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Scaling of decoherence for a 
system of uncoupled spin qubits
Jun Jing1,2 & Xuedong Hu1

Significant experimental progresses in recent years have generated continued interest in quantum 
computation. A practical quantum computer would employ thousands if not millions of coherent 
qubits, and maintaining coherence in such a large system would be imperative for its utility. As an 
attempt at understanding the quantum coherence of multiple qubits, here we study decoherence of 
a multi-spin-qubit state under the influence of hyperfine interaction, and clearly demonstrate that 
the state structure is crucial to the scaling behavior of n-spin decoherence. Specifically, we find that 
coherence times of a multi-spin state at most scale with the number of qubits n as n, while some 
states with higher symmetries have scale-free coherence with respect to n. Statistically, convergence 
to these scaling behavior is generally determined by the size of the Hilbert space m, which is usually 
much larger than n (up to an exponential function of n), so that convergence rate is very fast as we 
increase the number of qubits. Our results can be extended to other decoherence mechanisms, 
including in the presence of dynamical decoupling, which allow meaningful discussions on the 
scalability of spin-based quantum coherent technology.

Large-scale quantum information processing (QIP) requires the generation, manipulation, and meas-
urement of fully coherent superposed quantum states involving many qubits1. A central issue for QIP is 
how well such a many-qubit system can maintain its quantum coherence. From the perspective of fun-
damental physics, an equally intriguing question that has been repeatedly asked is how a large number 
of microscopic quantum mechanical systems together behave classically as a macroscopic object2. To 
answer these questions, it is crucial to identify the key elements determining the scaling behavior of the 
decoherence of a multi-qubit system.

A confined single electron spin in a semiconductor quantum dot (QD) or a shallow donor is highly 
quantum coherent, and is a promising candidate as a qubit3–12. It is now well understood that the main 
single-spin decoherence channel is through hyperfine coupling to the environmental nuclear spins10,12,13, 
and the effects of hyperfine interaction have been investigated for coupled two- and three-spin sys-
tems14–22. A many-spin-qubit system thus offers a convenient test ground for studying decoherence scal-
ing since different factors in the overall decoherence can be easily distinguished.

The study of whether quantum coherent features of a many-qubit system can survive over long evo-
lution times started with the discovery and exploration of the decoherence-free subspace (DFS)23–27, 
where the many qubits in a system share a common reservoir. The states in a DFS do not experience 
decoherence from the collective noise from the reservoir, while states outside the subspace do. The con-
cept of DFS clearly illustrates an important difference between decoherence of a single qubit and that 
for many qubits: the decoherence of single-qubit is characterized by relaxation time T1 and dephasing 
time T2, irrespective of the qubit state; while with the many more density matrix elements involved, the 
decoherence of an n-qubit state is generally state-structure-dependent. This dependence is the main focus 
of the present work.

In this study we focus on the hyperfine-induced decoherence of n (≫ 1) uncoupled QD-confined elec-
tron spin qubits. Our goals are to clarify how decoherence of many-qubit states depends on the number 
of qubits and the state structure. In our study, a uniform magnetic field is applied to make the Zeeman 
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splitting Ω  much larger than the nuclear-spin-induced inhomogeneous broadening (see Fig. 1), so that 
spin relaxation is negligible. The dominant single-spin decoherence channel is pure dephasing due to the 
nuclear spins. We explore how this mechanism affects a many-spin-qubit state by systematically exam-
ining a large number of superposed states in various forms. Specifically, if the fidelity of an n-qubit state 
decays as exp[− γ (t)], we clarify how γ(t) depends on the qubit number n or the number of basis states 
m (which could be exponentially large as compared to n). Our results from this broad-ranged exploration 
indicate decoherence scaling behavior ranging from scale-free up to sublinear to n, making the scale-up 
of a spin-based quantum computer a tractable endeavor.

Electron-nuclear spin hyperfine interaction
We consider n uncoupled electron spins in a finite uniform magnetic field, each confined (in a quan-
tum dot, nominally) and interacting with its own uncorrelated nuclear-spin bath through hyperfine 
interaction:
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where ω αj  is the nuclear Zeeman splitting of the α-th nuclear spin in the j-th QD (from here on j will 
always be used to label the QDs and the corresponding electron spin qubits), and Aja is the hyperfine 
coupling strength. The number of nuclear spins coupled to the j-th electron spin, Nj, is in the order of 
105 to 106 in GaAs QDs, and ∼103 in natural Si QDs.

The total Hamiltonian (1) is a sum of n fully independent single-spin decoherence Hamiltonians. The 
evolution operator for these n qubit can thus be factored into a product of operators for individual qubits. 
We present a brief recap of single-spin decoherence13,28 properties in Method, and focus here on the 
multi-spin-qubit decoherence problem. Recall that inhomogeneous broadening corresponds to stochastic 
phase diffusion of an electron spin due to longitudinal Overhauser field, and is characterized by the time 
scale ⁎T2. On the other hand, the narrowed-state free induction decay is caused by fluctuations in the 
transverse Overhauser field, and is characterized by the time scale T2. These two time scales are statisti-
cally independent because of independence between longitudinal and transverse Overhauser fields, as 
presented in Method. These two pure dephasing channels follow the same scaling law, i.e., 
( )/ ( ) = ( )/ ( )⁎ ⁎T n T T n T1 12 2 2 2 , where n is the number of spin qubits in the system. Thus we can focus 

on the scaling analysis of either of them. In the following we employ ( )/ ( ) T n T 12 2  to represent the result, 
which is applicable to both dephasing channels.

Results
Multi-spin decoherence.  For an n-spin system in a finite uniform magnetic field, the full Hilbert 
space is divided into n+ 1 Zeeman subspaces, labeled by = − /S k n 2z , = , , , ,k n0 1 2 . Each sub-
space consists of ≡ !/ !( − ) !C n k n k[ ]n

k  degenerate states (in the absence of nuclear field), which has k 
spins in the 1  ( ≡ −1 1) state and −n k spins in the |1  state. The local random Overhauser fields break 

Figure 1.  The energy spectrum for n electron spins separately confined in n uncoupled QDs in a finite 
uniform magnetic field. The spectrum splits into n +  1 Zeeman sub-levels. k refers to the number of spins 
that point down. Each electron spin is coupled to local nuclear spins through hyperfine interaction, which 
produces a local field in the order of ∆B, so that the energy level for each Zeeman manifold is broadened to 
a band with width ∆n B.
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this degeneracy and lead to a broadening of the manifold ∆∼ n B (see Fig. 1). In all the following cal-
culations, we use spin product states = − x l l lr n

r
n
r r

1 1  as the bases. Here l j
r refers to the electron spin 

orientation along the z-direction in the j-th QD for state xr , and takes the value of 1 or 1 for notational 
simplicity.

For a superposed state x  containing more than one product state, decoherence emerges due to the 
non-stationary random phase differences among the m product states xr 's: 
| ( )〉 = ∑ − | 〉= −

�
�x t d exp iB t x{ }r

m
r l l l

z
r1 n

r
n
r r

1 1
 with ∑ == d 1r

m
r1

2 . The number of product states in x , m, is 
also the Hilbert space size of concern because spin relaxation is generally negligible in a finite field and 
is not considered in this study. We treat the Overhauser field (both longitudinal and transverse compo-
nents) semiclassically, accurate to the second order in its magnitude. The notation 
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a sum of Overhauser fields from every QD, and is defined in Method. As a measure of decoherence of 
x  caused by the hyperfine interaction, we use fidelity ( ) = ( ) ( )t M x x t x t x[ ] , which can be 
simplified in the presence of dephasing as
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 is the Overhauser field difference experienced by the two n-spin 

product states (see Method). Specifically, θ( )M t[cos ]ik  is solely determined by the number of spins that 
are opposite in orientation between bases xi  and xk . Therefore, the fidelity depends on the structure of 
the interested state, i.e., the constituents and their weight in the superposed state, and single-qubit deco-
herence is only one of several important ingredients in the multi-qubit decoherence problem.

Classification of multi-spin decoherence.  With our understanding of single-spin decoherence, and 
with fidelity of the collective decoherence for a multi-spin state x  defined, we are now in position to 
clarify multi-spin decoherence in various subspaces of the n-spin system.

Case A: single product state.  The simplest multi-spin state is a single product state. The random 
Overhauser fields experienced by the spin qubits create a random but global phase (relative to when the 
nuclear reservoir is absent). This global phase does not lead to any decoherence, as there is no coherence 
(phase) information stored in any product state.

Case B: two product states, with m = 2 and k ≥ 1.  The simplest multi-spin state that can undergo 
dephasing consists of two product states. Here we choose a particular class of | 〉 = | 〉 + | 〉x d b d kB 1 2 , with 
one state being fully polarized = | ⊗b 1 n, while the other being from the k-th subspace with k spins in 
1 . The fidelity of this state is ( ) ≈ − | / ( )t exp d d k t T{ 4 [ 1 ] }1 2
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In this case, dephasing time is inversely proportional to the square root of the number of spins prepared 
as 1  in k . A special example here is the GHZ state, | 〉 = (| 〉 + | 〉 )/⊗ ⊗x 1 1 2HZ

n n
G . The decoherence 

rate is ( )/ ( ) = / T n T n1 12 2 , where the square root of the number of spin qubits is from the quadratic 
time dependence in the exponent of  . The worst case scenario for an x  containing two product states 
is when they have completely opposite spins.

Case C: n ≥ m ≥ 2, k = 1.  We now consider an x  that is a superposition of m product states from 
the manifold with one spin in 1 . Explicitly, | 〉 = | 〉 + | 〉 + + | 〉   x d d d111 1 11 11 111C n1 2 , where 
∑ | | == d 1j

n
j1

2 . This state is slightly more general than the well-known W state, with a random weight 
and phase for each basis state. The fidelity of | ( )〉x t C is ( ) ≈ − ∑ | | / ( )<
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Here the upper bound (∞ means no decoherence) is approached when a particular product state dom-
inates over all others in weight: | | =d 1j1

 while | | =≠d 0j j2 1
, so that we go back to Case A. The lower 

bound for decoherence time is scale-free with respect to n, when the whole system acts like a giant 
spin− /1 2 system in which the spin polarization is spread out over n physical spins. The lower bound 
corresponds to the equally-populated superposed states with | | = /d n1j

2 , i.e., an almost standard  
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W state (which would have all dj having the same phase, too). For a large number of qubits, → ∞n , 
( )/ ( ) → / T n T 1 1 22 2 , where the scaling of decoherence is insensitive to either the population distribu-

tion on each basis state or the total number of physical spins.

Case D: m = Cn
k and k ≥ 2.  We now extend x  to a more generalized W-state that is distributed over 

all the product bases in the k-th Zeeman manifold, with ≥k 2. For a clear physical picture let us first 
consider a special example where all the product states have the same weight: | 〉 = ∑ | 〉=x d xD r

m
r r1  with 

= /d m1r . The overall decoherence is determined by the phase differences between every pair of states 
from the Cn

k basis states as well as the population distribution. Since = −C Cn
k

n
n k, we limit our discussion 

below to ≤ /k n 2 without loss of generality. The phase difference θr r1 2
 between a particular pair of | 〉xr1

 
and | 〉xr2

 can involve Overhauser fields in 2j QDs, where ≤j k. In the extreme case of 2j =  n, they have 
completely opposite spins. After a straightforward derivation via combinatorial mathematics, the fidelity 
for this state is found to be ( ) ≈ − ( − )/ / ( )t exp k n k n t T{ 4 [ 1 ] }2
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In particular, (a) when → ∞n  while k is kept as a constant, ( ) ∼ /( )T n k1 22 , which is scale-free 
with respect to the number of spins n as well as the number of product states m in | 〉x D (it is a similar 
feature as in Case C with =k 1); (b) overall decoherence is completely suppressed when =k 0 or =k n, 
i.e. ( ) = ∞T n2 . These two Zeeman manifolds contain one state each, so that Case D is reduced to Case 
A; (c) the strongest decoherence occurs when ∼ /k n 2, where ( ) ∼ ( )/ T n T n12 2 .

The generalized W state | 〉x D here is a reliable and tight lower bound for the decoherence scaling rate 
of a more general state | 〉 = ∑ | 〉′

=x d xD r
m

r r1  in the k-th manifold where dr is an arbitrary number. In Fig. 2, 
the lines represent the analytical result given by Eq. (5), and the data points are obtained from 100 ran-
domly generated | 〉′x D states. The inset of the figure shows that the standard deviations in ( )/ ( ) T n T 12 2  
for the random | 〉′x D states scale as a power-law function of m. More specifically, σ ∝ ν−m , when 
= , ,k 2 3 4, ν = . , . , .1 3173 1 2503 1 2000, respectively. This m-dependence originates from the randomness 

we have introduced in the populations of the m states involved in each | 〉′x D. With =m Cn
k, the conver-

gence of the calculated ( )T n2  is extremely fast as we increase n, as indicated in Fig. 2. In short, Fig. 2 
clearly indicates that the equal-weight | 〉x D state is a very good representative of the large class of states 
from both Cases C and D. Furthermore, while decoherence rate of | 〉x D generally scales as /n1 2, the con-
vergence rate scales as ∼ −m 1.

Case E: m = 2n.  We now consider x  in the full Hilbert space of the n qubits. For the overall decoher-
ence, C2

2
n pairs of phase differences have to be taken into account. The simplest such state is the fully and 

Figure 2.  ( )/ ( ) T n T 12 2  vs. n for randomly generated | 〉′x D states (with random populations over bases) in 
the k-th Zeeman manifold in Case D. The lines are generated from the analytical expression of Eq. (5) 
based on the | 〉x D

 state. Inset: standard deviation σ of ( )/ ( ) T n T 12 2  obtained from 100 | 〉′x D states, as a 
function of the Hilbert space size m.
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equally superposed state | 〉 = (| 〉 + | 〉)/ ⊗x [ 1 1 2 ]E
n, which is the initial state employed by Shor’s algo-

rithm of factorization29 and one-way computing30. Its fidelity is simply the product of single-qubit fidelity 
( ) ≈ − / ( )t exp n t T{ [ 1 ] }2

2 . Thus,
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As in Case D, we can generalize | 〉x E to | 〉′x E by randomizing the weight dr
2's, ≤ ≤r1 2n. In Fig. 3 we 

plot our numerical results as compared with the analytical expression from Eq. (6). The size of error bars 
in Fig. 3 for random states rapidly vanishes with increasing n. Similar to Case D, the inset shows that 
the standard deviation of ( )/ ( ) T n T 12 2  scales with the Hilbert space size m in the form − .m 1 2697. Since 
here m increases exponentially with n, the rapid suppression of error bar size as we increase n is not 
surprising. Consequently, the decoherence time for an arbitrary state | 〉′x E adheres to the sublinear 
power-law − /n 1 2 as soon as >n 2.

Discussion
We have explored the scaling behavior of decoherence of n uncoupled electron spin qubits by investigat-
ing the fidelity of 5 classes of representative superposed states x . Our results are summarized in Table 1, 
where k is the number of spins in 1  in a product state that makes up of x . Typically, the pure dephasing 
rates are not related to the sub-Hilbert-space size m. Instead, they are usually sublinear power-law func-
tions of the qubit number n, with the exponent determined by the single-spin decoherence mechanism. 
Furthermore, if x  is constrained in a single subspace with a fixed k, ( )⁎T n2  and ( )T n2  become scale-free 
with respect to n and m, in the spirit of DFS, though the noise sources here are not common to all qubits.

Fidelity is one specific way to represent the environmental decoherence effects on a multi-qubit state, 
with equally weighted contributions from all the off-diagonal density matrix elements. We choose it 

Figure 3.  Average ( )/ ( ) T n T 12 2  vs. n from randomly generated states over the whole Hilbert space of the 
n-spin system. The solid line is generated by Eq. (6), using the equal-superposition state | 〉x E

. Inset: standard 
deviation of ( )/ ( ) T n T 12 2  vs. Hilbert space size m =  2n. For each n, The results are generated from 100 
randomly selected states.

x ( )/ ( )⁎ ⁎T n T 12 2  or ( )/ ( )T n T 12 2

Stable: A no decoherence

Two product states: B −k
1
2

k-th subspace: C and D −k
1
2

Crossing subspaces: E −n
1
2

Table 1.  A summary of decoherence times of n uncoupled electron spin qbits under the influence of 
hyperfine coupling with local nuclear baths.
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partially because there is no consensus measure for multi-qubit entanglement. Still, fidelity does provide 
hints on the robustness of certain entangled states against pure dephasing considered in this study. It 
should be noted that the results for the often-studied multipartite states, GHZ states and W states (pre-
sented in Cases B and C, respectively) coincide with their entanglement behaviors. The entanglement of 
W states (fidelity undergoes scale-free decay with respect to n) outperforms that of GHZ states (fidelity 
decay rate is proportional to n ) in terms of their robustness31. The independence on n by the W states 
is generic, insensitive to the behavior of single-qubit decoherence.

The scalings revealed in our case studies can be qualitatively understood by counting the number of 
different spin orientations in any pair of product states. Among m product states making up an arbitrary 
state x , a large fraction of pairs have ( )O n  electron spins oriented in the opposite direction. If we aver-
age over all possible states assuming ≈ /d m1r

2 , the fidelity given by Eq.  (2) could be estimated as 
− / ( ) νexp t T{ [ 1 ] }2 . The decoherence rates are insensitive to m because of normalization and our 

equal-population assumption. More specifically, in the k-th manifold, the scaling law is / k1  because 
any pair of states here is different at most in ( )O k  spins. This scale-free behavior (with respect to n and 
m) is quite generic26,27, and not dependent on single-qubit decoherence.

Our study here could be straightforwardly extended to other single-qubit decoherence mechanisms. 
In general, if the single-spin decoherence function is given by − / ( ) νexp t T{ [ 1 ] }2 , the index of every 
power-law (− /1 2) in Table 1 should be changed to ν− /1 . For decoherence due to Gaussian noise under 
dynamical decoupling32, the decay functions have ν = 4 for spin echo and ν = 6 for two-pulse 
Carr-Purcell-Meiboom-Gill sequence, so that the decoherence scaling factors for the n-spin system 
become − /n 1 4 and − /n 1 6, respectively. For spin relaxation induced by electron-phonon interaction that 
produces a linear exponential decay characterized by T1, the sub-Hilbert space spanned by a multi-qubit 
state is usually not fixed. So that a comprehensive understanding of the decay scaling power-laws requires 
further studies. Nevertheless, certain coherence terms in the n-spin system will still follow −n 1 scaling, 
same as what our dephasing study indicates.

Generally, decoherence of any class of multi-qubit states is independent of the Hilbert space size m. 
Whether it is scale-free or scales as a polynomial of n depends on the state-structure, while the specific 
power-law depends on the single-qubit decoherence mechanism. On the other hand, the variability of 
decoherence for arbitrary states decreases polynomially with increasing m because we only consider 
dephasing.

In conclusion, we find that the structure of a multi-qubit state is a critical ingredient in determining 
its collective decoherence. While different from DFS33, the scale-free states help identify Hilbert sub-
spaces that are more favorable in coherence preservation for spin-based qubits under the influence of 
local nuclear spin reservoirs.

Method
Single-Spin Decoherence.  For a single electron spin coupled to the surrounding nuclear spins in a 
finite magnetic field, the nuclear reservoir causes pure dephasing via the effective Hamiltonian13,28
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where N is the number of nuclear spins, Ω  is the electron Zeeman splitting, and Aα is the hyperfine 
coupling strength. The sums over α and α′ here are over all the nuclear spins in the single quantum dot 
(QD). The dephasing dynamics has two contributions: HA is the longitudinal Overhauser field, while V 
is the second-order contribution from the transverse Overhauser field. In a finite field, normally the 
former dominates, generating a random effective magnetic field of ∆ ∼B 1 to 5 mT9 on a 
quantum-dot-confined electron spin in GaAs. This random field leads to a stochastic phase and accounts 
for the inhomogeneous broadening effect characterized by a free induction decay at the time scale of 
( )⁎T 12 , where 1 indicates that only one electron spin is considered. For this single spin, the inhomogene-

ous broadening decoherence function is:
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Here ⋅M [ ] is an ensemble average over the longitudinal Overhauser field in the QD, and ( ) ∝ /⁎T N A12  
with = ∑α αA A . In a single gated QD in GaAs, ( )⁎T 12  is in the order of 10 ns.

If the effect of HA is suppressed, such as through nuclear spin pumping and polarization10, V, which 
is second order in the transverse Overhauser field, leads to the so-called narrowed-state free induction 
decay, by which the off-diagonal elements of the spin density matrix decay at the time scale of T n

2
FID. In 

the manuscript and here we will simplify the notation for T n
2

FID to ( )T n2 , where n indicates the number 
of spin qubits in consideration. For a single spin, n =  1, and the narrowed-state decoherence function is 
given by:
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where ( ) ∼ Ω/T N A12
213, and is in the order of μs in a gated GaAs QD.

Notations on the multi-quantum-dot Overhauser fields.  A convenient way to understand the 
effect of hyperfine interaction on the n-uncoupled-qubit system [see Eq.  (1)] is to introduce the semi-
classical Overhauser field: = ∑ =− 

B l Bl l l
p

j
n

j j
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1n n 1 1
, where = , + , −p z  refers to the longitudinal and 
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the j th QD. In a finite field and up to second order, the hyperfine Hamiltonian could be diagonalized 
on the product state basis into
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Here = +p j
 (−) if =l 1j  (1). The two terms in Eq. (11) are responsible for the inhomogeneous broad-

ening and narrowed-state FID, respectively. Accurate to the first order in αA j , ≈− + + −B B B Bj j j j , since 
, = ∑α α α
+ −B B A I[ ] 2j j j j

z2  is second order in the hyperfine coupling strength and is small. For simplicity 
we take = +p j

 in the following derivation. Generally, the second-order term for the j th dot in Eq. (11) 
≈ /( Ω)+ −l B B 2j j j . For example, a completely polarized state ≡ | ⊗b 1 n experiences a longitudinal 
Overhauser field + ∑ /( Ω)=

+ −
B B B B 2b

z
b
z

j
n

j j1 . Thus our work is accurate to the second order of the hyper-
fine coupling. In the main text, the Overhauser fields are treated semiclassically, with the field operators 
replaced by c-numbers.

With the hyperfine Hamiltonian takes on a diagonal form, it only leads to dephasing between different 
product states due to B, similar to the single-spin case we discussed above. The dephasing of a product 
state xr  relative to ′xr  is due to the difference in the random Overhauser field B for these states.

Statistical independence of inhomogeneous broadening and narrowed-state free induction 
decay.  To analyze the relationship between inhomogeneous broadening from the longitudinal 
Overhauser field and narrowed-state free induction decay due to the transverse Overhauser field in an 
n-uncoupled-qubit system, we consider an arbitrary pure state in a subspace spanned by m spin product 
states = ∑ =x d xr

m
r r1 , where = − x l l lr n

r
n
r r

1 1 . Here l j
r refers to the electron spin orientation along 

the z-direction in the j th QD for state xr , and takes the value of 1 or 1 for notational simplicity. The 
whole Hilbert space of the n-qubit system could be divided to +n 1 manifolds according to the number 
of 1 for the product bases, as indicated in Fig 1. The choice of x  here is sufficiently general to cover all 
the cases discussed in the manuscript. Helped by the Overhauser fields defined above, and under the 
diagonalized hyperfine interaction Hamiltonian in Eq. (10), an initial state x  evolves into

∑| ( )〉 = | 〉,
( )=

− x t d e x
12r

m

r
iB t

r
1

xr
z

where ≡
−

� �
�B Bx

z
l l l
z

r n
r

n
r r

1 1
 is the Overhauser field experienced by the product state xr . Decoherence of 

( )x t  emerges due to the non-stationary random phase differences from these Overhauser fields. The 
fidelity between ( )x 0  and ( )x t  can be expressed as



∑ ∑

( ) ≡ ( )| ( ) ( )| ( )

=











| |










| |











 ( )=

−

=

 

t M x x t x t x

M d e d e

[ 0 0 ]

13r

m

r
iB t

r

m

r
iB t

1

2

1

2xr
z

xr
z

∑ ∑ θ=




 | | + | | | |





 , ( )= <

M d d d t2 cos
14r

m

r
k r

k r kr
1

4 2 2
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where the phase differences θ ≡ − B Bkr x
z

x
z

k r
.

According to Eq. (11), each θkr could be decomposed into two terms, θkr
ib and θkr

ns, that are responsible 
for the inhomogeneous broadening and narrow-state free induction decay, respectively:

∑

∑

θ θ θ

θ

θ

= + ,

= − = ( − ) ,

≈
Ω

( − ) .

=

=

+ −

− −




B B l l B

l l B B1
2

kr kr
ib

kr
ns

kr
ib

l l l
z

l l l
z

j

n

j
k

j
r

j
z

kr
ns

j

n

j
k

j
r

j j

1

1

n
k

n
k k n

r
n
r r

1 1 1 1

The ensemble average θ = θM t M e[cos ] [ ]kr
i tkr  could be estimated using the decoherence times of a single 

qubit system ( )⁎T 12  (inhomogeneous broadening time scale) and ( )T 12  (the narrowed-state FID time 
scale)13,

∑θ = =






− ( − )





 ( )

+
( )













.

( )

θ θ

=
⁎M t M e e exp l l t

T
t

T
[cos ] [ ]

1 1 15
kr

i t i t

j

n

j
k

j
r

1

2
2

2
2

2

2
2

kr
ib

kr
ns

This result is obtained using the canonical approach to treat quantum noise34, and is valid at least in 
the short time limit. Physically it is based on the assumption that longitudinal and transverse Overhauser 
fields are independent from each other, so that the averages above can be factored. The two decoherence 
mechanisms are thus mutually independent. Using the short notations ≡ ∑ ( − )B l lkr j j

k
j
r 2, 

( ) ≡ / ( )⁎D t t T[ 1 ]ib
2

2, and ( ) ≡ / ( )D t t T[ 1 ]ns
2

2, Eq. (14) can be rewritten as

F

B

B B

∑ ∑

∑

( ) ≈ | | + | | | | − ( ) − ( )

= −





| | | |





( ) + ( ) ≡ − ( ) + ( )

≈





− ( )











− ( )






,

( )

= <

<

t d d d B D t B D t

d d B D t D t D t D t

exp D t exp D t

2 [1 ]

1 2 [ ] 1 [ ]

2 2 16

r

m

r
k r

k r kr
ib

kr
ns

k r
k r kr

ib ns ib ns

ib ns

1

4 2 2

2 2

where  ≡ ∑ < d d B2 k r k r kr
2 2 . In short, Eqs  (15) and (16) show that inhomogeneous broadening and 

narrowed-state FID are independent decoherence channels, and have the same scaling behavior. The 
overall decoherence function is just a simple product of the decay functions for inhomogeneous broad-
ening FID and narrowed-state FID. We can thus focus on calculating  in our discussion of decoherence 
scaling for n spin qubits.

For a simple example, take = (| + | + )/x 111 111 111 3 . The inhomogeneous broadening part 
in Eq.  (16) then takes on the form  θ θ θ( ) = + + + /t M t t t3 2 [cos cos cos ] 312 13 23 , where 
θ = ( − ) B B2ik i

z
k
z . After a semiclassical evaluation of the Overhauser field noise34, and using the expressions 

of ( )⁎T 12  in Eq. (8) and ( )T 12  in Eq. (9), we find θ = =( − ) − / ( ) − / ( ) 

⁎
M t M e e e[cos ] [ ]ik

i B B t t T t T2 8[ 1 ] 8[ 1 ]i
z

k
z

2
2

2
2
, 

so that ( ) ≈ − / / ( ) − / / ( )⁎t exp t T exp t T{ 8 3[ 1 ] } { 8 3[ 1 ] }2
2

2
2  in the short-time limit. Therefore, in this 

example, ( )/ ( ) = ( )/ ( ) = /⁎ ⁎T T T T3 1 3 1 3 82 2 2 2 .
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