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Automatic speech emotion recognition (SER) is a challenging component of

human-computer interaction (HCI). Existing literaturesmainly focus on evaluating the SER

performance by means of training and testing on a single corpus with a single language

setting. However, in many practical applications, there are great differences between the

training corpus and testing corpus. Due to the diversity of different speech emotional

corpus or languages, most previous SER methods do not perform well when applied in

real-world cross-corpus or cross-language scenarios. Inspired by the powerful feature

learning ability of recently-emerged deep learning techniques, various advanced deep

learning models have increasingly been adopted for cross-corpus SER. This paper aims

to provide an up-to-date and comprehensive survey of cross-corpus SER, especially

for various deep learning techniques associated with supervised, unsupervised and

semi-supervised learning in this area. In addition, this paper also highlights different

challenges and opportunities on cross-corpus SER tasks, and points out its future trends.
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INTRODUCTION

Emotion recognition is an important direction in psychology, biology, and computer science, and
has recently received extensive attention from the engineering research field. One of the starting
points for emotion recognition is to assist in designing more humane human-computer interaction
(HCI) methods, since emotion plays a key role in the fields of HCI, artificial intelligence (Cowie
et al., 2001; Ramakrishnan and El Emary, 2013; Feng and Chaspari, 2020).

Traditional HCI is mainly carried out through keyboard, mouse, screen, etc. It only pursues
convenience and accuracy, and cannot understand and adapt to people’s emotions or mood. And
if the computer lacks the ability to understand and express emotions, it is difficult to expect the
computer to have the same intelligence as human beings. Moreover, it is also difficult to expect HCI
to be truly harmonious and natural. Since the communications and exchanges between humans
are natural and emotional, people naturally expect computers to have emotional capabilities in the
procedure of HCI. The purpose of affective computing (Picard, 2010) is to endow computers the
ability to observe, understand, and generate various emotional features similar to humans, and
ultimately enable computers to interact naturally, cordially, and vividly like humans.

Emotion recognition is one of the most basic and important research subjects in
the field of affective computing. Speech signals convey human emotional information
most naturally. At present, speech emotion recognition (SER), which aims to classify
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human emotions from affective speech signals, has become a
hot research topic in the fields of signal processing, pattern
recognition, artificial intelligence, HCI, etc. Studying on SER has
been going on for more than two decades (Schuller, 2018) and
it has been applied to HCI (Cowie et al., 2001; Fragopanagos
and Taylor, 2005), affective robots (Samani and Saadatian, 2012;
Zhang et al., 2013), call-centers (Morrison et al., 2007), e-learning
system (Li et al., 2007), computer games (Yildirim et al., 2011),
depression severity classification (Harati et al., 2018), detection
of autism spectrum disorder (ASD) (Lin et al., 2020), and so on.

During the past two decades, tremendous efforts have been
made to focus on SER. Several survey related to SER can be
found in El Ayadi et al. (2011), Anagnostopoulos et al. (2015),
and Akçay and Oguz (2020). Note that the majority of existing
SER systems are trained and evaluated on a single corpus and a
single language setting. However, in many practical applications,
there are great differences between training corpus and testing
corpus. For example, the training and testing corpora come from
two (or more) different languages, cultures, distribution modes,
data scales, and so on. These differences across corpora result in
significant idiosyncratic variations impeding the generalization
of current SER techniques, thereby yielding an active research
subject called cross-corpus SER in the field of SER.

Generally, in a basic cross-corpus SER system there are two
crucial steps: emotion classifier and domain-invariant feature
extraction. In the following, we will introduce these two steps of
cross-corpus SER in brief.

As for emotion classifier, various traditional machine learning
methods can be utilized for cross-corpus SER. The representative
emotion classification methods contain linear discriminant
classifier (LDC) (Banse and Scherer, 1996; Dellaert et al., 1996),
K-Nearest Neighbor (Dellaert et al., 1996), artificial neural
network (ANN) (Nicholson et al., 2000), support vectormachines
(SVM) (Kwon et al., 2003), hidden Markov models (HMM)
(Nwe et al., 2003), Gaussian mixture models (GMM) (Ververidis
and Kotropoulos, 2005), sparse representation classification
(SRC) (Zhao and Zhang, 2015) and so on. Nevertheless, each
classifier has its own advantages and disadvantages. The classifier
combination method integrating the advantages of multiple
classifiers (Morrison et al., 2007; Albornoz et al., 2011) began to
draw researchers’ attention.

Domain-invariant feature extraction, which aims to learn
generalized feature representations of affective speech that are
invariant across corpora, is another critical step in a cross-
corpus SER system. So far, a variety of domain-invariant feature
extraction methods have been explored for cross-corpus SER.
According to the fact that the used data label information
is whether included or not, existing domain-invariant feature
extraction techniques for cross-corpus SER can be divided into
three categories: supervised learning, semi-supervised learning,
and unsupervised learning. Supervised learning is defined by its
use of labeled sample data. In terms of labeled inputs and outputs,
the used algorithm could measure its performance over time.
In contrast, unsupervised learning aims to discover the inherent
structure of unlabeled sample data without the demand for
human intervention. Semi-supervised learning characterizes a
type of the learning algorithms which try to learn from unlabeled

and labeled sample data, generally supposing that the samples
come from the same or similar distribution.

In the early cross-corpus SER literatures, to alleviate the
problem of corpus-specific discrepancy for generalization,
a variety of supervised, unsupervised, and semi-supervised
techniques have been already developed on the basis of
several typical hand-crafted low-level descriptors (LLDs), such
as prosodic features, voice quality features and spectral
features (Luengo et al., 2010; Zhang and Zhao, 2013),
the INTERSPEECH-2009 emotion challenge (384 parameters)
(Schuller et al., 2009b), the INTERSPEECH-2010 paralinguistic
challenge (1,582 parameters) (Schuller et al., 2010a), the
INTERSPEECH-2013 computational paralingusitics challengE
(ComParE) set (6,373 parameters) (Schuller et al., 2013), the
Geneva minimalistic acoustic parameter set (GeMAPS) (88
parameters) (Eyben et al., 2016), and so on. In particular, after
extracting hand-crafted LLDs, for simply eliminating differences
of cross-corpus acoustic features, corpus-based normalization in
a supervised (Schuller et al., 2010b) or unsupervised manner
(Zhang et al., 2011) was presented. In addition, several more
sophisticated methods were also developed to learn common
feature representations from the extracted hand-crafted LLDs,
by means of supervised-based (Song et al., 2016b) or semi-
supervised based matrix factorization (Luo and Han, 2019),
supervised-based (Mao et al., 2017), or unsupervised-based
domain adaption (Deng et al., 2017), etc. In recent years, the
current state-of-art technique is to employ an adversarial learning
scheme in an unsupervised (Abdelwahab and Busso, 2018)
or semi-supervised (Latif et al., 2020) manner for learning a
domain-invariant acoustic feature representation on cross corpus
SER tasks.

Although the above-mentioned hand-crafted acoustic features
associated with supervised, unsupervised, and semi-supervised
learning approaches can produce good domain-invariant
features for cross-corpus SER, they are still low-level and not
highly discriminative. It is thus desirous to obtain high-level
domain-invariant feature representations for cross-corpus SER.

To achieve high-level domain-invariant feature
representations for cross-corpus SER, the recently-emerged deep
learning (LeCun et al., 2015) methods may present a possible
solution. The representative deep leaning techniques contain
deep belief networks (DBNs) (Hinton and Salakhutdinov, 2006),
convolutional neural networks (CNNs) (Krizhevsky et al.,
2012), recurrent neural networks (RNNs) (Elman, 1990) and
its variant called long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997), autoendcoders (AEs) (Ballard,
1987; Schmidhuber, 2015) and so on. So far, deep learning
methods have shown good performance on object detection
and classification (Wu et al., 2020), natural language processing
(Otter et al., 2020), speech signal processing (Purwins et al.,
2019), multimodal emotion recognition (Zhou et al., 2021), and
so on, due to its strong feature learning ability.

Inspired by the lack of summarizing recent advances in
various deep learning techniques for cross-corpus SER, this paper
aims to present an up-to-date and comprehensive survey of
cross-corpus SER, especially for various deep learning techniques
associated with supervised, unsupervised and semi-supervised
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learning in this area. In addition, this paper highlights different
challenges and opportunities on cross-corpus SER tasks, and
point out its future trends. To the best of our knowledge, we
are the first attempt to provide such a review for deep cross-
corpus SER.

The organization of this paper is as follows. A review of
speech emotion databases is presented at first. Then, we simply
review supervised, unsupervised, and semi-supervised learning
in details. Next, we review traditional methods for cross-corpus
SER. We show recent advances of the applications of deep
learning techniques incorporated with supervised, unsupervised
and semi-supervised learning for cross-corpus SER. Next, we
give a summary of open challenge and future directions. Finally,
concluding remarks are provided.

SPEECH EMOTION DATABASES

For cross-corpus SER, a variety of speech emotion databases have
been developed. Table 1 presents a brief summary of existing
speech emotion databases. In this section, we describe briefly
these existing speech emotion databases, as described below.

DES
The Danish Emotional Speech (DES) (Engberg et al., 1997)
dataset contains 5,200 audio utterances, simulated by four
professional actors (2 females, 2 males). The simulated utterances
consist of five emotional states: anger, happiness, neutral, sadness,
and surprise. The audio recordings from each actor are composed
of two isolated words, nine sentences and two passages of fluent
speech materials. The whole audio utterances last about 30min
in duration. For a listening test, 20 listeners were employed.

SUSAS
The Speech Under Simulated and Actual Stress (SUSAS) (Hansen
and Bou-Ghazale, 1997) dataset is a speech under stress corpus
including five kinds of stress and feelings. It contains a highly
confused collection of 35 aircraft communication vocabulary
words. The researchers invited 32 speakers (13 females, 19 males)
to produce more than 16,000 utterances. Simulated speech under
stress is composed of ten stress styles such as speaking style, single
tracking task, and Lombard effect domain.

SmartKom
The SmartKom (Steininger et al., 2002) dataset is a multimodal
corpus consisting of Wizard-Of-Oz dialogues in German and
English from 70 subjects (31 males and 39 females). This
dataset includes several audio tracks and two video tracks
(face, side of body). The main purpose of this dataset is to
conduct empirical researches on human-computer interaction in
a variety of tasks and technological settings. This dataset contains
several sessions, each of which has a one-person recording of
about 4.5min. All the collected 3,823 utterances were annotated
with seven emotional states: neutral, joy, anger, helplessness,
contemplation, surprise.

FAU-AIBO
The FAU-AIBO (Batliner et al., 2004) corpus was collected
from the recordings of children interacting with the Aibo pet
robot. This dataset consists of spontaneous German speech. The
children were made to believe that Aibo was reacting to their
orders, while the robot was effectively controlled by a human
operator. This dataset were obtained from 51 children (21 males,
30 females) ranging from 10 to 13 years old. The audio was
recorded by using a DAT recorder (16-bit, 16 kHz). The audio
recording is automatically segmented into “tums” using a 1 s
pause. Five annotators were asked to listen to the tums in
order and label each word individually as neutral (default) or
the other ten categories. For annotation, the majority voting
(MV) was employed. Finally, the utterance number for MV is
4,525, and contains 10 affective states: happy, surprise, stressed,
helplessness, sensitivity, irritation, anger, mother, boredom,
and condemnation.

EMO-DB
The Berlin emotional speech database (EMO-DB) (Burkhardt
et al., 2005), covers seven emotional states: anger, boredom,
disgust, fear, happiness, neutral, and sadness. Verbal contents
come from 10 German (5 males and 5 females) pre-defined
neutral utterances. Ten professional actors were invited to speak
each utterance in all seven emotional states. EMO-DB consists
of approximately 535 sentences from seven emotions. The audio
files were recorded with a sampling rate of 16 kHz and a 16-bit
resolution and mono channel. The duration for all audio files are
average 3 s.

MASC
The Mandarin affective speech corpus (MASC) (Wu et al.,
2006) consists of 68 native speakers (23 women, 45 man) and
five affective states: neutral, anger, pride, panic and sadness.
Each participant reads 5 phrases and 10 sentences for 3 times
for every emotion, thereby yielding 25,636 utterances. These
sentences involves in all the phonemes in Chinese language. The
purpose of this corpus is to investigate the prosody and linguistic
information of affective expressions in Chinese. Additionally,
prosody feature analysis and speaker identification baseline
experiments were also carried out.

eNTERFACE05
The eNTERFACE05 (Martin et al., 2006) corpus is an audio-
visual video database which includes six elicited emotions: anger,
disgust, fear, joy, sadness, and surprise. It is composed of 1,277
audio-visual video samples from 42 participants (8 females)
with 14 different countries. Every participant was demanded
to listen to six consecutive short tales, which were designed to
invoke a particular feeling. Two experts were asked to determine
whether the induced emotional response clearly characterizes the
expected emotion.

SAL
The Belfast Sensitive Artificial Listener (SAL) (Douglas-Cowie
et al., 2007) corpus is a subset of the developed HUMAINE
database. The used SAL subset (Wöllmer et al., 2008) includes
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TABLE 1 | A brief summary of speech emotion databases.

Corpus/References Language Year Categories Size Speakers Recordings Modalities

DES/

(Engberg et al., 1997)

Danish 1997 Neutral, surprise, anger,

happiness, sadness

5,200 4

(2f)

Acted Audio

SUSAS/

(Hansen and Bou-Ghazale,

1997)

English 1997 Four states of speech under stress:

neutral, angry, loud, Lombard

16,000 32

(13f)

Natural Audio

SmartKom/

(Steininger et al., 2002)

German 2002 Neutral, joy, anger, helplessness,

contemplation, surprise

3,823 70

(39f)

Natural Audio

FAU-AIBO/

(Batliner et al., 2004)

German 2004 Anger, bored, emphatic, helpless,

joyful, motherese, neutral

4,525 51

(30f)

Natural Audio

EMO-DB/

(Burkhardt et al., 2005)

German 2005 Anger, boredom, disgust, fear,

happiness, sadness, neutral

535 10

(5f)

Acted Audio

eNTERFACE05/

(Martin et al., 2006)

English 2006 Anger, disgust, fear, happiness,

sadness, surprise

1,277 42

(8f)

Elicited Audiovisual

MASC/

(Wu et al., 2006)

Mandarin 2006 Neutral, anger, pride, panic, sadness 25,636 68

(23f)

acted Audio

SAL/

(Douglas-Cowie et al., 2007)

English 2007 Anger, sadness, happiness, fear, neutral 1,692 4

(2f)

Natural Audiovisual

ABC/

(Schuller et al., 2007)

German 2007 Aggressive, cheer, intoxicated,

nervous, neutral, tire

431 8

(4f)

Elicited audiovisual

CASIA/

(Zhang and Jia, 2008)

Mandarin 2008 Surprise, happiness,

sadness, anger, fear, neutral

9,600 4

(2f)

Acted Audio

VAM/

(Grimm et al., 2008)

German 2008 Dimension emotions

(valence, arousal, dominance)

946 47

(32f)

Natural audiovisual

IEMOCAP/

(Busso et al., 2008)

English 2008 Happiness, anger, sadness,

frustration, neutral

1,150 10

(5f)

Elicited Audiovisual

AVIC/

(Schuller et al., 2009a)

German 2009 Breathing, consent, garbage,

hesitation, laughter

996 21

(10f)

Natural Audiovisual

Polish/

(Staroniewicz and Majewski,

2009)

Polish 2009 Anger, sadness, happiness,

fear, disgust, surprise, neutral

2,351 13

(7f)

Acted audiovisual

IITKGPSEHSC/

(Koolagudi et al., 2011)

Hindi 2011 Happy, sad, angry, sarcastic,

fear, neutral, disgust, surprise

1,200 10

(5f)

Acted Audio

EMOVO/

(Costantini et al., 2014)

Italian 2014 disgust, fear, anger,

joy, surprise, sadness

588 6

(3f)

Acted Audiovisual

SAVEE/

(Jackson and Haq, 2014)

English 2014 Anger, sadness, fear, disgust neutral, joy, surprise 480 4

(-)

Acted Audiovisual

AFEW/

(Dhall et al., 2015)

English 2015 Anger, disgust, fear, joy, neutral, sadness,

surprise

1,645 330

(-)

Natural Audiovisual

BAUM-1/

(Zhalehpour et al., 2016)

Turkish 2016 Happiness, anger, sadness, disgust, fear, surprise,

boredom

1,222 31

(13f)

Natural Audiovisual

MSP-IMPROV/

(Busso et al., 2017)

English 2017 Happiness, anger, sadness, neutral 8,438 12

(6f)

acted Audiovisual

CHEAVD/

(Li et al., 2017)

Mandarin 2017 Anger, anxious, disgust, happiness, neutral,

sadness, surprise, worried

2,852 238

(125f)

Natural Audiovisual

NNIME/

(Chou et al., 2017)

Mandarin 2017 Discrete emotions

(angry, happy, sad, neutral, frustration, surprise) and

dimension emotions

(valence, arousal, dominance)

102 44

(22f)

Acted Multimodal

URDU/

(Latif et al., 2018a)

Urdu 2018 angry, sad, neutral, happy 400 38

(11f)

Natural Audiovisual

RAVDESS/

(Livingstone and Russo,

2018)

English 2018 Calm, happy, sad, angry,

fearful, surprise, disgust

7,356 24(12f) Acted Audiovisual

MSP-PODCAST/

(Lotfian and Busso, 2019)

English 2019 Discrete emotions

(anger, sadness, happiness, surprise, fear, disgust,

contempt and neutral) and

dimension emotions

(valence, arousal, dominance)

2,317 197

(87f)

Natural Audio
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25 recording sessions from 4 speakers (2 men and 2 women).
The average duration of each session is 20min. These audio-
visual recordings in this dataset were collected from natural
man-machine sessions developed by a SAL interaction. Four
annotators were employed to continually mark the real-time
data based on the Feeltrace tool (Cowie et al., 2000). These 25
recording sessions were divided into turns in terms of energy-
based voice activity detection, yielding a total of 1,692 turns.

ABC
The Airplane Behavioral Corpus (ABC) (Schuller et al., 2007)
is an audio-visual emotional database, which is designed for
particular applications to public transportation. In order to elicit
a certain emotion, a script was utilized to make the subject
enter into the context of the guided storyline. The selected
public transportation contains holiday flights with return flights
related to serving of wrong food, tumultuous currents, falling
asleep, talking to neighbors and so on. Eight gender-balanced
participants between the ages of 25–48 years were invited to take
part in the audio recording with the German language. After pre-
segmentation by three experienced male annotators, a total of
11.5 h of video with 431 clips was collected. The mean duration
of all 431 video clips is 8.4 s.

VAM
The VAM (Vera-Am-Mittag) corpus (Grimm et al., 2008)
contains audio-visual transcripts collected from the German
television talk show, which was recorded in unscripted and
spontaneous discussions. This dataset consists of 946 utterances
collected from 47 guests (15 males and 32 females) of talk
show. The discussion themes were related to private problems,
including friendship crises, fatherhood, or happy events. To
annotate speech data, the audio recordings were segmented into
the utterance-level, making each utterance include at least one
phrase. A certain number of human annotators were employed
for labeling data (17 annotators for half of all the data, 6
annotators for the others).

CASIA
The CASIA corpus (Zhang and Jia, 2008), developed by the
institute of Automation, Chinese Academy of Science, consists
of 9,600 audio files in total. This dataset contains six emotional
states: happiness, sadness, anger, surprise, fear, and neutral. Four
professional actors (two males and two females) were asked to
simulate these emotions.

IEMOCAP
The Interactive Emotive Binary Motion Capture Database
(IEMOCAP) (Busso et al., 2008) was developed by the team of
speech analysis and interpretation laboratory (SAIL) from the
University of Southern California (USC). This dataset contains
five sessions lasting around 12 h, and 1,150 utterances in total.
They were collected from 10 professional actors in dyadic
sessions whose faces, heads, and hands were marked in scripted
and natural verbal interaction scenarios. The actors performed
chosen affective scripts and elicited five emotions (happiness,

anger, sadness, frustration, and neutral states) under the designed
imaginary settings.

AVIC
The Audio-Visual interest corpus (AVIC) (Schuller et al.,
2009a) is an audio-visual emotional dataset designed for
commercial applications. In this commercial scenario, the
product demonstrator leads one of 21 subjects (10 women) by
means of an English business presentation. The level of interest
was annotated for each sub-speaker. In addition, the conversation
content and non-verbal vocalization were also annotated in
the AVIC collection. Finally, only 996 phrases with high inter-
annotator agreement were obtained.

Polish
The Polish (Staroniewicz and Majewski, 2009) corpus is a
spontaneous emotional speech dataset with six affective states:
anger, sadness, happiness, fear, disgust, surprise and neutral. This
dataset was recorded by three groups of speakers: professional
actors, amateur actors and amateurs. A total of 2,351 utterances
were recorded in which 1,168 with female and 1,183 with male
voice. The average duration of all utterances was about 1 s. Then,
202 listeners were invited to attend the listening tests, in which 33
of them were musically educated and 27 foreigners did not know
the Polish language.

IITKGP-SEHSC
The Indian Institute of Technology Kharagpur Simulated
Emotional Hindi Speech Corpus (IITKGP-SEHSC) (Koolagudi
et al., 2011) is an affective song and spoken corpus for the Hindi
language. This dataset comprises of 10 participants (5 males, 5
females), each of which speaks 15 utterances in 10 sessions. It
contains 1,200 audio files from 8 emotions: joy, sadness, anger,
sarcasm, fear, neutral, disgust, surprise.

EMOVO
The EMOVO (Costantini et al., 2014) corpus is the first affective
dataset for the Italian language. This dataset was established by
six professional actors who speak 14 sentences to simulate seven
affective states: disgust, fear, anger, joy, surprise sadness, and
neutral. These utterances were recorded with specialized facilities
in the Ugo Bordoni laboratory. This corpus also presents a
subjective verification test based on the emotion-classification of
two sentences conducted by two different groups of 24 listeners.

SAVEE
The Surrey audio-visual expression of emotion (SAVEE) (Jackson
and Haq, 2014) corpus is a multimodal acted affective dataset
with the British English language. It contains a total of 480
utterances with seven different emotions: neutral, happy, sad,
angry, surprise, fear, and disgust. These utterances produced by
four professional male actors. To keep the good quality of the
affective acting, all the recordings in this dataset were verified
by ten different evaluators under audio, visual and audio-visual
condition. The scripts in these recordings were chosen from the
conventional TIMIT corpus (Garofolo et al., 1993).
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AFEW
The Acted Facial Expressions in the Wild (AFEW) is a natural
audio-visual affective video corpus which is provided for emotion
recognition in the wild (EmotiW) challenge. There have been
various recently-developed versions of AFEW datasets (Kossaifi
et al., 2017). One of the popular AFEW datasets is AFEW5.0
(Dhall et al., 2015) collected from 330 speakers in 2015. AFEW5.0
consists of seven affective states: anger, disgust, fear, joy, neutral,
sadness and surprise, evaluated by 3 annotators. AFEW5.0
contains 1,645 utterances in total and is split into three parts: the
training set (723 samples), the validation set (383 samples), and
the testing set (539 samples).

BAUM-1
The BAUM-1 (Zhalehpour et al., 2016) audio-visual corpus is a
spontaneous emotional dataset containing eight emotions (joy,
anger, sadness, disgust, fear, surprise, boredom, and contempt),
and four mental states (unsure, thinking, concentrating, and
bothered). This dataset consists of 1,222 audio-visual samples
from 31 Turkish participants (17 female, 14 males). The average
duration of the whole samples is about 3 s. Five annotators were
invited to label each sample by means of a majority voting.

MSP-IMPROV
The MSP-IMPROV (Busso et al., 2017) acted database is an
audio-visual affective dataset that records the English interaction
of 12 actors (6 males, 6 females) in binary conversations. Each
conversation is manually split into speech turns. It consists of
8,438 emotion sentences over 9 h from four emotions: happiness,
anger, sadness, and neutral. At least 50,000 evaluators were
recruited by using crowdsourcing to annotate these emotional
contents. The audio recording rate was 48 kHz.

CHEAVD
The CASIA Natural Emotion Audiovisual Data (CHEAVD) (Li
et al., 2017) contains 2,852 natural emotional clips with 140min
extracted from 238 speakers (113 males, 125 females). This
dataset is collected from 34 films, 2 television series, and 4 other
television programs. This dataset is divided into three parts: the
training set (1981), validation set (243) and testing set (628).
The average duration of the whole samples is 3.3 s. It consists of
eight emotional categories, such as angry, happy, sad, worried,
anxious, surprise, disgust, and neutral. The sampling rate of
audio files is 41 kHz.

NNIME
The NTHU-NTUA Chinese Interactive Emotion Corpus
(NNIME) (Chou et al., 2017) is a multimodal spontaneous
emotional database, collected from 44 speakers (22 females, 22
males), involved in spontaneous dyadic spoken interactions.
This dataset contains 102 dyadic interaction sessions with
∼11 h of audio-video data. These participants come from the
Department of Drama at National Taiwan University of Arts.
Another 49 annotators were invited to implement a rich set of
emotion annotations on discrete and dimensional annotation
(valence, arousal, dominance). For discrete emotions, there are

six categories: angry, happy, sad, neutral, frustration, surprise.
The sample rate of audio recordings is 44.1 kHz.

URDU
The URDU corpus (Latif et al., 2018a) is an unscripted and
natural emotional spoken dataset with the first URDU language.
It consists of 400 audio samples in four affective states (angry,
happy, sad and neutral). In this dataset, the audio recordings were
collected from the conversations of 38 participants (27 males and
11 females) on the Urdu television talk shows. Four different
annotators were requested to make annotations for all the audio
recordings based on the audio-visual condition.

RAVDESS
The RAVDESS dataset (Livingstone and Russo, 2018) is a
multimodal corpus of affective speech and songs. This dataset
is gender-balanced and comprises 24 specialized actors (12
males, 12 females) who produce speech and song samples in
a neutral North American pronunciation. For affective speech,
it consists of calm, joy, sadness, anger, fear, surprise, and
disgust. For affective songs, it consists of calm, joy, sadness,
anger, fear, surprise, and disgust and fear. Every expression is
generated at two levels of affective intensity with an additional
neutral expression. The final collection of 7,356 recordings was
individually rated for 10 times on these aspects of affective
validity, intensity, and genuineness. For these ratings, 247
untrained research subjects from North America were employed.

MSP-PODCAST
The MSP-PODCAST (Lotfian and Busso, 2019) natural
corpus contains 2,317 utterances collected from 403 podcasts.
These utterances come from 197 speakers’ (110 males, 87
females) spontaneous English speech in the Creative Commons
authorized recording downloaded from the audio sharing
websites. These podcasts are evaluated by using crowdsourcing
to be dimensional emotions (valence, arousal, dominance)
and discrete emotions including anger, sadness, happiness,
surprise, fear, disgust, contempt, and neutral. In total, 278
different workers are invited to evaluate these utterances. Audio
recordings have a sampling rate of 8 kHz.

REVIEW OF SUPERVISED,
UNSUPERVISED, AND SEMI-SUPERVISED
LEARNING

In this section, we will simply review the concept and
typical supervised, unsupervised, and semi-supervised learning
techniques, as described below.

Supervised Learning
Supervised learning usually requires a large number of labeled
samples to carefully train the model for achieving better model
generalization ability (Cunningham et al., 2008). At the same
time, due to the problem of dimension disaster, when processing
high-dimensional data, the number of labeled samples required
to train a good supervisedmodel will further show an exponential
explosion trend. This makes it difficult for traditional supervised
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learning to be applied to some tasks that lack training samples.
Nevertheless, supervised learning methods are usually simpler
than unsupervised learning methods. Therefore, when training a
supervised model, how to reduce the demand for labeled samples
and improve the performance of model learning has become an
important research problem (Alloghani et al., 2020).

Supervised learning can be further grouped into classification
and regression. A classification problem is to deal with categorical
outputs, whereas a regression problem is to process continuous
outputs. The typical supervised learning methods contains ANN,
SVM, HMM, GMM, random forest, Bayesian networks, decision
tree, linear regression, logistic regression, and so on (Kotsiantis
et al., 2007; Sen et al., 2020).

Unsupervised Learning
Unlike supervised learning with labeled data, unsupervised
learning aims to extract inherent feature representations from
unlabeled sample data. Therefore, unsupervised learning mainly
relies on previously learned knowledge to distinguish likely
classes within unlabeled sample data. As a result, unsupervised
learning is very appropriate for feature learning tasks (Alloghani
et al., 2020).

In general, unsupervised learning methods can be divided
into three categories (Usama et al., 2019): hierarchical learning,
data clustering, and dimensionality reduction. Hierarchical
learning aims to learn complicated feature representations from a
hierarchy of multiple linear and non-linear activation operations.
Autoencoders (AEs) (Ballard, 1987; Schmidhuber, 2015) are one
of the earliest unsupervised hierarchical learning algorithms.
Data clustering is a well-known unsupervised learning task that
concentrates on seeking hidden patterns from input unlabeled
sample data in the form of clusters. Data clustering methods can
be grouped into three categories (Saxena et al., 2017): hierarchical
clustering, Bayesian clustering, and partitional clustering. One of
the widely-used data clustering approaches is k-means clustering
(Likas et al., 2003) which belongs to partitional clustering.
Dimensionality reduction (also called subspace learning) aims
to seek the hidden pattern of the underlying data by means of
extracting intrinsic low-dimensional structure. Dimensionality
reduction can be categorized into two types: linear and non-
linear methods (Van Der Maaten et al., 2009). Principal
component analysis (PCA) (Wold et al., 1987) and non-negative
matrix factorization (NMF) (Lee and Seung, 1999) are two
popular linear dimensionality reduction methods.

Semi-supervised Learning
In order to make full use of the advantages of unsupervised
learning and supervised learning, semi-supervised learning aims
to combine a small number of labeled data and a large number
of unlabeled data for performing certain learning tasks. The
main goal of semi-supervised learning is to harness unlabeled
data for constructing better learning procedures. For example,
for a classification problem, additional sample data without label
information can be utilized to aid in the classification process for
performance improvement.

Semi-supervised learning can be divided into two main
types (van Engelen and Hoos, 2020): inductive and transductive

methods. Inductive methods aim to construct a classification
model that can be utilized to predict the label of previously
unseen sample data. In this case, unlabelled data may
be employed when training this classification model. The
representative inductive methods (Ligthart et al., 2021) contain
self-training, co-training, multi-view learning, generative
models, and so on. Different from inductive methods,
transductive methods do not need to build a classifier for
the whole input space. The typical transductive methods are
graph-based semi-supervised learning algorithms (Chong et al.,
2020) in which they attempt to transfer the label information
of a small set of labeled data to the remaining large unlabeled
data with the aid of a graph. The popular graph-based semi-
supervised learning algorithms include the graph Laplacian
(Fergus et al., 2009), graph-based semi-supervised neural
network models (Alam et al., 2018) like graph convolutional
networks (Chen et al., 2020).

TRADITIONAL METHODS FOR
CROSS-CORPUS SER

From the view of point of supervised, unsupervised, and semi-
supervised learning, in this section we will introduce traditional
methods for cross-corpus SER, as described below.

Supervised Learning for Traditional
Methods
On supervised cross-corpus SER tasks, researchers usually
combine one or more databases as training sets and testify
the performance on each labeled database as a testing set
in a cross-validation scheme. In early supervised cross-corpus
SER, the typical hand-crafted acoustic features and conventional
classifiers were employed in a supervised learning manner. For
instance, in Schuller et al. (2010b), they extracted 93 LLD
features such as prosody, voice quality and articulatory features
and performed speaker-corpus normalization so as to deal
with the differences among corpora. Then, the linear SVM
was used to conduct cross-corpus evaluation experiments. They
adopted different combinations of training and testing sets
on all used labeled databases for cross-corpus experiments. In
Feraru et al. (2015), 1,941 LLD acoustic features like prosody,
voice quality and spectral features were derived, then the linear
SVM was employed for cross-corpus SER. A post-processing
of the trained SVM models was performed by rule-based
model inversion to cope with the difference among corpora.
For cross-corpus experiments, they trained and tested each
used labeled database against each. Based on the extracted
INTERSPEECH-2010 Paralinguistic Challenge feature set with
1,582 LLDs, a new method of transfer non-negative matrix
factorization (TNMF) (Song et al., 2016b), in which the non-
negative matrix factorization (NMF) and the maximum mean
discrepancy (MMD) algorithms were combined, was developed
for cross-corpus SER. They also trained and tested each other for
all used labeled database. They showed that the performance of
the proposed TNMF was much better than the baseline method
with the linear SVM. A domain adaptation based approach,
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named emotion-discriminative and domain-invariant feature
learning method (EDFLM) (Mao et al., 2017), was presented
for cross-corpus SER. Training and testing each other for all
used labeled database was implemented. In this method, domain
discrepancy was minimized, whereas emotion-discrimination
was employed to produce emotion-discriminative and domain-
invariant features, followed by the linear SVM for SER. They
extracted the INTERSPEECH-2009 Emotion Challenge feature
set as inputs of EDFLM. In Kaya and Karpov (2018), they
provided a cascaded normalization method, integrating linear
speaker level, non-linear value level and feature vector level
normalization, and then employed an extreme learning machine
(ELM) classifier for cross-corpus SER. Here, they extracted the
ComParE feature set with 6,373 LLDs. They conducted cross-
corpus experiments in two settings: single corpus training (one-
vs.-one), and multiple corpus training via leave-one-corpus-
out (LOCO) setting. A non-negative matrix factorization based
transfer subspace learning method (NMFTSL) (Luo and Han,
2020), in which the knowledge of the source data could be
transferred to the target data, was developed to seek a shared
feature subspace for the source and target corpus on cross-
corpus SER tasks. They extracted the INTERSPEECH-2010
Paralinguistic Challenge feature set and then adopted the linear
SVM for cross-corpus SER. Based on all the used databases,
they constructed 30 cross-corpus SER schemes by using multiple
combinations for source and target corpus on cross-corpus
SER task.

Unsupervised Learning for Traditional
Methods
For unsupervised cross-corpus SER tasks, researchers tried to
investigate how agglomeration of unlabeled data. For instance,
in Zhang et al. (2011) they extracted 39 functionals of 56
acoustic LLDs, yielding 6,552 features in total, and then employed
the linear SVM to conduct a cross-corpus LOCO strategy for
experiments. To evaluate the effectiveness of normalization
techniques before data agglomeration, they investigated the
performance of centering, normalization and standardization
for per corpus normalization. Experiment results on multiple
databases showed that adding unlabelled emotional samples to
agglomerated multi-corpus training sets could improve SER
recognition performance. To mitigate the different feature
distributions between the source and target speech signals, a
domain-adaptive subspace learning (DoSL) approach (Liu et al.,
2018) was presented to learn a project matrix for yielding similar
feature distributions. They utilized the INTERSPEECH-2009
feature set with 384 features and adopted the linear SVM for
cross-corpus LOCO SER experiments. Likewise, to reduce the
disparity of source and target feature distributions, a transfer
subspace learning (TRaSL) (Liu et al., 2021) was also proposed
for cross-corpus SER. The proposed TRaSL aimed to find a
projection matrix which transformed the source and target
speech signals into a common feature subspace. Finally, they
adopted the INTERSPEECH-2009 feature set and the linear SVM
for cross-corpus LOCO SER experiments.

Semi-supervised Learning for Traditional
Methods
For semi-supervised cross-corpus SER, some recent literatures
have focused on the combination of unlabeled and labeled
sample data for performance improvement. In particular, a new
transfer learning technique, namely transfer semi-supervised
linear discriminant analysis (TSDA) (Song et al., 2016a), was
provided to produce corpus-invariant discriminative feature
representations on cross-corpus SER tasks. They obtained the
INTERSPEECH-2010 Paralinguistic Challenge feature set, and
then performed cross-corpus SER with the linear SVM. They
conducted cross-corpus experiments with a LOCO scheme,
and showed that TSDA outperformed other methods. A semi-
supervised adaptation regularized transfer non-negative matrix
factorization (SATNMF) (Luo and Han, 2019) was presented to
extract common features for cross-corpus SER. The proposed
SATNMF method aimed to integrate the label information of
training data with NMF, and found a latent low-rank feature
space to minimize simultaneously the marginal and conditional
distribution differences among several language datasets. They
employed the ComParE feature set and the linear SVM for LOCO
SER experiments.

In summary, Table 2 presents a summary of the above-
mentioned supervised, unsupervised, and semi-supervised
learning literatures for traditional methods on cross-corpus
SER tasks.

DEEP LEARNING METHODS FOR
CROSS-CORPUS SER

From the view of point of supervised, unsupervised, and semi-
supervised learning, in this section we will introduce deep
learning methods for cross-corpus SER, as described below.

Supervised Learning for Deep Learning
Methods
For supervised cross-corpus SER with labeled databases, the
typical CNN, LSTM, DBN, and its combinations in a hybrid way,
associated with the transfer learning strategy, have been recently
adopted. Specially, in Marczewski et al. (2017), to alleviate the
different distributions of features and labels across domains, they
proposed a deep learning network architecture composed of two
uni-dimensional convolutional layers, one LSTM layer, and two
FC layers for cross-corpus SER. The used CNN layers aimed
to derive spatial features of varying abstract levels, whereas the
LSTM layer was used to learn temporal information related to
emotion evolution over time. In this case, they jointly exploited
CNNs to extract domain-shared features and LSTMs to identify
emotions with domain specific features. All the samples data
from all databases were used for training and testing by using
a 5-fold cross validation scheme. Experiments showed that they
could learn transferable features to enable model adaptation from
multiple source domains. In Latif et al. (2018b), considering
the fact that DBNs have a strong generalization power, this
study presented a transfer learning technique based on DBNs
to improve the performance of SER in cross-language and
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TABLE 2 | A brief summary of traditional cross-corpus SER literatures.

References Category Input features Methods for cross-corpus Datasets

Schuller et al. (2010b) Supervised 93 LLDs speaker-corpus normalization DES/, EMO-DB, SUSAS, AVIC, SmartKom, eNTERFACE05

Feraru et al. (2015) Supervised 1,941 LLDs rule-based model inversion EMO-DB, DES, eNTERFACE05

Song et al. (2016b) Supervised INTERSPEECH-2010 TNMF FAU-AIBO, eNTERFACE05, EMO-DB

Mao et al. (2017) Supervised INTERSPEECH-2009 EDFLM ABC, EMO-DB, FAU-AIBO

Kaya and Karpov (2018) Supervised ComParE cascaded normalization EMO-DB, DES, eNTERFACE05

Luo and Han (2020) Supervised INTERSPEECH-2010 NMFTSL CASIA, SAVEE, EMO-DB, IEMOCAP, eNTERFACE05

Zhang et al. (2011) Unsupervised 6,552 LLDs corpus normalization ABC, AVIC, DES, VAM, SAL,

eNTERFACE05

Liu et al. (2018) Unsupervised INTERSPEECH-2009 DoSL EMO-DB, eNTERFACE05

Liu et al. (2021) Unsupervised INTERSPEECH-2009 TRaSL EMO-DB,eNTERFACE05, IEMOCAP

Song et al. (2016a) Semi-supervised INTERSPEECH-2010 TSDA EMO-DB, eNTERFACE05

Luo and Han (2019) Semi-supervised ComParE SATNMF CASIA, EMO-DB,

eNTERFACE05

cross-corpus scenarios. The used DBNs consisted of three RBM
layers, in which the first two RBMs contained 1,000 hidden
neurons, and the third RBM included 2,000 hidden neurons.
The simple variant (eGeMAPS) of typical GeMAPS feature set,
including 88 LLDs like pitch, energy, spectral, and so on, was
employed as inputs of DBNs. For all used databases, a LOCO
scheme was used for cross-corpus SER experiments. Experiment
result demonstrated that DBNs provided better performance
on cross-corpus SER tasks, compared with a SAE and the
linear SVM. In Parry et al. (2019), after extracting 40 Mel
filterbank coefficients, they presented a comparative analysis of
the generalization capability of deep learning models like CNNs,
LSTMs, and CNN-LSTM. The used CNNs were composed of
one-dimension convolutional layer, and one max-pooling layer.
The used LSTMs were two-layer bi-directional LSTMs. The
used CNN-LSTM contained three CNNs and two LSTMs above-
mentioned. This study indicated that the CNN and CNN-LSTM
models gave very close performance, but better than LSTM. For
cross-corpus experiments, all corpora were combined together,
thereby producing 11 h 45min for training, 1 h 30min each for
validation and testing. In Rehman et al. (2020), to develop a more
adaptable SER in adversarial conditions, they presented a hybrid
neural network framework for cross-corpus SER. The hybrid
neural network consisted of two-layer LSTMs and a ramification
layer. LSTMs aimed to learn temporal sequence data in the
one-hot input matrices, yielded by the latter ramification layer.
The ramification layer comprised of multiple embedding units
and split the input MFCCs into subsequent one-hot output.
They validated the performance of different methods by means
of training deep models on two of the used databases and
then testing it on the third database. Experiments showed the
effectiveness of the proposed method on cross-corpus SER tasks.

Unsupervised Learning for Deep Learning
Methods
For unsupervised cross-corpus SER tasks by leveraging unlabeled
data, the popular unsupervised autoendcoder (Ballard, 1987;
Schmidhuber, 2015) and its variants have been widely employed.

For instance, to address the discrepancy between training
and testing data, an adaptive denoising autoencoder (A-
DAE) based an unsupervised domain adaptation approach
(Deng et al., 2014b) was developed for cross-corpus SER.
In this method, the prior knowledge learned from a target
set was utilized to regularize the training on a source set.
When obtaining the INTERSPEECH-2009 Emotion Challenge
feature set, A-DAE was employed to learn a common
representation across training and test samples, followed by
the linear SVM for cross-corpus SER. They conducted cross-
corpus SER experiments by using a LOCO corpus scheme.
In Deng et al. (2017), an end-to-end domain adaptation
method, named universum autoencoder (U-AE), which retained
feature representation ability to discover the intrinsic structure
in input data, was presented for cross-corpus SER. The
proposed U-AE aimed to enable the unsupervised learning
autoencoder to have supervised learning ability, thereby
improving the performance of cross-corpus LOCO SER. The
standard INTERSPEECH-2009 Emotion Challenge feature set
was employed as inputs of the proposed U-AE. This study
indicated that the proposed U-AE outperformed other domain
adaptation methods such as kernel mean matching (Gretton
et al., 2009), and shared-hidden-layer autoencoders (Deng et al.,
2014a). In Neumann and Vu (2019), they investigated how
unsupervised representation learning on additional unlabeled
data could be used to promote SER performance. More specially,
they integrated feature representations learnt by using an
unsupervised autoencoder into an attentive CNN-based emotion
classifier so as to improve recognition performance on cross-
corpus LOCO SER tasks. In detail, they firstly trained a
recurrent sequence-to-sequence autoencoder on unlabeled data
and then adopted it to produce feature representations for
labeled target data. These produced feature representations
were then incorporated as additional source information for
emotion identification during the training process of the used
attentive CNN.

In recent years, several advanced unsupervised learning
methods such as adversarial learning (Goodfellow et al.,
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2014) and attentive learning have also been used for cross-
corpus SER. Specially, in Abdelwahab and Busso (2018), a
domain adversarial neural network (DANN), consisting of
three parts: a feature representation layer, a task classification
layer, and a domain classification layer, was employed to
learn a common feature representation between training and
testing data. DANN was trained by using labeled sample
data in the source domain and unlabeled sample data in
the target domain. The extracted acoustic features were the
ComParE feature set as inputs of DANN. They conducted
cross-corpus experiments by using single corpus training (one-
vs.-one), and multiple corpus training via a LOCO scheme.
This study demonstrated that adversarial training on the basis
of unlabeled training data yielded an obvious performance
improvement compared with training with the source data. In
Ocquaye et al. (2021), a deep learning framework including
three attentive asymmetric CNNs was presented to emotion
identification for cross-lingual and cross-corpus speech signals in
an unsupervised manner. They implemented cross-corpus SER

experiments by using a LOCO corpus scheme. The proposed

approach employed jointly supervised learning incorporated
with softmax loss and center loss in order to learn high-level
discriminative feature representations for target domain data
with the aid of pseudo-labeled data. Evaluation results indicated
that the proposed method outperformed a SAE and DBNs with
three RBMs.

Semi-supervised Learning for Deep
Learning Methods
For semi-supervised cross-corpus SER by leveraging unlabeled
and labeled data, adversarial learning (Goodfellow et al., 2014)
was usually taken as a generative model for. For instance, in
Chang and Scherer (2017), they explored a semi-supervised
learning approach, called a multitask deep convolutional
generative adversarial network (DCGAN), to improve cross-
corpus performance. DCGAN was utilized to learn strong
feature representation from the computed spectrograms on
unlabeled data. For multitask learning, the proposed multitask
model took emotional valence as a primary target and
emotional activation as a secondary target. For evaluation,
they combined unlabeled data from all used databases and
testified the performance on one labeled database. Experiment
results found that unsupervised learning presented significant
improvements for cross-corpus SER. In Deng et al. (2018),
to take advantage of the available unlabeled speech data,
they proposed a semi-supervised autoencoder to improve
the performance of cross-corpus SER. The proposed method
extended a typical unsupervised autoencoder by means of
adjoining the supervised learning objective of a deep feed
forward network. The extracted acoustic features were the
INTERSPEECH-2009 Emotion Challenge feature set. Cross-
corpus experiments were implemented by using multiple corpus
training via a LOCO scheme. Experimental results showed that

TABLE 3 | A brief summary of existing deep cross-corpus SER literatures.

References Category Input features Methods for

cross-corpus

Datasets

Marczewski et al. (2017) Supervised 54,000 dimensional data

points

CNN, LSTM AFEW, EMO-DB, EMOVO,

eNTERFACE05, IEMOCAP

Latif et al. (2018b) Supervised eGeMAPS DBNs FAU-AIBO, IEMOCAP, EMO-DB, SAVEE,

EMOVO

Parry et al. (2019) Supervised Mel filterbank

coefficients

CNN, LSTM,

CNN-LSTM

IEMOCAP, EMOVO, EMO-DB, RAVDESS,

SAVEE

Rehman et al. (2020) Supervised 13 MFCCs LSTMs, a ramification layer IEMOCAP, RAVDESS, EMO-DB

Deng et al. (2014b) Unsupervised INTERSPEECH-2009 A-DAE FAU-AIBO, ABC, SUSAS

Deng et al. (2017) Unsupervised INTERSPEECH-2009 U-AE ABC, EMO-DB, SUSAS

Abdelwahab and Busso

(2018)

Unsupervised INTERSPEECH-2013 DANN IEMOCAP,

MSP-IMPROV,

MSP-PODCAST

Neumann and Vu (2019) Unsupervised 128 Mel frequency bands unsupervised autoencoder

and ACNN

IEMOCAP,

MSP-IMPROV

Ocquaye et al. (2021) Unsupervised spectrogram three attentive asymmetric

CNNs

SAVEE, IEMOCAP, EMO-DB,FAU-AIBO,

EMOVO

Chang and Scherer (2017) Semi-supervised spectrogram DCGAN AMI, IEMOCAP

Deng et al. (2018) Semi-supervised INTERSPEECH-2009 Unsupervised

autoencoder

FAU-AIBO, ABC,

EMO-DB, SUSAS

Gideon et al. (2019) Semi-supervised 40 dimensional Mel-filter

banks

ADDoG IEMOCAP,

MSP-IMPROV

Latif et al. (2020) Semi-supervised spectrogram AAE IEMOCAP,

MSP-IMPROV

Parthasarathy and Busso

(2020)

Semi-supervised INTERSPEECH-2013 ladder network MSP-PODCAST, IEMOCAP,

MSP-IMPROV

Frontiers in Neurorobotics | www.frontiersin.org 10 November 2021 | Volume 15 | Article 784514

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhang et al. Cross-Corpus Speech Emotion Recognition

the proposed approach obtained promising performance with
a very small number of labeled data. In Gideon et al. (2019),
the extracted 40 dimensional Mel-filter banks were passed into
an adversarial discriminative domain generalization (ADDoG)
algorithm to learn more generalized feature representations for
cross-corpus SER. Based on the idea of GANs (Goodfellow
et al., 2014), ADDoG could make full use of the unlabeled test
data to generalize the intermediate feature representation across
different datasets. They combined multiple corpora for training
and testified the performance of different methods on other
corpora via a LOCO scheme. Experiment results showed that
ADDoG performed better than CNNs. In Latif et al. (2020),
a multi-task semi-supervised adversarial autoencoding (AAE)
method was provided for cross-corpus SER. The proposed
AAE was a two-step approach. First, semi-supervised learning
was implemented in an adversarial autoencoder to generate
latent representation. Then, a multi-task learning framework,
which considered emotion, speaker and gender identification as
auxiliary tasks incorporating with semi-supervised adversarial
autoencoding, was built to improve the performance of primary
SER task. The spectrograms achieved by a short time Fourier
transform (STFT) were employed as inputs of the proposed AAE.
They performed cross-corpus experiments with a LOCO scheme
on all the used databases. Experiment results demonstrated that
the proposed AAE outperformed CNN, CNN+LSTM, as well
as DBN.

In recent years, researchers explored ladder network (Valpola,
2015) based semi-supervised methods (Huang et al., 2018; Tao
et al., 2019; Parthasarathy and Busso, 2020) for cross-corpus
SER and had shown superior results to supervised methods.
Here, a ladder network is regarded as an unsupervised DAE
trained along with a supervised classification or regression
problem. For instance, in Parthasarathy and Busso (2020), a
ladder network based semi-supervised method, incorporating
with an unsupervised auxiliary task, was presented to reduce
the diversity between the source and target domains on cross-
corpus SER tasks. The primary task aimed to predict dimensional
emotional attributes. The auxiliary task aimed to produce the
reconstruction of intermediate feature representations with a
DAE. This auxiliary task was trained on a large amount unlabeled
data from the target domain in a semi-supervised manner. The
ComParE feature set was fed into the ladder network. They
conducted cross-corpus experiments with a LOCO scheme. This
study indicated that the proposed method achieved superior
performance to fully supervised single-task learning (STL) and
multi-task learning (MTL) baselines.

In summary, Table 3 presents a summary of the above-
mentioned supervised, unsupervised and semi-supervised
learning literatures for deep learning methods on cross-corpus
SER tasks.

OPEN CHALLENGES

Although deep learning based cross-corpus SER has made great
progress in recent years as mentioned above, there exist still

several open challenges that should be addressed in future. In
the following, we will discuss these open challenges, and show
its potential trends.

One of the most important problems for cross-corpus
SER is the generation of natural emotional speech data (Cao
et al., 2015). As shown in Table 1, we can see that the
majority of emotional databases for cross-corpus SER are
acted and recorded in specific silent labs. However, in the
real-world sceneries, the collected emotional speech data is
usually noisy. In addition, there are also legal and ethical
issues when recording the true natural speech emotions. Most
existing utterances from natural datasets are collected from talk-
shows, call-center recordings, and similar conditions in which
the involved participants are informed of the recording. In
this case, these natural datasets do not include all emotion
categories and may not reflect the true emotions that are felt.
Moreover, there is a scarcity for speech emotional datasets in
numbers. Considering that deep cross-corpus SER is a data-
driven task based on deep learning models with high hyper-
parameters, a great number of training data is needed for
training sufficiently deep models. Hence, another main challenge
for deep cross-corpus SER is the scarcity of enough large
emotional datasets.

The second challenge is to integrate more modalities
characterized by human emotion expression for cross-
corpus emotion recognition (Tzirakis et al., 2021). It is
well-known that the typical bimodalities (audio, visual)
(Zhang et al., 2017; Zhou et al., 2021), triple modalities (audio,
visual, text) (Shoumy et al., 2020), user’s physiological responses
like electroencephalogram (EEG) and electrocardiogram
(ECG) signals (Katsigiannis and Ramzan, 2017; Li et al.,
2021), and so on, are highly correlated with human emotion
expression. To further improve emotion recognition, it
is thus interesting to combine speech clues with other
modalities such as visual, text, and physiological clues for
multimodal cross-corpus.

Another challenge is the inherent limitation of deep learning
techniques. First, although various deep leaning techniques
have been successfully employed to capture high-level feature
representations for cross-corpus SER, most of deep learning
techniques have a large number of network parameters.
This makes deep learning techniques usually have very large
computation complexity, resulting in its training which demands
for large data. To alleviate this problem, it is a promising
direction to investigate the application of deep compression and
acceleration (Han et al., 2016; Choudhary et al., 2020) techniques
such as pruning, trained quantization, and so on, for real-world
cross-corpus SER. Additionally, deep learning is a the black-box
technique. In particular, due to the used multilayer non-linear
architecture, deep learning algorithms are frequently criticized
to be non-transparent, and non-explainable. Therefore, it is also
a promising research subject to investigate how to understand
the explainability and interpretability of deep learning techniques
(Fellous et al., 2019; Langer et al., 2021) for cross-corpus SER. In
addition, it is also interesting to investigate the performance of
recently-developed transformer (Vaswani et al., 2017; Lian et al.,
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2021) method incorporating with deep learning techniques for
cross-corpus SER in our future work.

CONCLUSIONS

This paper has presented an up-to-date and comprehensive
review of cross-corpus SER techniques, exhibiting recent
advances and perspectives in this area. It has summarized the
related speech emotional databases and the applications of deep
leaning techniques associated with supervised, unsupervised,
semi-supervised learning for cross-corpus SER in recent years.
In addition, it highlights several challenging research directions
to further improve the performance of cross-corpus SER
in future.
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