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Abstract

Background: To explore the role of apparent diffusion coefficient (ADC) histogram shape related parameters in
early assessment of treatment response during the concurrent chemo-radiotherapy (CCRT) course of advanced
cervical cancers.

Methods: This prospective study was approved by the local ethics committee and informed consent was obtained
from all patients. Thirty-two patients with advanced cervical squamous cell carcinomas underwent diffusion
weighted magnetic resonance imaging (b values, 0 and 800 s/mm2) before CCRT, at the end of 2nd and 4th
week during CCRT and immediately after CCRT completion. Whole lesion ADC histogram analysis generated
several histogram shape related parameters including skewness, kurtosis, s-sDav, width, standard deviation, as well as
first-order entropy and second-order entropies. The averaged ADC histograms of 32 patients were generated to visually
observe dynamic changes of the histogram shape following CCRT.

Results: All parameters except width and standard deviation showed significant changes during CCRT (all P < 0.05),
and their variation trends fell into four different patterns. Skewness and kurtosis both showed high early decline rate
(43.10 %, 48.29 %) at the end of 2nd week of CCRT. All entropies kept decreasing significantly since 2 weeks after CCRT
initiated. The shape of averaged ADC histogram also changed obviously following CCRT.

Conclusions: ADC histogram shape analysis held the potential in monitoring early tumor response in patients with
advanced cervical cancers undergoing CCRT.
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coefficient, Histogram shape
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Background
Nowadays, concurrent chemo-radiotherapy (CCRT)
remains the standard treatment protocol for advanced cer-
vical cancers [1]. How to monitor tumor response to CCRT
early and accurately turns out to be a major challenge in
the era of personalized medicine. The conventional method
to assess tumor response is to observe the changes in
tumor size using computed tomography (CT) or magnetic
resonance (MR) imaging. However, those morphologic
alterations significantly lag behind the biological and mo-
lecular changes that occur early in responders [2]. Diffusion
weighted (DW) imaging can noninvasively reflect the
mobility of water molecules in vivo. Apparent diffusion co-
efficient (ADC) histogram analysis can evaluate microstruc-
tural heterogeneity within the whole tumor [3]. Several
studies have shown that ADC histogram analysis was useful
in characterizing cervical cancer and normal cervix, distin-
guishing between well or moderately and poorly differenti-
ated cervical cancers and identifying squamous cell
carcinoma from adenocarcinoma of the cervix [4–7].
Histogram shape related parameters refer to the in-

dexes which can reflect the shape and general features of
the histogram distribution, including skewness, kurtosis,
s-sDav, width, standard deviation as well as entropy.
Unlike point-specific parameters such as percentiles or
ADCmin reflecting only a specific portion of the tumor,
histogram shape related parameters take the advantage
of showing characteristics of the entire tumor [8]. The
administration of effective non-surgical anti-cancer ther-
apy results in a series of pathophysiological reactions in-
volving necrosis, apoptosis and tumor lysis, the value
and distribution of ADC parameters within the tumor
will change as well [9]. Therefore, we hypothesized that
the histogram shape related parameters could be used to
monitor tumor response to anti-cancer therapies.
Numerous studies have proved that skewness and kur-
tosis were associated with treatment efficacy in various
tumors such as ovarian cancer [10], head and neck squa-
mous carcinoma (HNSCC) [11] and glioma [12]. But
there were few reports on the role of s-sDav, width and
standard deviation. In addition, as a new indicator,
entropy has been increasingly studied on tumor progno-
sis in recent years, and several studies have proved it as
one of prognostic factors of tumors such as prostate
cancers and osteosarcomas [13, 14].
Generally speaking, cell morphologic and microstruc-

tural heterogeneity of cervical cancer are greater than
normal cervix. Shape of the histogram of cervical cancer
was significantly different from that of normal cervix [5].
To our knowledge, there were no reports investigating
changes of ADC histogram shape for monitoring cer-
vical cancer response to CCRT. So, the purpose of this
study was to explore how histogram shape related pa-
rameters and the shape of averaged ADC histogram

changed during the CCRT course of advanced cervical
cancer and whether those changes could serve as early
biomarkers for therapeutic response.

Methods
Patients
This study was approved by the ethics committee of the
Institutional Review Board of Nanjing Drum Tower
Hospital (reference number: 20140116) and written in-
formed consents were obtained from all the patients.
Between October 2014 and June 2015, thirty-two
patients (mean age, 52 years; range, 24–76 years) were
recruited to this prospective study. The inclusion criteria
consisted of: (a) women aged over 18 years with biopsy-
proven cervical cancer and clinically diagnosed as
advanced cervical cancer (staged IIB to IVA based on
the International Federation of Gynecology and Obstet-
rics (FIGO) classification), (b) no previous treatment for
cervical cancer before the first MR examination, (c)
being scheduled to receive CCRT in our hospital, (d)
finishing the follow-up MR examinations on time.

Concurrent chemo-radiotherapy
All the patients were scheduled to undergo radiotherapy
(RT) in combination with concurrent nedaplatin-
containing chemotherapy. RT consisted of external beam
radiation therapy (EBRT) and intracavitary brachyther-
apy (ICBT). EBRT was delivered to the whole pelvis at
1.8-2.0 Gy daily, 5 days a week, with a total dose of 45–
50 Gy. From the last week of EBRT, ICBT was given
twice a week with a fraction dose of 5 Gy to point A
(2 cm above the distal end of the lowest cervix and 2 cm
lateral to the midline), and the total dose was 30–40 Gy.
The total radiation time was within 8 weeks. All the pa-
tients received chemotherapy (six cycles of weekly neda-
platin or four cycles of bi-weekly nedaplatin plus
paclitaxel/docetaxel) combined with EBRT.

MR imaging protocol
All the patients received MR examinations at four time
points: before CCRT, at the end of 2nd and 4th week
during CCRT and immediately after CCRT completion.
All the examinations were performed with a 3.0 T MR
scanner (Ingenia 3.0 T, Philips Healthcare, Best, the
Netherlands) with a 16-channel torso phased-array body
coil. Patients were asked to take clyster 2–3 h before the
MR examination in order to reduce artifacts induced by
gas and feces within the rectum. Axial DW imaging was
performed with a non-breath-hold spin-echo echo-planar-
imaging sequence (b value, 0 and 800 s/mm2; repetition
time/echo time, 3523–6000 ms/shortest ms; slice thick-
ness/gap, 4 mm/1 mm; matrix size, 132 × 157; field of
view, 24 × 24 cm; number of slices: 24; number of signal
averaged, 2). Besides, axial T1-weighted high resolution
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isotropic volume examination sequence, axial and sagittal
T2-weighted turbo spin-echo sequences, axial and sagittal
T2-weighted spectral attenuated inversion recovery se-
quences, axial and sagittal contrast enhancerd-T1 high
resolution isotropic volume examination sequences were
also acquired. The total MR examination cost about thirty
minutes. All the situations and MR parameters were kept
exactly the same during the whole follow-up process.

Post processing and ADC histogram shape related
parameters acquisition
The DW images were loaded into a workstation (Ex-
tended MR Workspace 2.6.3.4; Philips Medical Systems,
Best, the Netherlands) and ADC maps were generated
automatically using the mono-exponential model. Two
radiologists (XX and XX) with 3 and 7 years’ experience
in gynecological imaging performed the histogram ana-
lysis, and the workflow is described as follows:

(1)DW images and the corresponding ADC maps were
imported into our in-house software (Image
Analyzer 1.0, China).

(2)The two radiologists were informed of the diagnosis
and clinical treatment information, and they
together manually drew regions of interest (ROIs)
slice by slice on the DW images (b = 800 s/mm2)
referring to other sequences successively in
accordance with the order of follow-up. Each ROI
covered the edge of the lesion on each slice avoiding
obvious artifacts. At time point 4, given a complete
remission, we measured five identical round
ROIs (each 5 mm2) in the former tumor region
(not including any peri-cervical tissue) at time
point 3. Similarly, if there was no obvious residual
lesion at time points 3 and 4, we measured several
round ROIs in the former tumor region at time point
2. The outlines of ROIs drawn on each slice would
be automatically copied to the exact same location
of the corresponding ADC maps in real time.

(3)After selecting all the ROIs that covered the entire
volume of the lesion, a button was clicked in our
software, and a set of histogram shape related
parameters as well as tumor volume were generated
automatically including: (a) skewness, a measure
of the asymmetry of the ADC value distribution
around its mean; (b) kurtosis, a measure of how
peaked a histogram is; (c) s-sDav, width of the ADC
histogram corresponding to half of the histogram
peak; (d) width, width between the 10th and 90th
percentile of the ADC histogram; (e) standard
deviation, the square root of the variance of all
ADC values within VOI; (f ) entropy, a measure of
the randomness of ADC value distribution in an
ADC histogram.

There were two types of entropy calculated with our
software, first-order entropy and second-order entropies.
The definition and formulas of the two types of entropy
are described as follows:
First-order entropy describes the distribution variation

of grey levels over the VOI, which was calculated with
the following formula:

entropy ¼ −
XG−1

i¼0

pi log pið Þ

G is the number of gray levels within the VOI. pi rep-
resents the probability of grey level i across the VOI and
is computed by dividing the number of the grey level i
by the total pixel number within the VOI. The larger the
gray levels’ variation is, the greater the first-order
entropy will be.
Second-order entropy represents the frequency of a

pair of pixels with a certain distance in a certain direc-
tion occurring in the image, and can provide the spatial
information of ADC distribution. Second-order entropy
was calculated with the following formula:

entropy Hð Þ ¼ −
XG−1

i¼0

XG−1

j¼0

p i; jð Þ log p i; jð Þð Þ

G is the number of gray levels within the VOI. p(i, j)
represents the probability of a pair of pixels with grey
levels i and j occurs in the original image. And those
two pixels are spatially dependent in the original image.
Our in-house software calculated 12 s-order entropies
deriving from different directions (entropy(H)1–12), as
well as the averaged value of the 12 s-order entropies,
namely entropy(H)mean.

Generation of the averaged ADC histogram
In order to visually observe dynamic changes of the
ADC histogram shape, we used the software (Matlab,
R2010b; Mathworks, Natick, Mass) to generate the aver-
aged ADC histogram and its fitting curve of each time
point. The workflow is described as follows: for each
time point, all ADC values of each patient were divided
into a number of isometric intervals with a bin size of
50 × 10−6 mm2/s. Then we calculated the averaged fre-
quencies in the same interval of the 32 patients. All the
ADC intervals and their corresponding averaged fre-
quencies were imported into the software to generate
the averaged ADC histogram as well as the fitting curve.

Treatment outcome evaluation
Response to CCRT was determined by the shrinkage of
tumor size. The longest diameter of the tumor was mea-
sured on a specific slice of axial T2-weighted images
with the largest tumor section. According to Response
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Evaluation Criteria in Solid Tumors (RECIST) [15],
complete response (CR) was concluded if there was
no residual tumor; partial response (PR) was con-
cluded if the longest diameter of the tumor was less
than 70 % of the original size; progressive disease
(PD) was concluded if there was at least a 20 % in-
crease in the longest diameter of tumor in compari-
son with the original size; stable disease (SD) was
concluded if there was neither sufficient shrinkage to
qualify for PR nor sufficient increase to qualify for
PD. After CCRT, all the patients in this study
achieved efficient local control. The patients and
treatment characteristics are shown in Table 1.

Statistical analysis
Statistical analysis was performed with SPSS 13.0 soft-
ware (SPSS Inc., Chicago, IL). Changes of the histogram
shape related parameters with time were tested using
variance analysis of repeated measurements. Least sig-
nificant difference method was adopted for further com-
parison between parameters at each two time points. All
the P values were two-tailed, and P values less than 0.05
were considered statistically significant.

Results
Tables 2 and 3 list the mean values of ADC histogram
shape related parameters at four time points. The vari-
ation trends of those parameters fell into four patterns:
(i) rapid descending type; (ii) platform-descending type;
(iii) platform-rising type; (iv) platform type.

(i) The rapid descending type, including skewness and
kurtosis, showed quick and significant decrease from
pre-CCRT to the end of 4th week of CCRT (Fig. 1a, b).

The early decline rate of skewness and kurtosis
were 43.10 % and 48.29 % at time point 2,
respectively.

(ii) The platform-descending type, including first-
order entropy and all second-order entropies,
showed no significant early change followed by
a progressive and remarkable decrease after time
point 2 (Fig. 1c, d).

(iii) The platform-rising type, involving s-sDav, remained
stable followed by a significant increase after time
point 3.

(iv) The platform type, including width and standard
deviation, remained stable during the whole course
of CCRT.

As treatment continued, the averaged ADC histogram
gradually moved toward the right and turned into a
more symmetrical shape with conspicuous descending
peak (Fig. 2).
The mean values of tumor longest diameter and vol-

ume are also shown in Table 2. We found that both
tumor size and volume showed a decreasing trend
throughout CCRT, which was consistent with that of
skewness, kurtosis and entropies (Tables 4 and 5). In
addition, we failed to detect any significant difference of
any ADC histogram shape related parameters of healthy
cervical tissue between any two time points (Table 6).

Discussion
In this study, we investigated dynamic changes of ADC
histogram shape related parameters following CCRT in
patients with advanced cervical squamous cell carcin-
omas, and found that tumor response (CR or PR) was
associated with decrease of skewness, kurtosis and
entropy during CCRT. Those changes reflected on the
averaged ADC histogram as a shift toward the right and
adoption of a more symmetrical shape with conspicuous
descending peak.
Our study showed that skewness decreased rapidly as

early as 2 weeks after CCRT initiated. King et al.’s study
on HNSCC also revealed that skewness decreased
significantly within 2 weeks after chemotherapy [11].
However, some other studies reported slightly different
results. Kyriazi et al.’s study on ovarian cancer and Tyagi
et al.’s study on oropharyngeal squamous carcinoma
with metastatic lymph nodes both found that skewness
first increased and then decreased at the later stage of
therapy [10, 16]. Theoretically, a positive skewness
means a histogram curve with a big left shoulder, sug-
gesting a large portion of highly cellular component,
while a negative skewness means a histogram curve with
a big right shoulder, suggesting a substantial portion of
cystic or edematous tissue [17]. Guan and Lin et al. have
demonstrated that cervical cancer had a positive

Table 1 Patients of cervical cancers and treatment
characteristics

Clinical features Values

No. of patients 32

Mean age{range} 52 years {24–76}

FIGO stage

II 18 (56.3 %)

III 9 (28.1 %)

IV 5 (15.6 %)

Histological type

Squamous cell carcinoma 32 (100 %)

Adenocarcinoma 0

Treatment outcome

Complete response 27 (84.4 %)

Partial response 5 (15.6 %)

Note: Numbers in parentheses are percentages
FIGO = the International Federation of Gynecology and Obstetrics
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skewness while the skewness of normal cervix was much
lower and close to 0 [5, 7]. Effective treatment results in
a gradual disappearance of tumor’s high cellularity and a
more homogeneous distribution of ADC values within
the tumor, which makes skewness decrease as we have
observed in this study.
As for kurtosis, we found that its change was com-

pletely consistent with the change of skewness. In our
study and King et al.’s study, kurtosis showed a signifi-
cant decrease since the early stage of treatment [11],

while Kyriazi and Tyagi et al. both found that kurtosis
first increased and then decreased at the later stage of
therapy [10, 16]. Higher kurtosis indicates a sharper
peak and wider tails of the distribution of ADC values.
Guan et al. have demonstrated that kurtosis of normal
cervix was significantly lower than that of cervical can-
cer because normal tissues were relatively more homo-
geneous [5]. After receiving effective therapy, ADC
values of the tumor tended to be evenly distributed
across the range like normal tissues, which made kur-
tosis go down following therapy. Studies of kurtosis on
cervical cancer are still limited. Downey and Lin et al.
both demonstrated that kurtosis showed no value for
cervical cancer classification or grading while it had a
certain value for differentiating cervical cancer from nor-
mal cervix [4, 7]. Our study firstly proved that kurtosis
had potential as a prognostic biomarker for cervical
cancer.
Our study also firstly investigated changes of en-

tropy during CCRT in cervical cancer and found that
first-order entropy showed a stable decline after the
end of 2nd week of CCRT. Several studies found that
malignant tumors had greater first-order entropy
compared to benign tissues for they were more het-
erogeneous on cellular morphological level [18, 19].
All responders showed decreasing first-order entropy
in our study, indicating that cervical cancer cell mor-
phological heterogeneity was steadily decreasing fol-
lowing effective CCRT.
Second-order entropy is a texture based statistical

measure of the randomness in an ADC histogram which
not only reflects distribution of ADC values but also
covers the spatial information, thus takes more advan-
tages in analyzing tumor microstructural heterogeneity
than first-order entropy [20]. Our in-house software

Table 2 ADC histogram shape related parameters during the CCRT course in patients with advanced cervical cancers

Parameter Time point 1 Time point 2 Time point 3 Time point 4

Skewness 1.16 ± 0.53 0.66 ± 0.57* 0.17 ± 0.30§ 0.04 ± 0.16

Kurtosis 2.34 ± 1.56 1.21 ± 1.16* 0.30 ± 0.51§ 0.11 ± 0.10

First-order entropy 6.22 ± 0.45 5.74 ± 0.89 4.17 ± 1.40§ 3.38 ± 1.19#

Entropy(H)mean 10.22 ± 2.50 9.69 ± 2.36 6.93 ± 2.43§ 5.55 ± 1.88#

s-sDav (×10
−6 mm2/s) 555.43 ± 453.93 623.00 ± 419.74 801.11 ± 591.85 1083.86 ± 560.68#

Width (×10−6 mm2/s) 705.43 ± 276.28 648.39 ± 249.47 714.68 ± 353.48 649.79 ± 523.89

Standard deviation 294.68 ± 94.37 271.56 ± 91.24 277.81 ± 134.01 270.68 ± 132.35

Longest diameter (cm) 4.49 ± 1.09 3.19 ± 1.13* 1.55 ± 1.40§ 0.30 ± 0.69#

Volume (cm3) 30.95 ± 23.97 15.74 ± 16.46* 3.11 ± 7.65§ 0.34 ± 0.79

Note: ADC apparent diffusion coefficient, CCRT concurrent chemo-radiotherapy
Data are presented as mean ± standard deviation
* P < 0.05: data show statistical difference between time point 2 and 1; §P < 0.05: data show statistical difference between time point 3 and 2; #P < 0.05: data show
statistical difference between time point 4 and 3
Time point 1: before CCRT; Time point 2: at the end of 2nd week of CCRT; Time point 3: at the end of 4th week of CCRT; Time point 4: immediately after
CCRT completion

Table 3 Second-order entropies during the CCRT course in
patients with advanced cervical cancers

Second-order
entropy

Time
point 1

Time
point 2

Time
point 3

Time
point 4

entropy(H)1 10.24 ± 2.53 9.15 ± 2.89 5.06 ± 3.49§ 3.12 ± 2.72#

entropy(H)2 10.27 ± 2.53 9.18 ± 2.89 5.10 ± 3.53§ 3.22 ± 2.74#

entropy(H)3 10.25 ± 2.53 9.14 ± 2.96 4.96 ± 3.63§ 3.08 ± 2.78#

entropy(H)4 10.27 ± 2.49 9.18 ± 2.85 5.16 ± 3.41§ 3.28 ± 2.59#

entropy(H)5 10.28 ± 2.50 9.21 ± 2.87 5.20 ± 3.42§ 3.38 ± 2.62#

entropy(H)6 10.25 ± 2.52 9.16 ± 2.94 5.09 ± 3.47§ 3.25 ± 2.66#

entropy(H)7 10.24 ± 2.50 9.13 ± 2.87 4.96 ± 3.43§ 3.09 ± 2.55#

entropy(H)8 10.25 ± 2.51 9.15 ± 2.90 5.09 ± 3.34§ 3.32 ± 2.52#

entropy(H)9 10.22 ± 2.53 9.11 ± 2.98 4.88 ± 3.55§ 3.19 ± 2.57#

entropy(H)10 10.45 ± 2.42 9.98 ± 2.05 6.66 ± 2.66§ 5.07 ± 2.28#

entropy(H)11 10.18 ± 2.61 9.67 ± 2.35 6.86 ± 2.53§ 5.40 ± 2.07#

entropy(H)12 10.45 ± 2.43 9.98 ± 2.06 6.65 ± 2.71§ 5.19 ± 2.19#

Note: ADC apparent diffusion coefficient, CCRT concurrent chemo-radiotherapy
Data are presented as mean ± standard deviation
§P < 0.05: data show statistical difference between time point 3 and 2;
#P < 0.05: data show statistical difference between time point 4 and 3
Time point 1: before CCRT; Time point 2: at the end of 2nd week of CCRT;
Time point 3: at the end of 4th week of CCRT; Time point 4: immediately after
CCRT completion
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Fig. 1 The variation trends of four kinds of ADC histogram parameters during concurrent chemo-radiotherapy (CCRT) in patients with cervical
cancers. a, b Skewness and kurtosis show a quick and significant decrease from pre-CCRT to the end of 4th week of CCRT. c, d First-order entropy
and entropy(H)mean show no significant early change followed by a progressive and remarkable decrease after 2nd week of CCRT. *: P < 0.05. time
point 1: before CCRT; time point 2: at the end of 2nd week of CCRT; time point 3: at the end of 4th week of CCRT; time point 4: immediately after
CCRT completion

Fig. 2 Dynamic changes of the averaged apparent diffusion coefficient (ADC) histogram and the corresponding histogram curve of 32 patients
with advanced cervical cancers during concurrent chemo-radiotherapy (CCRT) (with a bin size of 50 × 10−6 mm2/s). a The averaged ADC histogram
changes continuously during the course of CCRT. b The corresponding histogram curve gradually moves toward the right and turns into a more
symmetrical shape with conspicuous descending peak as treatment continues. time point 1: before CCRT; time point 2: at the end of 2nd week of
CCRT; time point 3: at the end of 4th week of CCRT; time point 4: immediately after CCRT completion
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calculated 12 s-order entropies deriving from different
directions as well as their averaged value. Changes of
those second-order entropies proved the same as that
of the first-order entropy, indicating a steady decline
in cervical cancer microstructural heterogeneity fol-
lowing effective CCRT. As a main part of texture
analysis, applications of second-order entropy on
tumor have grown in recent years. Ryu et al. reported
that second-order entropies based on the entire
tumor volume could be useful for evaluating glioma
grade and their diagnostic accuracy was significantly
higher than that of the 5th percentile [8]. In 2013,
Foroutan et al. first applied second-order entropy on
tumor prognosis and demonstrated that second-order
entropy was able to predict treatment response fol-
lowing cancer therapy at earlier time points than
tumor volume changed [14].
To sum up, skewness, kurtosis and entropy all kept

decreasing, indicating that the distribution of ADC
values became less heterogeneous following CCRT, along
with a good response to therapy. Visually, those changes
reflected on the averaged ADC histogram which

gradually moved toward the right and turned into a
more symmetrical shape with conspicuous descending
peak following effective therapy.
s-sDav represents width of the waist of ADC histo-

gram. In this study, s-sDav’s increase occurred at a very
late stage of CCRT. Therefore, it may not be a suitable
indicator for early detection of cervical cancer treatment
response. To the best of our knowledge, s-sDav has been
reported only on the diagnosis of hypoxic ischemia
encephalopathy [21] and it has never been applied in
cancer research previously.
There was only one study on width related to tumor

therapy reported by Nishiguchi et al. who found that
width of ADC histogram in meningioma increased sig-
nificantly after embolization therapy [22]. While in our
study, width of cervical cancer didn’t show any signifi-
cant change during CCRT.
Our study firstly found standard deviation of cer-

vical cancer remained stable during CCRT. Changes
of standard deviation are closely related to tumor
pathological changes in the process of anti-cancer
therapy. After effective treatment, if solid components
gradually turn into tissues with lower cellularity, ADC
values will distribute more homogeneously, which re-
sults in a lower standard deviation. However, if there
are fibrosis or residual solid components existing after
treatment, standard deviation may increase instead.
Thus, standard deviation may not be stable and reli-
able enough to serve as a prognostic biomarker for
cervical cancer.
Our study had several limitations. Firstly, the sample

size was relatively small. Only 32 patients were enrolled
and all of them were responders (27 as CR and 5 as PR),
lacking nonresponders who were classified as SD or PD
as a control. Due to limited cases of PR, we failed to
compare the differences of ADC histogram parameters
between CR and PR. It has been reported that ADC
values could predict the outcome after CCRT in
advanced cervical cancers [2, 23, 24]. For example,
Liu et al. [23] and Kuang et al. [2] both demonstrated
that the ADC change percentage of CR group at early
follow-up time was greater than that of PR group.
However, there are still some inconsistencies. Liu et
al. [24] reported that baseline ADC value of CR
group was significantly lower than that of PR, while
Kuang et al. [2] failed to detect any significant differ-
ence of baseline ADC values among CR, PR and SD
groups. Further studies with a larger number of pa-
tients are needed. Secondly, there may be a selection
bias due to the inclusion of only squamous cell car-
cinomas in our study. Thirdly, we did not use the
pathologic response as reference standard, and we
could not correlate changes of certain parameters
with pathological findings. Fourthly, entropy was

Table 5 Correlations between the change of tumor volume
and ADC parameters during CCRT in patients with cervical
cancers

Δ Parameter Correlation
coefficient

P

Change of tumor volume skewness 0.872 <0.001*

kurtosis 0.947 <0.001*

s-sDav −0.234 0.231

width −0.309 0.109

standard deviation −0.203 0.300

first-order entropy 0.147 0.456

entropy(H)mean −0.055 0.782

Note: *, P < 0.05. Δ Parameter = parameter values at time point 4 – parameter
values at time point 1

Table 4 Correlations between the change of tumor size and
ADC parameters during CCRT in patients with cervical cancers

Δ Parameter Correlation
coefficient

P

Change of tumor size skewness 0.632 0.006*

kurtosis 0.760 <0.001*

s-sDav 0.012 0.963

width −0.110 0.673

standard deviation −0.074 0.779

first-order entropy 0.664 0.004*

entropy(H)mean 0.642 0.005*

Note: * P < 0.05. Δ Parameter = parameter values at time point 4 – parameter
values at time point 1
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regarded as one of histogram shape related parameters
though it was not a pure morphological parameter. Fifthly,
tumor response was only based on tumor diameter meas-
urement immediately after CCRT completion, lacking
long-term follow up outcomes.

Conclusions
In conclusion, our study showed that the whole-lesion
ADC histogram shape analysis hold potential for the
early detection of cervical cancer response to CCRT, and
may provide an opportunity for clinicians to adjust
therapeutic strategies such as radiation dose in time to
develop a more individualized treatment.
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