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Abstract

Background

Calcium and phosphate are central for myocardial contractility and energy metabolism, and

low levels of the calciotropic hormone 1,25-dihydroxyvitamin D (1,25(OH)2D), as well as

high levels of the phosphaturic hormone fibroblast growth factor (FGF)-23, are indepen-

dently associated with poor clinical outcome in heart failure (HF) patients. We therefore

aimed to investigate the postoperative time course of the aforementioned hormones in HF

patients supported with a left-ventricular assist device (LVAD) implant.

Methods

For the present study, stored biobank plasma samples of 69 patients, collected before

LVAD implantation (t0) and 12 days (t1), 30 days (t2), 83 days (t3), and 300 days (t4) post-

intervention, were used to measure circulating FGF-23, parathyroid hormone (PTH), 25-

hydroxyvitamin D (25OHD), 1,25(OH)2D, and kidney function.

Results

Most patients were male and had baseline INTERMACS levels and cardiac index values�

3 and� 2.7 L/min/m2, respectively. There were significant time effects on estimated glo-

merular filtration rate (eGFR), FGF-23 and 1,25(OH)2D, but not on PTH or 25OHD. Nota-

bly, eGFR values increased and FGF-23 levels decreased only transiently, whereas 1,25

(OH)2D increased continuously until t4. The rise in 1,25(OH)2D was largely influenced by

those patients who survived the first post-implant year, and was not seen in non-survivors.

Variations in 1,25(OH)2D levels could only partly be explained by eGFR values or FGF-23,

25OHD, and PTH levels (multiple R2 = 0.305;P<0.001).
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Conclusions

The present study indicates that LVAD implantation has only transient effects on circulating

FGF-23 levels, but is associated with a continuous increase in circulating 1,25(OH)2D lev-

els, especially in survivors.

Introduction

Heart failure (HF) is a chronic condition in which the heart muscle is unable to pump effec-
tively to meet the body's need for blood and oxygen. Disturbances in several metabolic systems
occur in HF patients, among them alterations in calcium (Ca) and phosphate metabolism [1].
Briefly, in isolated myocytes from patients with end-stage HF systolic ionized Ca transients are
markedly reduced, diastolic Ca levels are increased, and the rate of diastolic decay of Ca is slo-
wed compared with heart cells from healthy subjects [2]. The sarcoplasmatic reticulum Ca leak
is considered to be an important patho-mechanism in HF, and this leak is similar in human
ischemic cardiomyopathy and dilated cardiomyopathy [3]. Moreover, cardiac high-energy
phosphate metabolism is altered in HF [4] and elevated serum phosphate levels have been
reported in these patients [1].

The active, hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D), plays a
pivotal role in cardiac function. Cardiac muscle cells possess a 1,25(OH)2D receptor and a 1,25
(OH)2D-dependent Ca-binding-protein [5]. In addition, a 1,25(OH)2D-mediated rapid activa-
tion of voltage-dependent Ca channels exists in cardiac muscle cells [6]. Consequently, 1,25
(OH)2D administration can normalize the impaired contractility of the myocardium that is
observed under experimental vitamin D deficiency [7]. Renal synthesis of 1,25(OH)2D is sup-
pressed by the phosphaturic hormone fibroblast growth factor-23 (FGF-23). FGF-23 is pro-
duced by bone cells, is stimulated by high serum phosphate levels, and promotes phosphaturia
to maintain serum phosphate levels within the normal range [8].

In HF patients, low 1,25(OH)2D levels and high FGF-23 levels are independently associated
with poor clinical outcome [8–12]. Patients with failing hearts have very low 1,25(OH)2D levels
and extremely high FGF-23 levels [9]. In end-stage HF, left-ventricular assist device (LVAD)
implants are increasingly used as a bridge to transplant or destination therapy [13,14].
Although LVAD implants increase survival significantly [13], mortality rates remain high in
LVAD-supported HF patients [15].

Little is currently known about the effect of LVAD implants on calciotropic and phosphatu-
ric hormones such as 1,25(OH)2D and FGF-23. The present study therefore aimed to investi-
gate the postoperative time course of the aforementioned hormones in patients supported with
an LVAD implant.

Methods

Patients

Sixty-nine patients of the Heart & Diabetes Center NRW, Germany, where preoperative and
postoperative blood samples were available, were included in the present study. We used bio-
bank plasma samples, stored at -80°C that were collected for the Mechanical Circulatory Sys-
tem Program at the time of VAD implantation, and at different time points thereafter. The aim
of the biobank is to address novel research questions in the field of end-stage HF. Due to fre-
quent hospitalization, patients who did not survive the first postoperative year were
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overrepresented in the present study cohort (45 non-survivors, 24 survivors). The calciotropic
and phosphaturic hormones 25OHD, 1,25(OH)2D, PTH, and FGF-23 were analyzed in sam-
ples collected just prior to LVAD implantation (within the last 3 days before LVAD implanta-
tion; designated t0), and in samples collected 12 days postoperatively (IQR: 10–16 days), 30
days postoperatively (IQR: 24–35 days), 83 days postoperatively (IQR: 55–103 days), and 300
days postoperatively (IQR: 237–374 days) (designated t1, t2, t3, and t4, respectively). Only
patients with HeartMate II and HeartWare LVAD implants were considered for the present
study. The surgical technique of device implantation, as well as medication use during follow-
up, is described elsewhere [15]. Written informed consent for biobanking of plasma samples
was received from all patients. Moreover, study procedures were approved by the ethics com-
mittee of the Ruhr University Bochum at Bad Oeynhausen, Germany.

Biochemical Analyses

Postoperative PTH, 25OHD, and FGF-23 levels were analyzed with the same test kits as the
previously published preoperative data [15]. Briefly, c-terminal FGF-23 was measured using an
ELISA test kit provided by Immutopics (San Clemente, CA). The reference range is< 100 RU/
ml. 25OHD levels (sum of 25OHD2 and 25OHD3), which are the generally accepted indicator
of vitamin D status, were analyzed by the autoanalyzer Liaison (DiaSorin,Stillwater, MN,
USA). According to the Institute of Medicine [16], 25OHD levels< 12 ng/ml (multiply by
2.496 to convert into nmol/l) are classified as deficient, and values between 12 and 20 ng/ml as
inadequate. The DiaSorin autoanayzer was also used instead of the previously used liquid chro-
matography tandem mass spectrometry method to measure preoperative and postoperative
1,25(OH)2D levels (sum of 1,25(OH)2D2 and 1,25(OH)2D3). This method requires only 75 μl
of sample volume instead of the 500 μl needed by liquid chromatography tandem mass spec-
trometry method. The limit of 1,25(OH)2D quantitation is 5 pg/ml (multiply by 2.4 to convert
into pmol/l), and we considered values below this limit as 4.5 pg/ml. The reference range is
considered to be 20 to 79 pg/ml. Intact PTH was measured by an ELISA test kit provided by
Biomerica, Irvine, CA, USA. Values between 10 and 60 pg/ml are usually classified as adequate.
Creatinine levels were determined by standard procedure and estimated glomerular filtration
rate (eGFR) was calculated by using the Modification of Diet in Renal Disease formula.

Statistics

Categorical variables are reported using the number (n) and percentage of observations. Since
calciotropic/phosphaturic hormones were non-normally distributed, as checked by the Kolmo-
gorov Smirnoff test, these data are presented as median and interquartile range (IQR). To
assess time effects on calciotropic/phosphaturic hormones, the Kruskal Wallis test was used. In
case of significant time effects, post-hoc analyses using the Mann-Whitney test were performed
to assess differences between specific time points. The Mann-Whitney test was also used to
assess differences at specific time points between different subgroups. Spearman’s rank sum
test was applied to assess interrelationships between eGFR, FGF-23, vitamin D metabolites,
and PTH. Multiple regression analysis was used to assess independent predictors of circulating
FGF-23 and 1,25(OH)2D levels. Non-normally distributed biochemical variables were log(e)
transformed prior to these analyses to achieve a normal distribution. P-values <0.05 were con-
sidered statistically significant. We applied the statistical software package SPSS, version 21
(IBM Corp, Armonk, NY, USA) to perform the analyses.

Results

The baseline and clinical characteristics of the patients are given in Table 1.
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Most patients were male. One third of the study cohort had HeartMate II implants and two-
thirds had HeartWare implants. The cause of HF was ischemic cardiomyopathy in the majority
of patients (55.1%), dilated cardiomyopathy in 39.1% and other causes in only 5.8%. Of the 69
patients, 5, 15, 30, and 19 patients had INTERMACS (Interagency Registry for Mechanically
Assisted Circulatory Support) level 1, 2, 3, and 4, respectively. Survivors and non-survivors did
not differ significantly according to gender distribution, body mass index, diagnosis, hemody-
namic function, INTERMACS levels, sort of device, hemoglobin levels, and white blood cell
counts. However, non-survivors were significantly older and had lower baseline eGFR values
than survivors.

In total, 264 blood samples (69 preoperative samples and 195 postoperative plasma samples)
could be analyzed. At t0, FGF-23 levels were above its reference range of 100 RU/ml and 1,25
(OH)2D levels were below its reference range of 20 pg/ml in 98.6% of patients (68 out of 69
patients) and 81.2% of patients (56 out of 69 patients), respectively. Moreover, elevated PTH
and deficient 25OHD levels were present at t0 in 19 (27.3%) and 40 patients (58.2%), respec-
tively. There were significant time effects on eGFR, FGF-23 and 1,25(OH)2D levels, but not on
PTH or 25OHD levels (Table 2). Post-hoc analysis revealed a transient increase in eGFR, a
transient decrease in FGF-23, and a continuous increase in 1,25(OH)2D values.

Table 1. Baseline characteristics of the patients at enrollment.

Parameter All Cases (n = 69) Survivors(n = 24) Non-Survivors(n = 45) P-value

Age, years 58 (48;65) 51.5 (45.3;57.0) 62 (53;67) 0.005

Male Gender, n (%) 62 (89.9) 21 (87.5) 41 (91.1) 0.687

Body Mass Index, kg/m2 24.7 (22.5;27.3) 24.1 (22.7;27.2) 25.2 (21.8;27.3) 0.940

Sort of Device

HeartMate II 23 (33.3) 5 (20.8) 18 (40.0) 0.179

HeartWare 46 (66.7) 19 (79.2) 27 (60.0) 0.179

Diagnosis

Dilated Cardiomyopathy 27 (39.1) 11 (45.8) 16 (35.6) 0.446

Ischemic Cardiomyopathy 38 (55.1) 11 (45.8) 27 (60.0) 0.314

Others 4 (5.8) 2 (8.3) 2 (4.4) 0.606

Hemodynamic Function

LVEF, % 20 (15;26) 20 (16;25) 20 (15;26) 0.862

LVEDD, mm 70 (63;74) 71 (63;81) 68 (63;73) 0.388

Cardiac Index, L/min/m2 2.4 (1.8;2.7) 2.1 (1.6;2.6) 2.4 (1.8;2.8) 0.467

PAP, mmHg 31 (22;39) 34 (23;40) 28 (22;38) 0.208

PVR, dyn�s/cm5 188 (128;280) 253 (150;327) 159 (118;269) 0.053

PCWP, mmHg 19 (12;24) 22 (16;24) 18 (10;29) 0.659

INTERMACS Level

1 5 (7.2) 0 (0) 5 (11.1) 0.155

2 15 (21.7) 9 (37.5) 6 (13.3) 0.031

3 30 (43.5) 10 (41.7)) 20 (44.4) >0.999

4 19 (27.5) 5 (20.8) 14 (31.1) 0.411

eGFR, ml/min/1.73m2 55.6 (39.4;81.5) 74.9 (49.7;95.6) 50.3 (34.6;70.1) 0.018

Hemoglobin (g/dl) 11.0 (10.1;12.8) 10.9 (9.6;12.0) 11.2(10.1;12.8) 0.508

White Blood Cell Counts, 109/l 8.6 (7.0;10.9) 9.4 (7.8 (12.4) 8.0 (6.7;10.8) 0.147

Data are expressed as median and interquartile range or number (percentage). Abbreviations: eGFR, estimated glomerular filtration rate; LVEF, left

ventricular ejection fraction; LVEDD, left ventricular enddiastolic diameter; PAP, pulmonary artery pressure; PVR, pulmonary vascular resistance; PCWP,

pulmonary capillary wedge pressure

doi:10.1371/journal.pone.0164459.t001
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Table 3 summarizes kidney function and hormone levels according to survival status: In
non-survivors, FGF-23 and 1,25(OH)2D did not change significantly post-interventionally. In
survivors, however, 1,25(OH)2D increased into the reference range. At t4, 1,25(OH)2D levels
were significantly higher in survivors than in non-survivors (P = 0.006). In both, non-survivors
and survivors, FGF-23 remained markedly elevated until t4. The FGF-23 levels did not differ
between survivors and non-survivors at any time point. eGFR values were significantly higher
in survivors than in non-survivors at baseline and t1 (P = 0.018 and 0.024), but not thereafter
(P>0.05).

Based on the 264 plasma samples, Table 4 summarizes the relationships between the mea-
sured hormones, kidney function, body mass index, and age: Circulating FGF-23 was inversely
related to eGFR and circulating 1,25(OH)2D, but was unrelated to PTH or 25OHD. Circulating
1,25(OH)2D was also positively correlated with 25OHD, and PTH, and was positively corre-
lated with eGFR. Multiple regression analysis revealed that FGF-23, eGFR, 25OHD, and PTH

Table 2. Kidney function and calciotropic and phosphaturic hormones before and at different time points after left ventricular assist device

implantation.

Parameter t0 t1 t2 t3 t4 P-value

n = 69 n = 51 n = 62 n = 47 n = 35

eGFR (ml/min/1.73m2) 56 (39;82) 82 (54;122)** 86.5 (57;107)*** 72 (41;100) 58 (35;81) <0.001

25OHD (ng/ml) 11.8 (8.9;17.9) 11.3 (8.5;16.8) 10.9 (8.0;14.7) 11.1 (8.3;14.6) 11.1 (8.3;14.6) 0.564

PTH (pg/ml) 42 (32;95) 68 (37;107) 48 (24;77) 52 (37;84) 52 (37;83) 0.179

1,25(OH)2D (pg/ml) 7.7 (4.9;13.7) 7.8 (4.9;11.4) 8.3 (4.9;15.5) 12.1 (6.1;21.6)* 12.1 (6.1;21.6)* 0.024

FGF-23 (RU/ml) 683 (298;2356) 964 (521;2023) 417 (294;984)* 438 (281;1106)** 535 (334;1506) 0.008

Data are expressed as median and interquartile range. Abbreviations: eGFR, estimated glomerular filtration rate; 25OHD, 25-hydroxyvitamin D, PTH,

parathyroid hormone; 1,25(OH)2D, 1,25-dihydroxyvitamin D; FGF-23, fibroblast growth factor-23; t0, before assist device implantation; t1,12 days post-

intervention; t2, 30 days post-intervention; t3, 83 days post-intervention; t4, 300 days post-intervention *,**,*** significant different vs. t0, *P<0.05;

**P<0.01;***P<0.001

doi:10.1371/journal.pone.0164459.t002

Table 3. Kidney function and calciotropic and phosphaturic hormones before and at different time points after left ventricular assist device

implantation, broken down by survival status.

Parameter t0 t1 t2 t3 t4 P-value

Non-Survivors (n = 45) n = 45 n = 32 n = 41 n = 32 n = 19

eGFR (ml/min/1.73m2) 50 (35;70)* 75 (41;107)** 84 (54;104) 71 (38;95) 50 (34;80) 0.013

25OHD (ng/ml) 10.8 (8.2;17.6) 11.0 (8.6;15.8) 11.0 (8.0;13.7) 10.3 (8.5;14.7) 11.1 (9.2;14.6) 0.988

PTH (pg/ml) 40 (32;95) 76 (37;129) 48 (22;73) 39 (20;62) 49 (21;65) 0.058

1,25(OH)2D (pg/ml) 7.7 (4.9;12.5) 7.3 (4.9;11.4) 7.5 (4.9;12.6) 10.3 (6.1;20.1) 10.6 (4.9;15.5) 0.599

FGF-23 (RU/ml) 612 (267;2356) 963 (381;2021) 409 (251;1007)* 435 (323;1217) 500 (334;1513) 0.173

Survivors (n = 24) n = 24 n = 19 n = 21 n = 15 n = 16

eGFR (ml/min/1.73m2) 75 (50;96)+ 107 (68;138)*,+ 95 (74;115)* 72 (58;111) 62 (49;84) 0.012

25OHD (ng/ml) 13.1 (11.1;21.5) 11.8 (7.7;18.5) 10.8 (7.6;16.0) 12.3 (7.1;13.5) 11.3 (6.5;14.3) 0.271

PTH (pg/ml) 49 (33;102) 54 (34;76) 46 (25;94) 73 (28;91) 64 (47;88) 0.696

1,25(OH)2D (pg/ml) 8.1 (4.9;20.0) 9.6 (4.9;11.5) 12.4 (4.9;18.1) 12.8 (8.8;34.7) 22.2 (7.6;28.0)*,++ 0.016

FGF-23 (RU/ml) 1055 (340;3301) 1204 (545;2297) 425 (339;957) 477 (249;795) 539 (212;1096) 0.062

Data are expressed as median and interquartile range. Abbreviations: eGFR, estimated glomerular filtration rate; 25OHD, 25-hydroxyvitamin D, PTH,

parathyroid hormone; 1,25(OH)2D, 1,25-dihydroxyvitamin D; FGF-23, fibroblast growth factor-23; t0, before assist device implantation; t1,12 days post-

intervention; t2, 30 days post-intervention; t3, 83 days post-intervention; t4, 300 days post-intervention *,** significant different vs. t0, *P<0.05;**P<0.01;

+,++ significant different vs. non-survivors at the same time point, +P<0.05; ++P<0.01

doi:10.1371/journal.pone.0164459.t003
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were independently related to circulating 1,25(OH)2D levels (multiple R2 = 0.305;P<0.001),
and that eGFR, age, 25OHD, and 1,25(OH)2D were independently related to circulating FGF-
23 levels (multiple R2 = 0.239;P = 0.001).

Discussion

The present study indicates transient effects of LVAD implantation on kidney function and
FGF-23 levels and a significant increase in circulating 1,25(OH)2D levels until the end of the
follow-up period. These latter results were largely influenced by those patients who survived
the first post-implant year, and were not seen in non-survivors.

To the best of our knowledge, this is the first publication to address the effect of LVAD
implants on FGF-23 and 1,25(OH)2D levels. Our data demonstrate that end-stage heart failure
patients have very high FGF-23 values and very low 1,25(OH)2D levels before and after LVAD
implantation. We [9,11] and others [8,10,12] have already reported that elevated FGF-23 levels
and low 1,25(OH)2D levels are both independently associated with poor clinical outcome in
HF patients.

The transient increase in eGFR values after LVAD implantation is in agreement with earlier
findings in end-stage heart failure patients with LVAD implants [17]. This transient effect on
kidney function was observed in both survivors and non-survivors and may at least in part
explain why FGF-23 levels did not continuously decline after LVAD implantation and
remained markedly elevated until t4, because the synthesis of FGF-23 is increased by elevated
serum phosphate levels [8], e.g. as a consequence of impaired kidney function [18]. However,
an alternative explanation for the lack of a permanent suppression of FGF-23 levels by LVAD
implants is also possible and may involve the altered energy and phosphate metabolism of the
failing heart. The heart consumes more energy than any other organ and the failing heart is
considered to be an engine out of fuel [19]. Even in HF patients without severe kidney disease
serum phosphate levels are elevated [1]. Under conditions of stress, cardiomyocytes are able to
synthesize FGF-23 by themselves [20]. Although patients with LVAD implants show some
metabolic improvements in glucose metabolism and tissue inflammation [21,22], other
derangements such as indices of myocardial fibrosis and impaired amino acid and creatine
metabolism persist [21,23]. Therefore, the elevated FGF-23 levels after LVAD implantation
may at least in part indicate a permanently impaired cardiac function.

In the present investigation, circulating 1,25(OH)2D levels improved slightly, but signifi-
cantly. Nevertheless, values remained on average below the reference range of 1,25(OH)2D pg/
ml. It is noteworthy that in our study well-known predictors of 1,25(OH)2D synthesis, such as
25OHD, kidney function, FGF-23, and PTH, could only partly explain the variations in circulat-
ing 1,25(OH)2D, and that 1,25(OH)2D improved significantly only in survivors, but not in non-

Table 4. Interrelationships between study variables according to Spearman’s rank correlation coefficient (n = 264).

eGFR 25OHD PTH 1,25(OH)2D FGF-23 BMI Age

eGFR - 0.016 -0.138* 0.271*** 0.376*** 0.215*** 0.292***

25OHD 0.016 - -0.158** 0.220*** 0.003 -0.107 0.310***

PTH -0.158** -0.158** - 0.269*** 0.003 0.178** 0.024

1,25(OH)2D 0.220*** 0.220*** 0.269*** - 0.404*** -0.054 0.076

FGF-23 -0.376** 0.003 0.003 -0.404*** - 0.064 -0.035

BMI -0.215** -0.107 0.178** -0.054 0.064 - 0.130*

Age 0.292*** 0.310*** 0.024 0.076 -0.035 0.130* -

*,**,*** significant different vs. t0, *P<0.05;**P<0.01;***P<0.001

doi:10.1371/journal.pone.0164459.t004
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survivors. Survivors were significantly younger and had higher baseline eGFR values than non-
survivors. An earlier study in cardiac surgical patients indicated an independent inverse associa-
tion between circulating 1,25(OH)2D levels and clinical outcome [24]. In contrast to the present
study, levels of 1,25(OH)2D were also inversely related to age in that earlier study. The mecha-
nisms being responsible for the increase in circulating 1,25(OH)2D in the survivors of the pres-
ent study remain unclear. Notably, circulating 1,25(OH)2D levels are also significantly and
inversely related to the inflammation marker CRP [25]. Since LVAD implantation seems to
reduce inflammatory processes [22], the slight improvement in circulating 1,25(OH)2D may be
the result of some metabolic improvements, at least in survivors. The present findings also con-
firm earlier results of an inverse association between postoperative 1,25(OH)2D levels and
1-year mortality in heart transplant recipients [26]. In that earlier study, mortality was highest at
1,25(OH)2D levels< 11 pg/ml (32.1%), intermediate at levels between 11 and 18 pg/ml (13.2%)
and lowest at levels> 18 pg/ml (3.7%). Similar to circulating 1,25(OH)2D, there are also time
effects of LVAD implants on natriuretic peptides in end-stage HF patients [27], and these pep-
tides can also provide information for identifying patients who are more likely to recover.

As mentioned before, 1,25(OH)2D plays a pivotal role in the intracellular handling of ion-
ized calcium [5,6] and 1,25(OH)2D administration can normalize the impaired contractility of
the myocardium that is observed under experimental vitamin D deficiency [7]. Although cardi-
omyocytes possess 1-α-hydroxylase activity [28], the heart muscle probably depends at least in
part on circulating 1,25(OH)2D levels. This assumption is supported by experimental data
demonstrating that overall deletion and cardiomyocyte-specific deletion of the vitamin D
receptor results in cardiac hypertrophy [29,30], whereas treatment of neonatal cardiomyocytes
with 1,25(OH)2D can partially suppress cardiac hypertrophy [30].

Similar to the present study, earlier studies have reported deficient circulating 25OHD lev-
els, e.g. levels< 12 ng/ml, in HF patients [1]. Moreover, significantly lower 1,25(OH)2D levels
were present in HF patients than in (elderly) control patients, and lowest 1,25(OH)2D levels
were observed in those patients with early onset of the disease [1]. The assumption that low lev-
els of 1,25(OH)2D contribute to poor clinical outcome in HF is in agreement with two meta-
analyses of randomized controlled trials: Vitamin D supplements improve clinical outcome in
HF patients [31], and increase circulating 1,25(OH)2D levels on average by 7.8 pg/ml (95% CI,
3.8–11.8 pg/ml) [32]. However, the present findings also illustrate that 1,25(OH)2D regulation
is complex. Therefore, we should not be too enthusiastic to believe that simple vitamin D sup-
plementation would be able to restore all vitamin D-related derangements in end-stage HF.

Our study has both strengths and limitations. The strengths include the prospective study
design, the multiple blood drawings at different time points, the measurement of various hor-
mones of calcium and phosphate metabolism, and the relatively large cohort of patients with
LVAD implants. One limitation is that even in survivors blood samples were not available for
all patients at all time points. A second limitation is the lack of a healthy control group or a
group with other cardiovascular diseases. A third limitation is that no biomarkers of heart fail-
ure such as brain natriuretic peptide or N-terminal pro-atrial natriuretic peptide were available
to assess the association between the severity of heart failure with the concentrations of the
measured hormones of calcium and phosphate metabolism. Moreover, no postoperative data
on hemodynamic parameters were available for this study.

In conclusion, LVAD implantation has only moderate effects on calciotropic and phospha-
turic hormones such as 1,25(OH)2D and FGF-23. Results are in general agreement with the
hypothesis that 1,25(OH)2D, and probably also FGF-23, plays a pivotal role in the pathogenesis
of HF and that mortality remain high in end-stage HF patients, despite LVAD implantation.
Future studies are necessary to investigate in more detail the associations of disease severity,
LVAD implantation, calciotropic and phosphaturic hormones, and clinical outcomes.
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