 at 
1000 K, which are contrasted with −19 mJ m−2, ~290 K and 36 mJ m−2, respectively, from the FS calculations. 

T

fcc hcp

Co Cr Fe Mn Ni Co Cr Fe Mn Ni

100 0.73 0.52 1.85 1.79 0.24 0.67 0.49 1.69 1.57 0.24

300 0.98 0.88 1.94 1.94 0.40 0.94 0.84 1.82 1.80 0.40

900 1.30 1.42 2.15 2.27 0.63 1.27 1.39 2.09 2.21 0.63

Table 1.  The mean magnetic moments {mI} of alloy components in PM CoCrFeMnNi as a function of 
temperature for the fcc and hcp phases when considering the effect of LSFs in combination with thermal lattice 
expansion. mI (with I = Co, Cr, Fe, Mn, or Ni) is given in units of μB, T is in K.

Figure 2.  Free energy difference between the fcc and hcp phases, ΔF fcc→hcp = F hcp − F fcc, as a function of volume 
and temperature. For comparison, panel (a and b) show the results derived from the FS and LSF schemes, 
respectively. The thermal lattice expansion measured in ref.40 is indicated by stars.
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The positive temperature dependence of γisf predicted here is comparable with that reported by Huang et al.42. 
Nevertheless, the magnitudes of γisf accounting for LSFs are lower than those found in ref.42, because the magnetic 
contribution determined in the work is significantly reduced owing to LSFs.

Looking at the partial contributions to γisf shown in Fig. 3(b), it is evident that LSFs considerably reduce the 
contribution emerging from the magnetic entropy γisf

mag (owing to the similar magnetic states in the fcc and hcp 
phases, see Fig. 1), whilst noticeably increasing the internal energy part γisf

int. The positive temperature depend-
ence of γisf is ultimately dominated by the magneto-volume coupling at thermal excitations. The role of LSFs dis-
closed in PM CoCrFeMnNi is in good agreement with that reported in PM γ-Fe39 and Fe-22.5 at.% Mn36.

In the temperature interval 77–293 K nano-twins and stacking faults were reported in experiments7,10–15, the 
γisf of PM fcc CoCrFeMnNi is predicted to be as low as −15~2 mJ m−2 when accounting for LSFs and lattice 
expansion. The low γisf is attributed to the fact that the hcp phase is thermodynamically stable to the fcc one at 
these conditions (see Fig. 2). Namely, at cryogenic temperatures the fcc phase would remain metastable, because 
of, e.g., high kinetic barriers16,43, and formation of nano-twins and stacking faults therein is energetically prefera-
ble. With decreasing temperature, the plastic deformation by nano-twins and stacking faults is enhanced owing to 
the reduced γisf, resulting in a good combination of strength and ductility at cryogenic temperatures as observed 
in the experiments.

We end our discussion by elaborating on the influence of LSFs on the fcc-hcp interfacial energy σ. By using the 
ΔF fcc→hcp and the γisf computed adopting the supercell approach, we calculated σ via the thermodynamic model 
proposed by Olson and Cohen41. The σ of PM CoCrFeMnNi derived from the LSF and FS schemes is compared 
in Fig. 4 for different temperatures, where the experimentally determined lattice expansion40 was accounted for. 
It is evident from Fig. 4 that the LSFs at finite temperature slightly lower σ by 0.5~0.7 mJ m−2 in the temperature 
interval 300–900 K. As the temperature increases, the σ accounting for LSFs slightly decreases at a coefficient of 
~0.0025 mJ m−2 K−1, which is very close to the one derived from the FS calculations, i.e., ~0.0028 mJ m−2 K−1. 

Figure 3.  The contour in panel (a) plots for the stacking fault energy γisf as a function of volume and 
temperature when accounting for LSFs. The thermal lattice expansion measured in ref.40 is indicated by stars. 
The bars in panel (b) display the partial contributions to γisf from the internal energy γisf

int and the magnetic 
entropy γisf

mag, i.e., γ γ γ σ= + + 2isf isf isf
int mag , at the given temperatures for the LSF and FS calculations.

Figure 4.  The fcc-hcp interfacial energy σ as a function of temperature for PM CoCrFeMnNi. For comparison, 
σ derived from the LSF and FS schemes are presented. The thermal lattice expansion was accounted for using 
the experimental volumes reported in ref.40.
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Extrapolating our calculations to 0 K, the σ of PM CoCrFeMnNi is predicted to be ~6.1 and 7.0 mJ m−2 in the 
LSF and FS schemes, respectively, showing a good consistency with the values calculated for Fe-Cr-Ni austenitic 
stainless steels by Li et al.44, i.e., 7.5–9.0 mJ m−2 at 0 K.

In the temperature interval 50–1200 K, the σ of PM CoCrFeMnNi is estimated to slightly vary in the range 
of ~3.1–6.0 and 3.6–6.8 mJ m−2 for the LSF and FS calculations, respectively. Therefore, the error bar of γisf asso-
ciated with using the constant σ equal to 5 mJ m−2 is expected to be less than 4 mJ m−2 for both the LSF and FS 
calculations.

Conclusions
Using ab initio alloy theory, we investigated the magnetic structure of PM CoCrFeMnNi HEA in both the fcc 
and hcp crystal structures by accounting for the LSFs as a function of temperature and volume, and assessed 
the LSF contributions to finite-temperature properties of the alloy. We show that the LSFs induce sizable mag-
netic moments for Co, Cr and Ni, whilst slightly increasing the magnetic moment of Fe and Mn in both the fcc 
and hcp phases. LSFs are demonstrated to give limited influence on the fcc-hcp phase stability, stacking fault 
energy and the interfacial energy in PM CoCrFeMnNi, but significantly alter the partial contributions of the 
finite-temperature properties. The hcp phase is energetically preferable against the fcc one at low temperatures 
and volumes, which is responsible for the negative stacking fault energy at these conditions. Dominated by the 
magneto-volume coupling at thermal excitations, the stacking fault energy increases with temperature, suppress-
ing the formation of nano-twins and stacking faults. The present predictions are consistent with the recent exper-
imental findings.

Methods
The LSF methodology proposed by Dong et al.29,30 was adopted to describe the finite-temperature magnetic state 
of each alloy species in PM CoCrFeMnNi HEA. The root-mean-square magnetic moment mI(w, T)30, which is 
formulated as ∫ μ μ μ= ⋅m x d( )I 2  with x(μ) being the spin-density distribution of longitudinal magnetic com-
ponent μ, was used to represent the LSF energetics at thermal excitations in both the fcc and hcp phases. For the 
sake of computational feasibility of determining {mI}, we used the ‘fluctuating medium approximation’ and the 
‘one shot from static equilibrium approach’29. The present LSF methodology has been applied to PM bcc and fcc 
Fe and Fe-Cr-Ni alloy, and the predicted finite-temperature properties such as single-crystal elastic constants29,30, 
lattice expansion34 and intrinsic energy barriers39 confirm the accurate description of the magnetic state at ele-
vated temperatures.

The finite-temperature properties were derived from the free energy Fα (α represents the fcc or hcp phase) by 
accounting for lattice expansion and LSFs at finite temperature, which is expressed as Fα(w, T) = Eint(w, 
{MI}) − TSmag({MI}) (all three terms here depend on α, but the notation at the right-hand side is omitted for sim-
plicity). While the internal energy Eint is approximated by the total energy of a DLM paramagnet with local mag-
netic moments {M I}, the magnetic entropy Smag is evaluated in the mean-field expression via 

= ∑ ⋅ +S k c Mln( 1)mag
B I

I I  (kB is the Boltzmann constant and cI is the chemical concentration). MI represents 
the equilibrium magnetic moment μ0

I in the conventional FS calculations, while it is the mean magnetic moment 
mI in the LSF calculations. The fcc-hcp phase stability was evaluated by the free energy difference between the two 
phases, i.e., ΔF fcc→hcp = F hcp − F fcc, which also entered the thermodynamic model proposed by Olson and 
Cohen41 to compute the stacking fault energy γisf. The fcc-hcp interfacial energy σ was determined by comparing 
the results from the thermodynamic model41 with the supercell calculations via σ γ= − Δ →F A2 2 /isf

SC fcc hcp  (A is 
the interfacial area per atom). γisf

SC is the stacking fault energy calculated using the supercell approach, in which we 
assumed that the magnetic state of the atomic layers nearest to the intrinsic stacking fault is the same as in the hcp 
structure, while the remaining layers were treated identically to the fcc case39. Details about the adopted supercell 
structure can be found in ref.39. In the present application, an ideal c/a ratio of 8/3  was employed for the hcp 
structure, the finite-temperature volume of which was assumed to be identical with the fcc one. The experimental 
volumes of fcc CoCrFeMnNi at various temperatures were determined from the measurements reported in ref.40 
by assuming a linear thermal expansion in the considered temperature interval. The structural relaxation in the 
faulted supercell was omitted. The k-meshes and supercell size were carefully tested to ensure sufficient numerical 
accuracy.

For the DFT calculations, the Kohn-Sham equations were solved within the framework of the exact muffin-tin 
orbitals (EMTO) method45–48 adopting the scalar-relativistic approximation in combination with the soft-core 
scheme. The self-consistent electronic structure calculations and the total energy calculations were carried out 
within the generalized gradient approximation as parametrized by Perdew-Burke-Ernzerhof (PBE)49. The mag-
netic and chemical disorders were described by the DLM picture26–28 in combination with the coherent-potential 
approximation (CPA)50,51.

References
	 1.	 Yeh, J.-W. et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. 

Adv. Eng. Mater. 6, 299–303, https://doi.org/10.1002/adem.200300567 (2004).
	 2.	 Murty, B., Yeh, J. & Ranganathan, S. A brief history of alloys and the birth of high-entropy alloys. In High Entropy Alloy, 1–12, https://

doi.org/10.1016/B978-0-12-800251-3.00001-8 (Elsevier, 2014).
	 3.	 Miracle, D. & Senkov, O. A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511, https://doi.

org/10.1016/j.actamat.2016.08.081 (2017).
	 4.	 Tsai, M.-H. & Yeh, J.-W. High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107–123, https://doi.org/10.1080/21663831.2014

.912690 (2014).
	 5.	 Tsai, M.-H. Physical properties of high entropy alloys. Entropy 15, 5338–5345, https://doi.org/10.3390/e15125338 (2013).
	 6.	 Cantor, B., Chang, I., Knight, P. & Vincent, A. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. 

A 375–377, 213–218, https://doi.org/10.1016/j.msea.2003.10.257 (2004).

http://dx.doi.org/10.1002/adem.200300567
http://dx.doi.org/10.1016/B978-0-12-800251-3.00001-8
http://dx.doi.org/10.1016/B978-0-12-800251-3.00001-8
http://dx.doi.org/10.1016/j.actamat.2016.08.081
http://dx.doi.org/10.1016/j.actamat.2016.08.081
http://dx.doi.org/10.1080/21663831.2014.912690
http://dx.doi.org/10.1080/21663831.2014.912690
http://dx.doi.org/10.3390/e15125338
http://dx.doi.org/10.1016/j.msea.2003.10.257


www.nature.com/scientificreports/

6SCIEnTIfIC Reports |  (2018) 8:12211  | DOI:10.1038/s41598-018-30732-y

	 7.	 Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158, https://doi.
org/10.1126/science.1254581 (2014).

	 8.	 Gali, A. & George, E. Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74–78, https://doi.org/10.1016/j.
intermet.2013.03.018 (2013).

	 9.	 Okamoto, N. L. et al. Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the 
CrMnFeCoNi high-entropy alloy. Sci. Rep. 6, 35863, https://doi.org/10.1038/srep35863 (2016).

	10.	 Otto, F. et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta 
Mater. 61, 5743–5755, https://doi.org/10.1016/j.actamat.2013.06.018 (2013).

	11.	 Laplanche, G., Kostka, A., Horst, O., Eggeler, G. & George, E. Microstructure evolution and critical stress for twinning in the 
CrMnFeCoNi high-entropy alloy. Acta Mater. 118, 152–163, https://doi.org/10.1016/j.actamat.2016.07.038 (2016).

	12.	 Joo, S.-H. et al. Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy. Mater. 
Sci. Eng. A 689, 122–133, https://doi.org/10.1016/j.msea.2017.02.043 (2017).

	13.	 Sun, S. et al. Transition of twinning behavior in CoCrFeMnNi high entropy alloy with grain refinement. Mater. Sci. Eng. A 712, 
603–607, https://doi.org/10.1016/j.msea.2017.12.022 (2018).

	14.	 Gludovatz, B. et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 
10602, https://doi.org/10.1038/ncomms10602 (2016).

	15.	 Laplanche, G. et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy 
CrMnFeCoNi. Acta Mater. 128, 292–303, https://doi.org/10.1016/j.actamat.2017.02.036 (2017).

	16.	 Zhang, F. et al. Polymorphism in a high-entropy alloy. Nat. Commun. 8, 15687, https://doi.org/10.1038/ncomms15687 (2017).
	17.	 Huang, E.-W. et al. Irreversible phase transformation in a CoCrFeMnNi high entropy alloy under hydrostatic compression. Mater. 

Today Commun. 14, 10–14, https://doi.org/10.1016/j.mtcomm.2017.12.001 (2018).
	18.	 Tracy, C. L. et al. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 

8, 15634, https://doi.org/10.1038/ncomms15634 (2017).
	19.	 Lin, Q. et al. Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy. Mater. Res. Lett. 6, 236–243, 

https://doi.org/10.1080/21663831.2018.1434250 (2018).
	20.	 Huang, S. et al. Twinning in metastable high-entropy alloys. Nat. Commun. 9, 2381, https://doi.org/10.1038/s41467-018-04780-x 

(2018).
	21.	 Schneeweiss, O. et al. Magnetic properties of the CrMnFeCoNi high-entropy alloy. Phys. Rev. B 96, 014437, https://doi.org/10.1103/

PhysRevB.96.014437 (2017).
	22.	 Huang, S., Holmström, E., Eriksson, O. & Vitos, L. Mapping the magnetic transition temperatures for medium- and high-entropy 

alloys. Intermetallics 95, 80–84, https://doi.org/10.1016/j.intermet.2018.01.016 (2018).
	23.	 Ma, D., Grabowski, B., Körmann, F., Neugebauer, J. & Raabe, D. Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: 

Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90–97, https://doi.org/10.1016/j.
actamat.2015.08.050 (2015).

	24.	 Moriya, T. Spin Fluctuations in Itinerant Electron Magnetism. (Springer, Berlin Heidelberg, 1985).
	25.	 Baberschke, K., Donath, M. & Nolting, W. (eds) Band-ferromagnetism: Ground state and finite-temperature phenomena, vol. 580 of 

Lecture notes in physics (Springer, Berlin Heidelberg, 2001).
	26.	 Pindor, A. J., Staunton, J., Stocks, G. M. & Winter, H. Disordered local moment state of magnetic transition metals: a self-consistent 

KKR CPA calculation. J. Phys. F 13, 979, https://doi.org/10.1088/0305-4608/13/5/012 (1983).
	27.	 Staunton, J., Györffy, B. L., Pindor, A. J., Stocks, G. M. & Winter, H. The “disordered local moment” picture of itinerant magnetism 

at finite temperatures. J. Magn. Magn. Mater. 45, 15–22, https://doi.org/10.1016/0304-8853(84)90367-6 (1984).
	28.	 Györffy, B. L., Pindor, A. J., Staunton, J., Stocks, G. M. & Winter, H. A first-principles theory of ferromagnetic phase transitions in 

metals. J. Phys. F Met. Phys 15, 1337–1386, https://doi.org/10.1088/0305-4608/15/6/018 (1985).
	29.	 Dong, Z. et al. Elastic properties of paramagnetic austenitic steel at finite temperature: Longitudinal spin fluctuations in 

multicomponent alloys. Phys. Rev. B 96, 174415, https://doi.org/10.1103/PhysRevB.96.174415 (2017).
	30.	 Dong, Z. et al. Thermal spin fluctuation effect on the elastic constants of paramagnetic Fe from first principles. Phys. Rev. B 92, 

224420, https://doi.org/10.1103/PhysRevB.92.224420 (2015).
	31.	 Pan, F., Chico, J., Delin, A., Bergman, A. & Bergqvist, L. Extended spin model in atomistic simulations of alloys. Phys. Rev. B 95, 

184432, https://doi.org/10.1103/PhysRevB.95.184432 (2017).
	32.	 Ruban, A. V., Khmelevskyi, S., Mohn, P. & Johansson, B. Temperature-induced longitudinal spin fluctuations in Fe and Ni. Phys. Rev. 

B 75, 054402, https://doi.org/10.1103/PhysRevB.75.054402 (2007).
	33.	 Shallcross, S., Kissavos, A. E., Meded, V. & Ruban, A. V. An ab initio effective Hamiltonian for magnetism including longitudinal 

spin fluctuations. Phys. Rev. B 72, 104437, https://doi.org/10.1103/PhysRevB.72.104437 (2005).
	34.	 Dong, Z. et al. Longitudinal spin fluctuation contribution to thermal lattice expansion of paramagnetic Fe. Phys. Rev. B 95, 054426, 

https://doi.org/10.1103/PhysRevB.95.054426 (2017).
	35.	 Vitos, L. & Johansson, B. Large magnetoelastic effects in paramagnetic stainless steels from first principles. Phys. Rev. B 79, 024415, 

https://doi.org/10.1103/PhysRevB.79.024415 (2009).
	36.	 Reyes-Huamantinco, A., Puschnig, P., Ambrosch-Draxl, C., Peil, O. E. & Ruban, A. V. Stacking-fault energy and anti-Invar effect in 

Fe-Mn alloy from first principles. Phys. Rev. B 86, 060201, https://doi.org/10.1103/PhysRevB.86.060201 (2012).
	37.	 Vitos, L., Korzhavyi, P. A. & Johansson, B. Evidence of large magnetostructural effects in austenitic stainless steels. Phys. Rev. Lett. 

96, 117210, https://doi.org/10.1103/PhysRevLett.96.117210 (2006).
	38.	 Vitos, L., Nilsson, J. O. & Johansson, B. Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles 

theory. Acta Mater. 54, 3821–3826, https://doi.org/10.1016/j.actamat.2006.04.013 (2006).
	39.	 Dong, Z. et al. Plastic deformation modes in paramagnetic γ-Fe from longitudinal spin fluctuation theory. Int. J. Plast. In Press, 

https://doi.org/10.1016/j.ijplas.2018.05.007 (2018).
	40.	 Laplanche, G. et al. Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-

phase CoCrFeMnNi high-entropy alloy. J. Alloys Compd. 623, 348–353, https://doi.org/10.1016/j.jallcom.2014.11.061 (2015).
	41.	 Olson, G. B. & Cohen, M. A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP 

transformation. Metall. Trans. A 7, 1897–1904, https://doi.org/10.1007/BF02659822 (1976).
	42.	 Huang, S. et al. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scr. Mater. 108, 44–47, https://doi.

org/10.1016/j.scriptamat.2015.05.041 (2015).
	43.	 Zhang, Y., Zhuang, Y., Hu, A., Kai, J. & Liu, C. The origin of negative stacking fault energies and nano-twin formation in face-

centered cubic high entropy alloys. Scr. Mater. 130, 96–99, https://doi.org/10.1016/j.scriptamat.2016.11.014 (2017).
	44.	 Li, R. et al. Stacking fault energy of face-centered cubic metals: thermodynamic and ab initio approaches. J. Phys. Condens. Matter 

28, 395001, https://doi.org/10.1088/0953-8984/28/39/395001 (2016).
	45.	 Vitos, L. Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications, Engineering Materials 

and Processes Series. (Springer, London, 2007).
	46.	 Vitos, L. Total-energy method based on the exact muffin-tin orbitals theory. Phys. Rev. B 64, 014107, https://doi.org/10.1103/

PhysRevB.64.014107 (2001).
	47.	 Kádas, K., Vitos, L., Johansson, B. & Kollár, J. Structural stability of β-beryllium. Phys. Rev. B 75, 035132, https://doi.org/10.1103/

PhysRevB.75.035132 (2007).

http://dx.doi.org/10.1126/science.1254581
http://dx.doi.org/10.1126/science.1254581
http://dx.doi.org/10.1016/j.intermet.2013.03.018
http://dx.doi.org/10.1016/j.intermet.2013.03.018
http://dx.doi.org/10.1038/srep35863
http://dx.doi.org/10.1016/j.actamat.2013.06.018
http://dx.doi.org/10.1016/j.actamat.2016.07.038
http://dx.doi.org/10.1016/j.msea.2017.02.043
http://dx.doi.org/10.1016/j.msea.2017.12.022
http://dx.doi.org/10.1038/ncomms10602
http://dx.doi.org/10.1016/j.actamat.2017.02.036
http://dx.doi.org/10.1038/ncomms15687
http://dx.doi.org/10.1016/j.mtcomm.2017.12.001
http://dx.doi.org/10.1038/ncomms15634
http://dx.doi.org/10.1080/21663831.2018.1434250
http://dx.doi.org/10.1038/s41467-018-04780-x
http://dx.doi.org/10.1103/PhysRevB.96.014437
http://dx.doi.org/10.1103/PhysRevB.96.014437
http://dx.doi.org/10.1016/j.intermet.2018.01.016
http://dx.doi.org/10.1016/j.actamat.2015.08.050
http://dx.doi.org/10.1016/j.actamat.2015.08.050
http://dx.doi.org/10.1088/0305-4608/13/5/012
http://dx.doi.org/10.1016/0304-8853(84)90367-6
http://dx.doi.org/10.1088/0305-4608/15/6/018
http://dx.doi.org/10.1103/PhysRevB.96.174415
http://dx.doi.org/10.1103/PhysRevB.92.224420
http://dx.doi.org/10.1103/PhysRevB.95.184432
http://dx.doi.org/10.1103/PhysRevB.75.054402
http://dx.doi.org/10.1103/PhysRevB.72.104437
http://dx.doi.org/10.1103/PhysRevB.95.054426
http://dx.doi.org/10.1103/PhysRevB.79.024415
http://dx.doi.org/10.1103/PhysRevB.86.060201
http://dx.doi.org/10.1103/PhysRevLett.96.117210
http://dx.doi.org/10.1016/j.actamat.2006.04.013
http://dx.doi.org/10.1016/j.ijplas.2018.05.007
http://dx.doi.org/10.1016/j.jallcom.2014.11.061
http://dx.doi.org/10.1007/BF02659822
http://dx.doi.org/10.1016/j.scriptamat.2015.05.041
http://dx.doi.org/10.1016/j.scriptamat.2015.05.041
http://dx.doi.org/10.1016/j.scriptamat.2016.11.014
http://dx.doi.org/10.1088/0953-8984/28/39/395001
http://dx.doi.org/10.1103/PhysRevB.64.014107
http://dx.doi.org/10.1103/PhysRevB.64.014107
http://dx.doi.org/10.1103/PhysRevB.75.035132
http://dx.doi.org/10.1103/PhysRevB.75.035132


www.nature.com/scientificreports/

7SCIEnTIfIC Reports |  (2018) 8:12211  | DOI:10.1038/s41598-018-30732-y

	48.	 Vitos, L., Skriver, H. L., Johansson, B. & Kollár, J. Application of the exact muffin-tin orbitals theory: the spherical cell approximation. 
Comput. Mater. Sci. 18, 24–38, https://doi.org/10.1016/S0927-0256(99)00098-1 (2000).

	49.	 Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868, https://
doi.org/10.1103/PhysRevLett.77.3865 (1996).

	50.	 Soven, P. Coherent-potential model of substitutional disordered alloys. Phys. Rev. 156, 809–813, https://doi.org/10.1103/
PhysRev.156.809 (1967).

	51.	 Györffy, B. L. Coherent-potential approximation for a nonoverlapping-muffin-tin-potential model of random substitutional alloys. 
Phys. Rev. B 5, 2382–2384, https://doi.org/10.1103/PhysRevB.5.2382 (1972).

Acknowledgements
This work was supported by the Swedish Research Council, the Swedish Foundation for Strategic Research, the 
Swedish Foundation for International Cooperation in Research and Higher Education, the Chinese Scholarship 
Council, the Hungarian Scientific Research Fund (OTKA 109570), the Carl Tryggers Foundation, and the 
National Natural Science Foundation of China (NSFC, Nos 51611130062 and 51374260). The calculations were 
performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at the National 
Supercomputer Centre (NSC) in Linköping.

Author Contributions
Z.D. and L.V. initiated the research. Z.D. and W.L. performed the calculations. S.S. and D.C. contributed to 
discussions and analysis. Z.D. and L.V. prepared the manuscript and all authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1016/S0927-0256(99)00098-1
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRev.156.809
http://dx.doi.org/10.1103/PhysRev.156.809
http://dx.doi.org/10.1103/PhysRevB.5.2382
http://creativecommons.org/licenses/by/4.0/

	Thermal spin fluctuations in CoCrFeMnNi high entropy alloy

	Results and Discussion

	Conclusions

	Methods

	Acknowledgements

	Figure 1 Magnetic moments of alloy components in PM CoCrFeMnNi for the fcc (upper panels) and hcp (lower panels) structure.
	Figure 2 Free energy difference between the fcc and hcp phases, ΔF fcc→hcp = F hcp − F fcc, as a function of volume and temperature.
	Figure 3 The contour in panel (a) plots for the stacking fault energy γisf as a function of volume and temperature when accounting for LSFs.
	Figure 4 The fcc-hcp interfacial energy σ as a function of temperature for PM CoCrFeMnNi.
	Table 1 The mean magnetic moments {mI} of alloy components in PM CoCrFeMnNi as a function of temperature for the fcc and hcp phases when considering the effect of LSFs in combination with thermal lattice expansion.




