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Abstract: Despite recent technological advancements allowing the characterization of cancers at a
molecular level along with biomarkers for cancer diagnosis, the management of ovarian cancers (OC)
remains challenging. Proteins assume functions encoded by the genome and the complete set of
proteins, termed the proteome, reflects the health state. Comprehending the circulatory proteomic
profiles for OC subtypes, therefore, has the potential to reveal biomarkers with clinical utility con-
cerning early diagnosis or to predict response to specific therapies. Furthermore, characterization of
the proteomic landscape of tumor-derived tissue, cell lines, and PDX models has led to the molecular
stratification of patient groups, with implications for personalized therapy and management of drug
resistance. Here, we review single and multiple marker panels that have been identified through
proteomic investigations of patient sera, effusions, and other biospecimens. We discuss their clinical
utility and implementation into clinical practice.
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1. Introduction

Ovarian cancer (OC) is often used as an umbrella term referring to malignancies
caused by ovarian epithelial inclusion cysts that are trapped beneath the surface of the
epithelium of the ovary as well as malignancies in the peritoneum and fallopian tube [1].
Advanced OC is one of the deadliest malignancies in women with a 5-year survival
rate below 30% and high incidences of occurrence in the Eastern and Central European
population (11.4 per 100,000 and 6.0 per 100,000, respectively) [2]. Although the incidence
varies across populations, the average lifetime risk of developing OC is 1.3% [3].

Most OC are epithelial (90%), and it is a heterogeneous disease comprising of a
range of subtypes [4]. The most frequent subtype is high-grade serous carcinoma (HGSC)
corresponding to around 60 % of cases, whereas low-grade serous carcinoma, mucinous,
clear cell, and endometrioid OC are all less abundant [4]. The spread of OC is frequently
systematically categorized using a scoring scheme outlined by the International Federation
of Gynecology and Obstetrics (FIGO). FIGO scoring is based on the tumor-node-metastasis
(T-N-M) approach which systematically describes the extent of the tumor (T) as well as its
spread to lymph nodes (N) and potential metastasis (M) and categorizes OC into 4 stages
(denoted I, II, III, and IV). Stage I is characterized OC only in the ovary(s) or fallopian
tube(s) and Stage II by its spread to a close organ such as the uterus, bladder, or rectum.
Stage III is defined by the spread to the abdomen and/or lymph nodes and stage IV by
distant metastasis. i.e., pleura. While Stage I tumors are associated with a good prognosis
most OC cases are not diagnosed at this stage. Stage II and III OCs are removed by
debulking surgery followed by treatment with a combination of platinum and taxane
chemotherapy which leads to considerable improvement in survival [5]. Stage III tumors
are categorized by the spread to the adjacent peritoneum through metastasis. Stage IV is
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defined through distant metastasis and frequently treated by a combination of debulking
surgery to remove the primary tumor and chemotherapy to target metastases. Due to the
lack of efficient tools for early diagnosis, around 10–20% of the OCs are detected at this
stage and treatment options remain limited along with poor survival rates [6]. OC tumors
are typically also categorized as low or high grade, which reflects the differentiation state of
tumor cells. The less differentiated low-grade tumors are typically associated with a better
prognosis.Several genetic studies have linked dysregulated gene expression and mutations
to OC. However, not all OCs display a similar pattern, emphasizing that the disease is
heterogeneous also at the molecular level. For example, and by analogy with malignant
breast cancer, mutations in BRCA1 and BRCA2 are linked to OC [7]. Moreover, the high-
grade serous OCs display a high frequency of TP53 mutations and other OC histologic
subgroups have frequent mutations in ARID1A, PIK3CA, PTEN, CTNNB1, KRAS, and
RPL22 [7–10].

One of the major challenges associated with the diagnosis of OC is the asymptomatic
nature of the disease. Early-stage (I and II) OC are therefore challenging to detect. Late-
stage (III and IV) OC is associated with more severe symptoms, and invasive surgery is the
most viable option for disease management [11]. Although primary complete debulking
surgery (PDS) strikingly increases survival for advanced-stage OC, it is not a perfect
approach and many patients suffer from the recurring disease. In certain cases, the tumor
burden needs to be reduced before PDS. This is frequently achieved through neo-adjuvant
chemotherapy and referred to as interval debulking surgery [12].

While the 5-year survival rates for early-stage (I and II) OC can be up to 90% with clin-
ical interventions like cytoreductive surgery and combination chemotherapy, the late-stage
(III and IV) OC 5-year survival rate is below 30% [13]. Therefore, diagnostic biomarkers that
distinguish benign from malignant tumors at an early stage would be of tremendous value
(Figure 1a). Moreover, as OC is a complex heterogeneous disease, biomarkers predicting
the responsiveness of tumors to drugs, which would thereby guide personalized treatment,
would be of great clinical utility (Figure 1b).

Figure 1. The concept and utility of biomarkers. (a) Disease biomarkers. Molecules of which the
level is associated with a disease state are referred to as biomarkers. (b) Clinical utility of biomarkers.
The levels of biomarkers can be monitored over time, allowing for early diagnosis and informed
decisions regarding clinical interventions. Grey: Healthy, Light Pink: Individuals with disease risk,
Dark Pink: Individuals harboring the disease.

2. Protein Biomarkers Associated with OC

The identification of biomarkers for improved OC diagnosis and informed clinical
decision-making would represent great value for both patients and the healthcare system.
Protein markers are most frequently analyzed in the tumor, tumor effusions, or circulating
fluids such as blood plasma (Figure 2). Early studies have reported the use of single
markers in blood serum such as CA125 (Uniprot ID Q8WXI7, also known as Mucin-16) [14]
and HE4 (Uniprot ID Q14508) [14]. With high-throughput semi-automated systems for
sample handling and analysis, as well as the implementation of machine learning-based AI
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approaches, the use of biomarker panels comprising multiple markers has emerged as a
superior approach. For example, panels of analytes such as the one proposed by Mor G
et al., consisting of Leptin, Prolactin, Osteopontin, and insulin-like growth factor-II (IGF-II)
have been proven to be useful for discriminating cancer and non-cancer patients as well
as the assessment of stage I/II disease [15]. In a recent study, the assessment of multiple
biomarkers, along with CA125, considerably improved the performance of the predictive
model for early diagnosis. This panel comprised of CA125, HE4, CHI3L1, PEBP4, and/or
AGR2, provided 85.7% sensitivity at 95.4% specificity up to one-year before diagnosis [16].
Moreover, a study by Enroth et al., recently revealed a candidate 11-protein biomarker
panel for early OC diagnostics [17]. Currently, studies aimed at uncovering OC biomarkers
are increasingly implementing similar multiple-marker models for predictive analysis
(Table 1).

Figure 2. Identification and clinical use of OC protein biomarkers. Biomarkers can be identified by a comparative analysis of
proteins and their modification state in tumor material and blood plasma from patients and controls. The bioinformatic analysis
may involve cellular pathway activity mapping, principal component analysis (PCA), and receiver operator characteristics (ROC).
Identified biomarkers have the potential to improve disease diagnosis and predict response to therapy.

Table 1. Examples of key protein markers associated with Ovarian Cancer.

Marker(s) Gene ID
(If Applicable) Source

Type
(Circulatory/Tumor-

Specific

Utility
(Early/Late-

Stage
Pre/Post-

Menopausal)

Platform &
Study Design Reference

CA-125 MUC16 Serum/Plasma
Serum marker-high
molecular weight

glycoprotein

Monitoring
response to

chemotherapy
and disease
activity in

clinical trials.

Immunoassays
from patient
sera using

OC125 and M11
antibodies

[18–21]

HE4 WFDC2 Serum/Plasma

HE4 is also a
secreted

glycoprotein that is
overexpressed in

OCs

FDA approved
biomarker for

monitoring
disease activity

Immunoassays
from patient

sera
[19,20]



Proteomes 2021, 9, 25 4 of 15

Table 1. Cont.

Marker(s) Gene ID
(If Applicable) Source

Type
(Circulatory/Tumor-

Specific

Utility
(Early/Late-

Stage
Pre/Post-

Menopausal)

Platform &
Study Design Reference

MCSF and
LPA CSF1 Blood/Tumor

tissue ascites

Components of the
tumor

microenvironment

LPA is elevated
in the blood,
tumor tissue,
and ascites.
LPA also

influences
tumor-

associated
macrophages,
which can be

used as a
therapeutic

target

Metanalysis
from several

studies mostly
based on the

immunoassay-
based

determination
of markers

[22]

CART
analysis:
CA-125,

OVX1, LASA,
CA 15-3, CA

72-4)

MUC16, ovx1,
MUC1 Serum

Circulatory
markers as well as

tumor
microenvironment

components

CART analysis
(classification
and regression
tree analysis),

uses the
sequential
analysis of

marker
concentrations
with 5 markers

(CA-125,
OVX1, LASA,
CA 15-3, CA
72-4) to yield

a sensitivity of
90.6% and a
specificity of

93.2%

Initial
discovery-

based studies
using radioim-

munoassay.
Multiple

marker analysis
performed on
ANN based

machine
learning

algorithms

[23–25]

A three-panel
marker:

Apolipopro-
tein I

TransthyretinInter-
α-trypsin
inhibitor

heavy chain
H4 (cleavage

fragment)

APOA1,
TTR, ITIH4 Serum

Components of the
circulatory
biofluids

Useful for
detection of
early-stage

patients,
exhibits higher

sensitivity
(74%) over

CA125 alone
(52%)

The study
employed

SELDI-TOF
technology

with the
ProteinChip
Biomarker

System
(Ciphergen
Biosystems)

[25,26]

CT45 CT45A1,
CT45A

Tumor tissue
(FFPE blocks) Tumor marker

Reported to be
an independent

prognostic
factor that is

associated with
a doubling of
disease-free
survival in

advanced-stage
HGSCs

Quantitative
proteomics on

FFPE tumor
samples

derived from 25
chemotherapy-
naive patients

with
advanced-stage

HGSCs

[27]
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Table 1. Cont.

Marker(s) Gene ID
(If Applicable) Source

Type
(Circulatory/Tumor-

Specific

Utility
(Early/Late-

Stage
Pre/Post-

Menopausal)

Platform &
Study Design Reference

MUCIN-16,
SPINT1,

TACSTD2,
CLEC6A,
ICOSLG,
MSMB,
PROK1,
CDH3,

WFDC2,
KRT19, and

FR-alpha

MUCIN-16,
SPINT1,

TACSTD2,
CLEC6A,
ICOSLG,

MSMB, PROK1,
CDH3, WFDC2,

KRT19, and
FOLR

Plasma Circulatory
markers

Potentially
useful for
improved

diagnosis of
adnexal ovarian

mass and
identification of
potential cases
for specialized

referrals

PEA was
implemented

utilizing
oligonucleotide

antibody
probes to
measure
protein

abundance

[17]

CA-125 = cancer antigen 125; HE4 = homo sapiens epididymis specific 4; MCSF = macrophage colony-stimulating factor; LPA = lysophos-
phatidic acids; ANN = artificial neural networking; SELDI-TOF = surface-enhanced laser desorption/ionization-time of flight; HGSC =
high-grade serous ovarian carcinomas; PEA = proximity extension assay.

Proteomic characterization of tumor tissue specimens has also revealed molecular aber-
rations that contribute to the onset and progression of OC [28,29]. Immunohistochemistry-
based examination of tumor specimens using members of the cytokeratin family (CK7 and
CK20) helps in distinguishing serous OC from other gastrointestinal malignancies [30].
In-depth analysis of genetic and histopathological signatures has also led to categorizing
OCs into two types, Type I (Low grade) and Type II (High grade). While Type I tumors
have a high frequency of KRAS and BRAF mutation, Type II tumors have a high frequency
of TP53 mutations [31–34]. Other biospecimens such as effusions, pap smear fluids, and
cervical swabs, are also valuable for understanding OC pathobiology and represent sources
of markers that can predict clinical outcomes [35,36]. For example, a 9-biomarker panel in
ovarian cyst fluids has been shown to discriminate between type 1 and type 2 tumors [37].
Moreover, a pilot study has depicted the utility of vaginal lysophosphatidic acid (LPA) lev-
els as a non-invasive diagnostic marker for OC in post-menopausal women [38]. Another
study investigating OC effusions revealed prominent involvement of cell-cell adhesion
molecules like FAK, Erk, and P-Cadherin [39]. The study also suggested that cell adhesion
molecules can comprise a prognostic signature that can be utilized to predict tumor aggres-
siveness as well as patient segregation. Cell adhesion protein expression, when correlated
with clinicopathological parameters, has also been used to identify patient cohorts for
clinical trials with small molecule inhibitors of FAK and other upstream effectors [40–42].
While these markers have yielded insights into OC development and the molecular path-
ways associated with it, they are still in the early stages of investigation and are yet to be
implemented for disease management.

The emergence of ‘liquid biopsies’ has indeed ushered in a new era in diagnostics [43].
There is now tremendous potential for identifying biomarkers for improved OC diagnosis
by mining such liquid biopsies with state-of-the-art (prote)-omics technologies [44,45].
Mostly the liquid biopsies are probed for circulating tumor DNA, tumor cells, exosomes,
or tumor microRNA. In OCs, circulating tumor cells (CTC) are often present and useful as
surrogate markers of minimal residual disease. In a study by Zhang et al., wherein nearly
100 patients were screened and subjected to CA125 measurements; CTCs were detected in
nearly 90% of the newly diagnosed patients. The number of CTC also correlated with the
stage of the OC. However, the ratio of CTC in comparison to other components in plasma
is low and the choice of detection technique influences the number of CTCs identified.
Although major strides have been made through the implementation of liquid biopsies for
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several cancers, more research is required to assess the full utility of CTC determination for
OC, which primarily metastasizes directly through the abdominal cavity [46–50].

With recent advances in high-throughput omics technology and automated handling
of large sample cohorts, the scope of establishing multi-marker panels has increased
considerably. An ideal scenario for the effective clinical management of OCs would
implement an integrated approach where blood-based markers and imaging analysis
are collectively used for diagnosis and guiding clinical decisions on surgery and choice
of therapy.

3. Candidate Markers for OC Diagnosis in Circulatory Fluids

CA125 (Uniprot ID Q8WXI7) is a large glycoprotein with a molecular weight of over
1.5 M Da, and is one of the most extensively used tumor markers for OC. Its link to OC
was first described in 1981 by Bast RC et al., and its level is elevated in 90% of high-grade
OC patients [13,51]. CA125 is considered a ‘gold standard’ marker for OC and is widely
used for clinical assessment regarding disease progression and therapeutic efficacy in OC
patients [51]. However, its utility in early diagnosis is limited as its expression is only
found to be elevated in the later stages of OC and is often found to be elevated even in
cases of benign endometriosis [52,53]. Therefore, the quest for identifying markers that can
aid in early detection remains an area of active research.

A series of other markers have subsequently been identified from OC patient sera,
including the Human epididymis protein 4 (HE4) (Uniprot ID Q14508), which is a secreted
glycoprotein that is overexpressed in both serous and endometrioid OCs and thus might
be useful in specific clinical scenarios [45,54,55]. In the same vein, line protein markers
like EGFR, ErbB2, and osteopontin, in combination with the above-mentioned, have been
reported to be of relevance in OC. These markers exhibit greater sensitivity and specificity
when compared to single biomarker assays for the early detection of OCs [56,57]. However,
the utility of these markers in isolation and combination remains a challenge when it comes
to early diagnosis of the advent of ovarian malignancy [1].

The development of multivariate index assays (MIA) that comprise panels of biomark-
ers to assess the extent of malignancy has greatly facilitated the identification markers that
can also aid in early diagnosis. For example, the FDA-approved MIA test Ova1® is based
on a 5-protein biomarker panel (CA125, TF, B2M, Transthyretin, APOA1) that serves to
aid clinical decision-making regarding surgery in the case of ovarian adnexal mass [8,58].
Similarly, the ROMA® test comprises two proteins (CA1254 and HE4) that predict the risk
of finding a malignancy during surgery in the case of an increased ovarian adnexal mass,
but the ROMA test has established predictive power for both pre-and postmenopausal
women [1,52,53,59]. The above-mentioned panels highlight the utility of plasma biomark-
ers for clinical assessment of OCs, and add confidence to the prospects of taking markers
identified in proteomics experiments from bench side to bedside. Notably, none of the
approved tests have yet shown utility for screening purposes [60,61].

Blood is the preferred source of biomarkers as it is routinely extracted and handled
at primary care units and hospitals. Therefore, blood-based biomarkers can be readily
assessed which is a considerable advantage over biospecimens extracted with invasive
methods, such as tumor biopsies or effusions. Consequently, a large number of clinical
studies have been undertaken using proteomics platforms to assess both diagnostic and
prognostic markers from patient sera and plasma [62,63]. Investigation of serum proteome
using mass spectrometry platforms has led to the identification of many differential markers
including the three- biomarker panel consisting of APOA1, transthyretin (downregulated),
and inter-α-trypsin inhibitor heavy chain H4 (cleavage fragment) (upregulated) as well
as CTAPIII and PF4 [26,64–66] (Table 1). Many of these markers are now being screened
using highly sensitive targeted mass spectrometry-based methods such as selected reaction
monitoring (SRM) [14]. A recent study using an SRM assay was able to identify a 5 protein
panel consisting of IGHG2, LGALS3BP, DSG2, L1CAM, and THBS1 which yielded almost
94% specificity, along with CA125, for distinguishing OC patients from healthy controls [67].
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These developments highlight the potential of integrating multi-protein panels identified
by mass spectrometry studies into mainstream clinical diagnostics modules.

4. Proteomic Profiling of Solid Tumors and Clinically Relevant Protein Markers

Recent advances in mass spectrometry-based workflows have contributed to the
identification of several proteins linked to OC in both tumor biospecimens as well as in
plasma and serum [68–70]. These studies have employed a plethora of strategies that
include label-free data-dependent acquisition (DDA), label-free SWATH, and isobaric pro-
tein labeling approaches denoted TMT [37] or iTRAQ [70,71]. This has resulted in the
identification of several proteins that previously had not been well studied in the context
of OCs. This includes transtherytin (TTR), apolipoprotein A1 (APOA1), and casein kinase
II alpha 1 subunit isoform-a (CSNK2A1), as well as markers indicative of drug resistance
such as Destrin (DSTN), Tumor rejection antigen (gp96) (HSP90B1), and EGF-containing
fibulin-like extracellular matrix protein 1 (EFEMP1) [62]. These markers were shown to
correlate with the clinical outcomes of the tumor. For instance, elevated levels of glyco-
protein tumor rejection antigen (gp96) were observed in a human OC cell line that was
resistant to paclitaxel vs nonresistant OC cell lines [72]. Similarly, HGSCs, which account
for around 70–80% of morbidities, often exhibit resistance to conventional chemotherapy.
System-wide analyses of both genomic and proteomic evidence have revealed that in-
hibition of PI3K/AKT/mTOR pathway components can be an alternative approach for
patient management [73]. Quantitative proteomics studies on cancer cell lines as well as
more sophisticated approaches using PDX models are pivotal in uncovering cancer cell
vulnerabilities that can then be targeted by specific inhibitors for efficient management
of aggressive tumors [73–75]. The proteomic profiling of tumor tissue has also revealed
widespread aberration in key cellular pathways such as the p38-MAPK stress-activated
signaling pathway and cytoskeletal components [76]. A dysregulated pathway can rep-
resent a tumor vulnerability and is key in designing therapeutic intervention strategies.
In a recognized initiative by the Clinical Proteomic Tumor Analysis Consortium (CPTAC),
a comprehensive study of nearly 100 patients with HGSC was performed along with 25
controls consisting of normal tissues. Using both label-free and isobaric labeling quanti-
tative proteomics approaches to this dataset has enabled a deeper understanding of the
protein level alterations in HGSC. For example, the proteomic characterization linked
post-translational modifications (PTM), including phosphorylation and glycosylation, to
OC progression. The CPTAC data have also enhanced our understanding of OC hetero-
geneity and enabled the classification of HGSC subgroups based on gene changes using the
TCGA database and proteome composition from the CPTAC data. Further investigation
revealed a group of kinases that had elevated activity in tumors, including several mitotic
kinases, AURKA and cyclin dependent kinases, CDK1, CDK4, and CDK7. These represent
potential intervention points for HGSC therapy and can pave the way for better treatment
regimens [76–78]. Ultimately, the deep proteomic profiling of the tumor tissues has enabled
the subtyping of tumors and the prediction of overall survival of HGSCs. For instance, the
global proteomic profile of the HGSCs corresponded to TCGA transcriptomic subtypes,
namely the mesenchymal, proliferative, immunoreactive, and differentiative [69]. Tong et al.
has further extrapolated the data from the CPTAC to identify subtypes based on the patient
phosphoproteome, as well as key druggable kinases. The activity of eight kinases includ-
ing CDK9, CDC7, BRAF, and AXL, which were part of the Ph4 and Ph5 subtypes, also
correlated with patient survival [79]. Collectively, these studies have pin-pointed clinically
actionable targets.

5. Identification of PTMs in Ovarian Cancer and Their Clinical Implications

Proteins are frequently modified by so-called PTM, examples of which include gly-
cosylation, phosphorylation, and methylation, as a means to regulate and tune their
function [80,81]. All PTMs involve an increase in the mass of the modified protein and
are almost invariably analyzed in scale using mass spectrometry-based workflows [82].
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The identification of several high molecular glycoproteins associated with OC like CA-125
and HE4 suggests a link between glycosylation and the disease pathobiology. Indeed,
glycoproteomic profiling of high-grade serous ovarian carcinomas (HGSC) has revealed
differential glycosylation patterns between OC subtypes. This can aid in patient strat-
ification and promote the understanding of the role of glycosylation in tumor etiology
and development [72]. Therefore, the implementation of comprehensive glycoproteomic
profiling has great potential in future OC biomarker studies.

A recent study that employed high-density HuProt™ arrays and used a multiplexed
PTM analysis approach, revealed several dysregulated signaling proteins, including mem-
bers of the Src kinase family and focal adhesion kinases, in HGSC. An in-depth analysis
revealed prominent alterations of key PTMs, including tyrosine phosphorylation, and
identified key kinases such as SYK and PTK2B that represent potential drug targets [83].

Another prominent PTM linked to OC is the site-specific methylation of 70 kDa heat
shock protein (Hsp70) at Lys561 [84]. The site is specifically and exclusively modified
by the enzyme METTL21A [85,86] as a means to modulate the chaperone activity of
Hsp70 [87], and loss of methylation at the site has been linked to poor prognosis and
reduced overall survival [84]. Notably, Hsp70-K561 methylation constitutes a part of the
so-called ‘chaperone code’ [88,89], where multiple PTMs, individually or collectively, act
to regulate chaperone function. Taken together, this suggests that precise regulation and
PTM-mediated tuning of Hsp70 activity is important in OC biology.

A deep proteomic investigation on patient-derived primary cell lines from epithelial
OC revealed that there are differentially expressed proteins as well as phosphorylation
sites that can discriminate between cancer and healthy cells. In detail, the phosphorylating
kinase enzyme CDK7 was identified as a druggable target, representing a novel therapeutic
entry point and strategy [90].

Collectively, these recent insights from proteomic characterization of PTMs in patient
biospecimens and cancer cell lines highlight the value of analyzing protein modifications,
in addition to protein levels, in biomarker studies (Table 2). As PTM proteomics technology
develops, we anticipate an increased focus on such studies. Protein PTM status will likely
represent a key feature in next-generation OC diagnostics.

Table 2. Example biomarkers linked to PTM and drug resistance in OC.

Marker(s) Source
PTM

Details/Drug
Resistance/Other

Platform Reference

FAK, PTK2B Ovarian cell lines Phosphorylated
Protein

microarrays:
HuProt arrays

[83]

POSTN,
SERPINA1,

HYO1

HGSC tumor
tissues Glycosylation

SPEG for glycosite
analysis & intact
glycopeptides for
investigation of

IGPs followed by
LC MS/MS

[72]

TGFBI, OPN Ovarian cell lines
Drug resistance
against cisplatin
and paclitaxel

Protein
microarray:
Affymetrix

GeneChip Human
Genome U219
microarrays

[91]
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Table 2. Cont.

Marker(s) Source
PTM

Details/Drug
Resistance/Other

Platform Reference

COL5A2, LPL

Exosomes derived
from normal

human ovarian
surface & cancer

cell line

Elevated levels
seen in exosomes

derived from
cancer cells

Exosome isolation
followed by LC

MS/MS
[92]

HSPA1 (Hsp70) Tumor effusions
from HGSCs

Methylation status
of Lys561

LC MS/MS
analysis [84]

SPEG = solid-phase extraction of glycosite-containing peptides; IGPs = glycosite-specific glycans.

6. Ovarian Cancer Drug Resistance and Proteomics

The standard method of care for OC involves surgery and chemotherapy with carbo-
platin and paclitaxel [93]. However, drug resistance is a major problem for many patients.
Proteomic investigations have attempted to decipher the underlying mechanism of drug re-
sistance in the patient cohorts and have indicated aberrations in the ATP synthesis and RAN
GTPase binding components [94]. Moreover, analysis of serum samples of OC patients
has suggested the involvement of FN1, SERPINA1, and ORM1 [95]. These markers may
potentially be used as a panel to identify resistant patients prior to chemotherapy (See also
Table 2). Other studies link aberration of key signaling cascades such as PI3K/Akt/mTOR
pathway to OC drug resistance [96–99]. Overexpression of EGFR and subsequent EGFR-
mediated angiogenesis and further metastasis is also very common among high-grade
patients [100,101].

It is clear that OC can obtain resistance through a range of pathways, many of which
are linked to oncogenic kinase signaling [102]. Recent advances in single-cell technologies
such as spatial profiling [103] and single-cell proteomics [104] have great potential for
uncovering tumor heterogeneity and shedding light on mechanisms for inherent and
acquired drug resistance. Mechanisms underlying drug resistance can be delineated using
preclinical OC cell line models [105,106]. We envision that this will also be a focal point for
OC research in the coming decade.

7. High-Density Protein Microarrays and OC Biomarkers

The development and utility of high-density protein microarrays have led to significant
progress in the field of cancer proteomics [14,107]. For example, human proteome arrays
comprising nearly 17000 full-length proteins in duplicate have enabled studies uncovering
specific and differential autoantibody responses between OC patients and controls [108,109].
Using this full-length protein array technology, studies have found that markers such as Lamin
A/C, SSRP1, and RALBP1 are elevated in OC patients [110]. Antibody microarrays can also be
useful for screening disease-associated markers based on the specificity of the antigen-antibody
interactions. Using high-density arrays with immobilized antibodies provides a rapid approach
to screen for cancer-specific markers from complex proteomes, such as human serum [107,111].
Antibody-microarrays have developed to the point where very high test accuracy can be
achieved, as is illustrated by the detection of early-stage pancreatic cancer [112]. This technology
also provides a way to validate markers for clinical utility identified by orthogonal techniques,
such as mass spectrometry.
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8. Perspective on Existing Biomarker Panels: Their Utility, Limitations,
and Future Scope

The journey of identifying markers for early diagnosis of OCs, from CA125 & HE4 to
current multi-marker models, has indeed come a long way [107]. Notable progress has been
made in uncovering molecular features and mechanisms of the heterogeneous malignancy.
Several studies have shown that multivariate biomarker panels outperform single marker
analysis. For example, the 6 marker panels comprising leptin, prolactin, osteopontin,
insulin-like growth factor 2, macrophage inhibitory factor, and CA125 outperformed CA125
alone, with a specificity of 99.4% [14,56]. Many biomarkers display good performance in
single cohorts, but most fail in independent validation studies [113]. To cope with this, a
recent effort by the Mann Lab systematically identified plasma proteins related to sample
handling bias to generate a resource of “low quality” markers [114].

Recently, Enroth et al., described an 11-protein biomarker signature that separated
ovarian cancer stages I–IV from benign controls with a specificity of 93% in an independent
validation cohort [17]. However, no report has so far demonstrated high sensitivity for
early-stage OC. Current challenges include increasing the specificity of the multi-marker
panels, as well as the establishment of robust technological platforms that can easily
quantify these markers from patients in a clinical setting.

The development and clinical implementation of complex multivariate algorithms
that combine age, menopausal status, imaging, and serum-based biomarkers into a single
index for estimation of the risk of malignancy have benefitted patients. For example,
strategies such as Risk of Malignancy Index (RMI) [115], Risk of Malignancy Algorithm [20]
(ROMA), and OVA1 [20] have been useful to aid decisions regarding treatment strategy, and
specifically whether to refer the case to specialized cancer surgery in the case of increased
pelvic mass [116,117]. Such multi-variate marker panels will now also be developed for
early diagnosis, and there is currently a window of opportunity for high throughput
(prote)-omics technologies to uncover such markers.

The biomarker diagnostic test format is a key question for clinical implementation.
Today, single or multiplexed antibody-based tests, such as ELISA, represent the most fre-
quently used method. Antibody-based tests have two clear benefits compared to MS-based
platforms. First, they can readily target low abundant proteins that a mass spectrometer
is typically blind to due to abundance detection bias and the vast dynamic concentration
range of proteins in plasma [63]. Second, most biomedical hospital labs have the instru-
mentation and knowledge to perform such tests, but they rely on commercial tests based
on highly specific antibodies. In that respect, MS is a more versatile method that allows the
targeting of any protein, although it is still a niche field and few clinics are equipped with
the instrumentation and expertise required for its conduction. For MS to be widely applied,
the establishment of tailored reference laboratories that are dedicated to such analysis
would be a solution. Hospitals would then send samples to be analyzed in such expert
biomarker laboratories, a logistic procedure most hospitals have already implemented.

9. Conclusions and Outlook

Circulating protein biomarkers display great potential to discriminate between patients
with benign and malignant ovarian cysts, while also guiding treatment decisions [8,118]. In re-
cent years, proteomics characterization of plasma, effusions, and solid tumors has uncovered
molecular mechanisms and a plethora of candidate biomarkers for OC, although these still
need to be validated to show clinical utility. We foresee a wealth of studies in the coming years
validating these candidate markers, while also identifying additional markers. We also antici-
pate that basic OC research will focus on the single-cell resolved analysis of tumor protein and
PTMs. The integrated analysis of tumor specimens with matched blood samples is particularly
interesting and has the potential to reveal accessible surrogate blood-based biomarkers that
reflect tumor biology and can be used in personalized treatment.
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