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Neglected tropical diseases continue to create high levels of morbidity and mortality in a
sizeable fraction of the world’s population, despite ongoing research into new treatments.
Some of the most important technological developments that have accelerated drug
discovery for diseases of affluent countries have not flowed down to neglected tropical
disease drug discovery. Pharmaceutical development business models, cost of
developing new drug treatments and subsequent costs to patients, and accessibility of
technologies to scientists in most of the affected countries are some of the reasons for this
low uptake and slow development relative to that for common diseases in developed
countries. Computational methods are starting to make significant inroads into discovery
of drugs for neglected tropical diseases due to the increasing availability of large databases
that can be used to train ML models, increasing accuracy of these methods, lower entry
barrier for researchers, and widespread availability of public domain machine learning
codes. Here, the application of artificial intelligence, largely the subset called machine
learning, to modelling and prediction of biological activities and discovery of new drugs for
neglected tropical diseases is summarized. The pathways for the development of machine
learning methods in the short to medium term and the use of other artificial intelligence
methods for drug discovery is discussed. The current roadblocks to, and likely impacts of,
synergistic new technological developments on the use of ML methods for neglected
tropical disease drug discovery in the future are also discussed.
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INTRODUCTION

Infectious diseases are responsible for the majority of mortality, morbidity, and loss of productive
years of life globally. Although most tropical diseases have some type of chemotherapeutic option
available, the cost and relative lack of efficacy, coupled often with rapid development of drug
resistance, have resulted in unsatisfactory progress in prevention and treatment of these ailments. For
the purposes of this review, neglected tropical diseases (NTDs) are listed in Table 1. Several tropical
diseases are among the world’s biggest killers. Table 2 lists the global disease burden caused by the
top five diseases. In addition, amebiasis is endemic in many countries and has been estimated to kill
55,000 people each year, making it one of the top tropical diseases in terms of mortality (Shirley et al.,
2018).
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The current business model for new drug development favors
developed countries with populations or governments able to pay
for drugs, allowing the very high development costs (median 2020
cost estimated to be US$1-1.3Bn) to be recouped by companies
(Wouters et al., 2020). This is one of the major reasons why most
tropical diseases are “neglected.” Given the immense burden of
disease, there is clearly an urgent need to develop better
treatments for NTDs. One way to achieve this is through the
intervention of charitable government funds like the US NIH and
DoD, European Union, Medicines for Malaria venture, Bill and
Melinda Gates Foundation, and the Wellcome Trust. One aim of
the London Declaration of Neglected Tropical Diseases
(Molyneux, 2017), inspired by the World Health Organization
2020 roadmap to eradicate or prevent transmission for neglected
tropical diseases (https://unitingtocombatntds.org/resources/
who-roadmap-ntds/), is to “advance research and development
through partnerships and provision of funding to find treatments
and interventions for NTDs. Global warming that increases the
range of some NTDs, and the pandemic risk that infectious
diseases originating from tropical regions pose, is driving
renewed interest and urgency on disease preparedness that
includes preemptive development of drugs. These programs
and factors should drive increased interest and investment in
discovery of drugs for NTDs in the future.

NTD drug research is progressing quite strongly using
traditional medicinal chemistry discovery methods (see a very
recent thematic issue (Ali et al., 2020)). Recent paradigm shifting

developments in science and technology promise to improve the
efficiency of drug discovery for NTDs. These technologies include
robotics and automation that make faster and cheaper synthesis
and drug assays possible. These technologies are capable of
generating very large and rich data sets that can be used to
train machine learning (ML) models or being exploited by other
AI-based methods of drug discovery (Ferreira and Andricopulo,
2019). It is very clear that AI and ML methods are creating
potentially disruptive paradigm shifts in many areas of science,
technology, and medicine.

Recent developments in deep learning have provided powerful
new tools for screening large libraries of candidate molecules for
promising leads and for rational design of new therapies for many
diseases. The application of ML and AI methods to drug and
materials discovery and optimization are reviewed in several
recent papers (Le et al., 2012; Le and Winkler, 2015). Deep
learning methods have made a massive impact in science and
technology generally and drug discovery in particular, and recent
reviews summarize the state of the art and applications (Ferreira
and Andricopulo, 2019; Lavecchia, 2019; Rifaioglu et al., 2019).
These computational methods are very fast, accessible to
scientists in developing countries, and ideal for screening very
large libraries of accessible compounds against specific molecular
targets or diseases or for repurposing existing drugs, clinical trials
candidates, and approved natural products. Repurposing is very
useful because any leads that are discovered have already had
their safety in man assessed, so they can be trialed in humans

TABLE 1 | Tropical diseases included in literature searches and reviewed in this report.

Malaria Amebiasis Balantidiasis Chagas Giardiasis

Trypanosomiasis Leishmaniasis Helminth Taeniasis Cysticercosis
Dracunculiasis Echinococcosis Trematodiases Loiasis Filariasis
Onchocerciasis Schistosomiasis Helminthiases Ascariasis Hookworm
Trichuriasis Strongyloidiasis Toxocariasis Dengue Japanese encephalitis
Yellow fever Arboviral infections Rabies Rift Valley fever Viral hemorrhagic fever
Bartonella Tuberculosis Ebola Buruli Ulcer Cholera
Shigella Leprosy Leptospirosis Relapsing fever Trachoma
Treponematoses Bejel Pinta Syphilis Yaws
Eumycetoma Paracoccidioido-mycosis Ectoparasitic infections Scabies Myiasis

TABLE 2 | Global burden of disease due to major tropical infectious diseases (Njogu et al., 2016).

Infection Global
prevalence
(millions)

Population
at
risk

(millions)

Annual
mortality

(thousands)

Disability-
adjusted life

years (millions)

Regions of
highest prevalence

Malaria 198 3,200 584 46.5 Sub-Saharan Africa, Asia, South and Latin America, Middle
East, and Pacific Islands

tuberculosis 11 2000 1,100 34.7 Sub-Saharan Africa and Southeast Asia
Leishmaniasis 12 350 51 2.1 India, South Asia, Sub-Saharan Africa, Latin America,

Caribbean, and Mediterranean region
Human African
trypanosomiasis

0.3 60 48 1.5 Sub-Saharan Africa

Chagas’ disease 10 120 15 0.7 Latin American and Caribbean
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more quickly and cheaply than completely new drugs. The
current state of the art in drug repurposing for NTDs was
reviewed recently by Klug et al. (2016) and Swinney and
Pollastri (Swinney and Pollastri, 2019).

Here the author reviews the application of AI and ML to
discovery of drugs to treat NTDs. He focuses exclusively on these
computational approaches. Readers interested in structure-based
or pharmacophore methods of drug discovery are referred to a
comprehensive review of the application of these approaches to
malaria, tuberculosis, trypanosomiasis, and leishmaniasis by
Njogu et al. (2016). The literature review for the current paper
involved searches for relevant papers in Web of Science (WoS)
and Google Scholar (for the very recent papers) using search
terms for artificial intelligence (AI) and machine learning (ML)
and all of the NTDs listed in Table 1. The searches yielded 475
relevant papers. The application of statistical modelling methods
like quantitative structure-activity relationships (QSAR) and ML
to NTDs is relatively recent, with the first reports of the use of
neural networks in 1995 (Almeida et al., 1995). The vast majority
of ML research for NTDs has appeared only in the last 20 years
and the literature base is still relatively small.

What Types of AI and MLMethods are Used
in Drug Discovery for NTDs?
AI and ML methods are deployed primarily for ligand-based
design or discovery of new therapeutics. Unlike structure-based
methods that use experimental structures of target proteins for
drug design, ligand-based methods look for patterns in sets of
small drug-like molecules that describe how their molecular
properties modulate their biological activities. These patterns
are described mathematically by the well-established and
validated QSAR method. QSAR relies on the observation that
similar molecules often exhibit similar biological activities and
that changes to chemical structure in a series of drug candidates
can be correlated with their biological effects. These mappings
between structure and biology can provide both qualitative and
quantitative predictions of likely drug potency and may also
elucidate mechanisms of action at the molecular level. While the
latter was the initial use of QSAR methods, greatly expanded data
sets and computational power have seen a shift to using QSAR
models to predict the biological and physicochemical properties
of extremely diverse chemical libraries where there is no longer a
common chemical scaffold. These two important purposes of
QSAR have been described in detail in a recent paper by one of
the “fathers” of the QSAR method, Toshio Fujita (Fujita and
Winkler, 2016).

While QSAR was initially a statistical modelling method using
linear regression (MLR) and linear logistic regression (LLR), the
past three decades have seen greatly expanded application of
diverse machine learning methods, principally Gaussian
processes (GP), artificial neural networks (ANN) and their
Bayesian version (BRANN), support vector machines (SVM,
including the SMO implementation) and their Bayesian
variant relevance vector machines (RVM), decision trees (DT,
including the J48 implementation), random forests (RF) and their
variants such as extreme gradient boost (XGBoost), Naïve Bayes

(NB), and k-nearest neighbor (kNN) clustering methods. More
recently, deep learning (DL) algorithms like deep neural networks
(DNN), convolutional neural networks (CNN), generalized
adversarial networks (GAN), associative neural networks
(AsNN), encoder-decoder networks, and recurrent neural
networks (RNN) have exhibited very interesting properties
useful for modelling structure-activity relationships. The
theory behind these methods is complex and outside the scope
of the review. Interested readers are referred to recent papers and
textbooks that describe these methods and their applications to
drug discovery (Ballester, 2019; Cartwright, 2020).

ML methods map mathematical descriptions of structural and
physicochemical properties of small molecules (molecular
descriptors) to their biological or physicochemical properties
of interest. The most important determinants of ML model
quality and predictivity are the size, quality, and diversity of
the training data and the quality and relevance of descriptors. The
ML algorithms used to generate the models have a much smaller
impact on model quality and predictivity (see examples below).
One of the main reasons for the current intense interest in deep
learning methods is because they offer a potential solution to an
important, long-standing problem in the QSAR field, how to
objectively generate new, efficient, interpretable molecular
descriptors for training models (Winkler and Le, 2017). Given
the advantages these ML modelling methods provide, they are
being increasingly used to design, discover, and optimize drugs
for NTDs (Scotti et al., 2015). In particular, the application of
these computational techniques to discover drugs for malaria,
tuberculosis, trypanosomiasis, and leishmaniasis has been
reviewed by Njogu et al. (2016), for leishmaniasis and
trypanosomiasis by Halder et al. (2020), and for tuberculosis
by van Wijk et al. (2020)

Case Studies Using AI and ML to Discover
New Drugs for NTDs
Although Table 1 lists a large number of NTDs, our literature
review identified papers for only a relatively small subset of these,
primarily those with the largest disease burden. These are
trypanosomiasis; leishmaniasis; malaria; tuberculosis; plague;
and HIV (although an argument could be made that this is
neither neglected nor purely tropical). The examples reviewed
here are not exhaustive but provide a balanced overview of the
methods used, the outcomes, and the NTDs to which they are
applied. It is notable that research in this field is dominated by
Ekins and coworkers; many of these publications are cited in this
review. These researchers used both Bayesian and traditional ML
methods to model datasets of compounds active against NTDs
and most them are only discussed in Bayesian Models, Clustering
and Visualization to eliminate redundant discussion.

Traditional ML Models
Almost all studies using ML to discover drug candidates for
NTDs have been published within the past two decades. The use
of quantitative structure-activity relationship (QSAR) methods,
largely statistical models, for drugs against leishmaniasis and
trypanosomiasis prior to 2010 has been reviewed (Castillo-Garit
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et al., 2012). An overview of recent structure-based, ligand-based,
and bioinformatics research aiming at identifying novel
inhibitors and promising drug targets for Mycobacterium
tuberculosis was reported by Alladi (2018). Computational
modelling, simulation, and prediction methods are becoming
more powerful and accurate, and their accessibility is excellent, a
particularly valuable attribute for researchers from developing
countries.

Trypanosomiasis
One of the first uses of ML methods for NTDs was to solve a
formulation problem with benznidazole, a drug used to treat
Chagas’ disease (American trypanosomiasis) (Leonardi et al.,
2009). Its low water solubility was the rate-limiting step in
oral absorption, so chitosan microparticles were used to
improve its pharmacokinetic properties. The influence of
process parameters such as encapsulation efficiency, size, yield,
and dissolution rate is modelled using ANNs, ultimately allowing
optimization of oral absorption.

Guerra et al. reported a study in which 72 compounds assayed
in vitro against the epimastigote form of the Tulahuen 2 strain of
Trypanosoma cruzi were modelled using ML, with descriptors
generated by the CODES software (Guerra et al., 2013). CODES
generates topological (molecular graph) descriptors that describe
the connectivity and properties of atoms in the training set
molecules. They employed dimensional reduction to ensure
the number of descriptors was substantially less than the
number of training example to avoid overfitting the model.
They trained a three-layer neural network with between three
and five neurons in the hidden layer to form the model. Forty-two
compounds were used as the training set and the remainder
formed the test set used to assess the predictive power of the
model. The model was moderately successful at predicting the
activity of compounds in the test set, with standard errors (SE) of
prediction and root-mean-square error (RMSE) values around
0.17 and area under the receiver operator curve (AROC) values of
0.7 (a value of 0.5 is random).

Useful antitrypanosomal drug models have been generated
using RF, stochastic gradient boosting (SGB), multivariate
adaptive regression splines (MARS), and Gaussian process
(GP) regression (Kryshchyshyn et al., 2018). An in-house
library of 206 thiazolyl hydrazones, thiopyranothiazoles,
isothiocoumarin-3-carboxylic acids, and imidazothiadiazoles
with confirmed activity against T. brucei was used to train the
models. The RF model had the highest predictive power, with
SGB and GP being substantially worse andMARS providing poor
predictions. The models were trained on the log of the percentage
growth, converting percentage growth to approximate EC50

values. However, using a logit transform may have improved
the predictive power of the models.

The application of ANNs and kernel-based PLS (KPLS) to
model 363 compounds with anti-T. cruzi activity was reported by
de Souza and colleagues (de Souza et al., 2019). Here, the input
data was mapped into high-dimensional feature space by
nonlinear (kernel) function and linear PLS is carried out in
this high-dimensional space (Wang et al., 2015). The models
exhibited good predictive ability for the test set compounds,

yielding r2 and RMSE values of 0.85 and 0.75 for the ANN
model, respectively. The KPLS model was used to provide a
comprehensive analysis of molecular features improving or
degrading the antitrypanocidal activities of molecules (Figure 1).

Luchi and colleagues adopted a different type of molecular
descriptor to model the activity of compounds against T. cruzi
(Luchi et al., 2019). They used charge density topological analysis
of molecules bound to the parasite major cysteine protease,
cruzain, to code relevant molecular interactions. They also
employed feature selection to avoid overfitting the small data
set of 17 compounds. SVM was used to generate a binary
classification model, as their main aim was to understand the
molecular basis of activity rather than predicting activity of new
compounds. Although the classification accuracy of the model
was essentially the same when using 20 – 87 features in the model,
the authors unfortunately chose 87 features instead of the most
parsimonious 20 features to generate the models. Given the
general tendency of SVM to overfit data (Burden and Winkler,
2015) and the small data set size, use of a larger number of
features is not justified. Nonetheless they provided a detailed
analysis of the charge features in the active site that modulated
activity of cruzain inhibitors.

Leishmaniasis
Castillo-Garit et al. reported a study that used traditional ML
methods to identify new potential antileishmanial drug leads. A
data set of 116 compounds assayed against promastigotes of
Leishmania amazonensis was used to train kNN, RT, SVM, and
ANNmodels. All MLmodels provided accuracies between 82 and
91%, for the training set and external test set. A subsequent virtual
screening of chemical databases identified 156 compounds with
potential antileishmanial activity (Castillo-Garit et al., 2018).
Jamal et al. used four types of ML methods (NB, RF, J48, and
SMO) to model binary data for L. mexicana (Jamal and Scaria,
2013). They employed specific accuracy measures for highly
unbalanced data sets (many more inactive compounds than
active) that quantified an accuracy of around 80% for all
algorithms, although it was not clear whether this was for the
training or test sets.

While this paper was being prepared, Herrera-Acevedo and
coworkers published a ligand and structure-based modelling
study of structure-activity relationships in potential drugs for
L. donovani (Herrera-Acevedo et al., 2020). They used RF to
generate binary classification models for 3,159 compounds with
antiamastigote activities and 1,569 compounds with
antipromastigote activities. The RF models had accuracies of
around 75% (50% accuracy corresponds to chance classification).

Malaria
SVMs have been used to identify novel 20S proteasome inhibitors
as potential drugs against Plasmodium falciparum (Subramaniam
et al., 2011). Their SVM model was trained on 170 molecular
descriptors for 272 inhibitors and noninhibitors of 20S
proteasome. A nonlinear radial basis function SVM kernel
provided better classification accuracy than a linear kernel.
Fivefold cross-validation accuracy was 97% and subsequent
molecular docking was used to refine the short list of inhibitors.
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A subsequent study by Jamal and coworkers used ML
methods to model high-throughput screening data on
apicoplast inhibitors of malaria (Jamal et al., 2013). They
employed NB, RF, and DT methods to predict the
antimalarial properties of 22,335 active and 197,373 inactive
compounds (large data set imbalance). They used the balanced
classification rate (BCR, the average of sensitivity and
specificity) metric that is applicable to unbalanced data to
compare the three ML methods. Given that the models were
trained on the same data and descriptors, the three methods
generated similar prediction accuracy of 60%, only marginally
higher than chance (50%).

An ML study of antimalarial compounds with an unusual
mode of action was reported by Maindola et al. Erythrocyte
invasion by Plasmodium, mediated by the interaction between the
apical membrane antigen (AMA1) and rhoptry neck RON2L)
proteins, is essential for the parasite to invade host cells
(Maindola et al., 2015). Data were obtained from a qHTS
bioassay based on AlphaScreen technology that used a
recombinant His-tagged AMA1 and a biotinylated RON2L
peptide to assess disruption of this molecular interaction. They
trained several supervised classifiers, NB, SVM, DT, and RF,
using these data. The training set consisted of 588 active and
284 968 inactive molecules and the test set 147 active and 71,241
inactive molecules, respectively (another very unbalanced binary
data set). When scored using G-means, a metric suitable for
highly unbalanced data sets, the three traditional ML methods
performed better (0.8 ± 0.02) than NB (0.73). They used the
model to screen a traditional Chinese medicine database and
identified 216 potential inhibitors of the AMA1-RON2
interaction. Some hits were already known to be antimalarials

and the model predicted that their mode of action is inhibition of
the AMA1-RON2 interaction.

An unusual evolutionary SVM method was used to model 17
antimalarial binary data sets, with imbalances (ratio of inactives
to actives) of between 3 and 5, with accuracies between 70 and
95% (Viira et al., 2016). The models were used to screen a larger
database of candidate molecules and the in silicomodel predicted
27 compounds to be active, 17 of which were confirmed
experimentally.

Bharti et al. also reported ML models of antimalarial activity
(Bharti and Lynn, 2017). Their dataset consists of 305,803
compounds including 18,126 biologically active compounds
against apicoplast formation in P. falciparum (again a very
unbalanced binary data set). They used a feature selection
method to reduce the dimensionality of GLM, kNN, SVM, RF,
and DTmodels and suitable accuracymetrics for unbalanced data
sets (F1-score and MCC). The kNN and GLM methods were the
least accurate at predicting the test of molecules not used to train
the models.

Lawrenson and colleagues used simple, linear MLR and PLS
methods tomodel a set of 44 novel 4-aminoquinoline compounds
from a patent that showed activity against a multidrug-resistant
(MDR), chloroquine-resistant, and sensitive strain of P.
falciparum (Lawrenson et al., 2018). Although the dataset was
small and not particularly diverse, the linear regression models
were effective at predicting the antimalarial properties of the test
set, with r2 values >0.8 for both strains.

Sahu et al. used the KPLS ML method to model activities of
compounds active against P. falciparum (Sahu et al., 2020). They
trained the model on 57 thiazolyl triazine derivatives and
molecular fingerprint descriptors. Using four latent variables

FIGURE 1 | Relevant structural features for trypanocidal activity depicted as contribution maps based on the best kernel based PLS model. Positive, neutral, and
negative contributions are depicted in red, white, and blue, respectively, and the color intensity denotesmagnitude (de Souza et al., 2019). Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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in the model, they could predict a 10-compound test set with an r2

value of 0.79 and RMSE of 0.33 log activity, although the test set
data were poorly distributed. As with de Sousa et al. above, they
also mapped the contributions of molecular features to biological
activity.

Lima et al. used shape-based and ML methods to model
antimalarial compounds (Lima et al., 2019). These models
were used to virtually screen a large commercial database of
drug-like molecules and identified 10 promising hits that were
validated experimentally against asexual blood stages of both
sensitive and MDR P. falciparum strains. Three compounds
showed potent antiplasmodial activity, with EC50 ≤ 700 nM,
selectivity indices >15, and good in vitro inhibition of P.
berghei ookinete formation.

Tuberculosis
Periwal and colleagues were among the first to report models of
drug efficacy using traditional ML methods (NB, RF, SVM, and
DT) trained on physicochemical properties of compounds from
three publicly available bioassay screens of Mycobacterium
tuberculosis inhibitors (Periwal et al., 2011). The data sets were
converted into binary active/inactive sets that were highly
unbalanced (many more inactives than actives). Using
accuracy metrics suitable for unbalanced data sets (Matthews
correlation coefficient and BCR) they found that the RF algorithm
provided higher performance than the other ML methods.

Multiple linear regression modelling and single ANNs,
ensembles of ANNs, and associative neural networks (AsNNs)
have been compared in their abilities to model four different data
sets of compounds active against M. tuberculosis (Ventura et al.,
2013). Unlike most of the other ML studies reviewed here, these
were continuous regression rather than binary classification
models. The comparison between modelling methods largely
disclosed a degree of nonlinearity in the structure-activity
relationships. The initial data set of 173 compounds was also
subdivided into smaller sets based on the chemotypes and were
represented by 96 calculated descriptors. The data sets were
divided into training and internal test sets consisting 20–50%
of the data set. Models were additionally validated by predicting
the activities of an external data set of 22 hydrazide derivatives
compounds from the Novartis TB public access database. Based
on SE and RMSE values (Alexander et al., 2015), they found that
MLR models and ANNs had similar accuracies in predicting the
internal test sets, and ensemble ANNs and AsNNs had slightly
better accuracies. All methods had similar accuracies in
predicting the activities of the 22-compound external test set.
Hassan and Khan reported classification models for
antitubercular activity using similar ML methods trained on a
dataset of 312 active and 300891 inactive molecules and 179
molecular descriptors (Hassan and Khan, 2017). The RF and DT
models had the best performance (88–92%) based on the BCR
metric.

Traditional MLmethods, AsNN, RF, kNN, and XGBoost, were
also used to generate models predicting antitubercular activities
using a training set of 6,337 compounds (Kovalishyn et al., 2018).
These molecules were derivatives of azoles, isoniazids, indoles,
and others that exhibited MIC values from 1.5 nM to 100 μM.

Unusually, both regression and classification models were
generated. The binary classification training set contained
2,705 high activity and 3,632 low activity molecules using an
MIC � 10 μM decision boundary. For classification, all ML
methods generated models with similar test set prediction
accuracy of 80 ± 2%. The AsNN and XGB regression models
trained on a smaller 510 data set that was split into training (408)
and test (102) sets had similar prediction accuracies for the test
set, with r2 values of 0.70–0.73 and RMSE values 0.51–0.54 log
activity. The consensus classification model was used to screen a
database of 165 isoniazid derivatives with different substitution
patterns, yielding 18 compounds with predicted µM activities.
Seven of these were active against a wild type TB strain and three
were active against a strain resistant to isoniazid and rifampicin.
Subsequent studies of isonicotinic acid hydrazide derivatives
generated models that could predict the test set with balanced
accuracies of 67–79% within the domain of applicability of the
models (the region of chemical space for which the model is most
accurate) (Kovalishyn et al., 2020).

An unusual application of ML to discover antitubercular
peptides, using peptide sequence features, has been reported
recently (Usmani et al., 2018). They trained SVM, RF, DT,
and NB models on different amino acid sequences. The
resulting ensemble classifiers achieved an accuracy of 73% and
0.80 AROC for the main dataset of 246 peptides (length 5–61
amino acids) that were active against Mycobacterium and
provided similar accuracies for a secondary dataset. Again, the
RF model had significantly higher prediction accuracy for a
validation set than models generated by the other ML
methods. They also developed a webserver (http://webs.iiitd.
edu.in/raghava/antitbpred/) that allows users to predict peptide
antitubercular activity.

In a subsequent study (Khatun et al., 2019), the same data set
was used to model the structure-activity relationship using a
different representation of the peptide sequences, two-sample-
logo representations generated by a web server (http://www.
twosamplelogo.org/). In this approach, amino acid preference
at each position is denoted by a symbol, where large symbols
identify common or conserved residues. Models of peptide
activity generated by SVM and RF showed good predictivity
for a test set, with accuracies between 77 and 80% for the largest
data set. The peptide sequence logos were analyzed to identify the
most beneficial peptide features. A related study of anti-TB
peptides was reported by Manavalan et al. (2019). Here they
used sequence and physicochemical features to encode the
peptides and compared the predictive power of a new type of
RF method, extreme random trees (ERT), with traditional ML
methods, GB, k-NN, LR, RF, and SVM. The binary activity data
were balanced and, across nine types of feature encoding, the
kNN and LR models had the lowest accuracies and the RF, ERT,
and GB models the best (MCC 0.6–0.7 and accuracies of
80–91%)).

In a recent study, Pires and Ascher used mycoCSM, a graph-
based signature approach, to rapidly identify compounds likely to
be active against mycobacteria (Pires and Ascher, 2020). They
trained their ML models on experimental MIC values for over
15,000 compounds across eight mycobacterial species. DT
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models of antitubercular activity could recapitulate the properties
of compounds in the test sets very well. Across the eight species, r2

values varied between 0.58 and 0.77 and RMSE values between
0.30 and 0.61 log activity units. Their models have been made
accessible by a web server (http://biosig.unimelb.edu.au/myco_
csm) that allows users to submit molecules for quick
prioritization and screening.

Multiple Tropical Disease Studies
Singh et al. reported the use of a suite of relatively novel classifiers
to identify inhibitors of trypanosomal N-myristoyltransferase
(NMT) (Singh et al., 2016). They compared the performance
of the IB1 classifier (a type of nearest neighbor algorithm),
Nonnested Generalized Exemplar (assigns generalized
exemplars without nesting), Best First Tree algorithm (a
modification of standard DT), and logistic regression. The
active dataset (120 molecules) consisted of reported inhibitors
of trypanosomal, leishmanial, and plasmodial NMT. The inactive
dataset (6,160 compounds) consisted of decoys generated for each
active molecule. Unfortunately, the authors did not account for
the highly unbalanced nature of the data set by using suitable
scoring metrics. The >99% accuracy measures reported were
therefore unrealistic, as this could be achieved by simply
assigning all compounds to the inactive class. A more realistic
G-means metric (geometric mean of sensitivity and selectivity)
generates accuracies for models from all 4 ML methods of ∼88%
for the test set. The 54,275 molecules in Maybridge small
molecule library were screened for potential trypanosomal
NMT inhibitors, although no check was made as to whether
these were within the domain of applicability of the model.
However, subsequent 3D QSAR modelling, docking to the
enzyme structure, and molecular dynamics simulation
identified several new leads with low micromolar in vitro
activity against L. donovani and T. brucei.

Bayesian Models, Clustering, and
Visualization
Bayesian methods allow prior knowledge on the properties of
molecules to be used to generate models predicting biological
activity. When combined with sparsity inducing priors, they are
also able to optimize model complexity and reduce the number of
adjustable parameters in models, improving interpretability and
ability to generalize to new data (Burden and Winkler, 1999;
Winkler, 2004; Burden and Winkler, 2008; Winkler, 2018).
Models that employ Bayesian methods have been employed
surprisingly frequently to design or discover new drugs for
NTDs. This may be due in part to the dominance of Ekins
and his collaborators in this research space, who use Bayesian
methods extensively.

Malaria
Wicht et al. applied Bayesian classifiers to model HTS data for
beta-hematin inhibition and in vitro antimalarial (P. falciparum)
activity (Wicht et al., 2015). By using different cut-offs that
defined the active compound class, that changed the balance
of the training and test set, they could achieve 70–94% correct

prediction of the tests set. They also validated their optimized
Bayesian model by screening a database of 1510 FDA approved
drugs that largely occupied similar chemical space to that of the
training set. The model placed all six clinical antimalarials, plus
quinidine barbiturate and hydroxychloroquine in the top 2.1% of
the 1,510 compounds.

Tuberculosis
Periwal et al. were among the first to compare NB methods to
three other ML methods trained on physicochemical properties
of compounds from three publicly available bioassay data sets for
M. tuberculosis (Periwal et al., 2011). They extended this research
to the case of extremely unbalanced tuberculosis data sets
(Periwal et al., 2012). As with many other studies reported
her, in both cases the assay data were converted to binary
classes using a suitable activity cut-off value. They overcame
the class imbalance by using a wrapper class to convert the
existing algorithm into cost sensitive one and the BCR
measure to provide balanced accuracy estimates for
unbalanced datasets.

Subsequently Yu and Wild compared the performance of a
collection of methods, associative classification mining (ACM),
which are popular in the data mining community, with NB and
SVM (Yu andWild, 2012). They modelled a data set of 3,779 anti-
TB compounds that were classified into active and inactive
groups using a minimum inhibitory concentration (MIC)
<5 μM. Classification was based on predictive association rules
(CPAR), multiple association rules (CMAR), and association
rules (CBA). Based on the F1 score that is appropriate for
unbalanced data sets, the ACM methods produced similar
results to those of SVM and NB.

Tiwari and coworkers used NB to model HTS data for
inhibitors of fructose bisphosphate aldolase, an enzyme
essential for the glycolysis pathway in M. tuberculosis (Tiwari
et al., 2016). Kumari et al. used genetic algorithms with
correlation-based feature selection to derive predictive models
of serine protease inhibitors of TB using NB and other machine
learning algorithms (Kumari et al., 2020). The model was used to
screen a library of 918 phytochemical compounds and identified
126 potential antitubercular agents.

Santa Maria and coworkers reported a novel node of action
and lead discovery paradigm that used HT biophysical profiling
against a broad range of targets and machine learning to identify
molecular features for targets for a given phenotypic screen
(Santa Maria et al., 2017). They used NB modelling, as this
ML method is less sensitive to noise and false negative rates
than alternatives. They applied the method to screen 55,000
compounds in 24 internal antibacterial phenotypic screens and
against 636 bacterial targets. The ML models identified
relationships between phenotype, target, and chemotype for
known antimicrobial agents. Specifically, they identified novel
inhibitors of dihydrofolate reductase that exhibited nM efficacy
(Figure 2) against M. tuberculosis.

HIV
As HIV is a global problem, there has been intense activity
directed towards finding drugs to control this disease. It is
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beyond the scope of this review to summarize this work; however
comprehensive reviews of the application of computational
modelling, QSAR, and ML to HIV drug discovery have been
published (De Clercq, 2007; Gu et al., 2014; Kumari et al., 2017).
To exemplify one approach, Ekins and their collaborators applied
their NB methods to a dataset of compounds inhibiting HIV
(Zorn et al., 2019). They trained Bernoulli Naïve Bayes,
traditional ML, and DL models using both cell-based and
target-based (RT DNA polymerase) assay data that were
converted into binary (active/inactive) sets using an
appropriate cut-off concentration. The cell-based and target-
based assay results were correlated (r � 0.44) and the data sets
used to train the models. Based on balance insensitive metrics, all
methods were equally successful in predicting the properties of
the test set, supporting the observation that the descriptors have a
much larger impact on model quality than the modelling
algorithm (Winkler and Le, 2017).

Multiple Tropical Disease Studies
Since 2013, Ekins and colleagues have published a relatively large
number of NB, RP, and SVM models of molecules acting against
various NTDs, using the same datasets to demonstrate the effects
of different ML algorithms, data set sizes (Ekins et al., 2014b), and
complexities (Ekins et al., 2014c; Lane et al., 2018). They used data
fusion to analyze large sets of compounds active against TB
(Ekins et al., 2013a; Ekins et al., 2013b). They employed
Laplacian-corrected (sparsity inducing) Bayesian classifiers,
SVM, and RP to model a training set of 2,273 compounds and
validated the predictive power with two external test sets of sizes
1,924 and 1,777 molecules (the latter all active). The Bayesian
model could predict a higher number of active compounds from
the 1,777 active compounds’ test set than the other ML methods.
They further combined antitubercular activity and cytotoxicity
(to Vero, THP-1, and HepG2 cell lines) to generate Bayesian

models that identified drugs active against TB that were also less
cytotoxic (Ekins et al., 2014a). They again used a set of 1,924
commercially available molecules, evaluated for antitubercular
activity and cytotoxicity, with hit rates of 3–4%. They
demonstrated that models incorporating antitubercular and
cytotoxicity data significantly enrich selection of nontoxic actives.

More recently, Ekins and coworkers deployed their Bayesian
ML methods to model and predict the activity of small molecules
against trypanosomes and Ebolavirus (Ekins et al., 2015a; Ekins
et al., 2015b). To discover antitrypanosome drug leads, they
trained a Bayesian model on literature compound data and a
subset of the Broad Chagas dose response data set, using the EC50

values <1 μM to define actives (Ekins et al., 2015a). This binary
training set contained similar numbers of active and inactive
compounds (well balanced) and 5-fold cross-validation showed
the model had a prediction accuracy >80%. The model was used
to screen 7,200 molecules from eight small chemical libraries, 97
of which were tested and 11 found to have EC50 < 10 μM. The five
most active molecules, verapamil, pyronaridine, furazolidone,
tetrandrine, and nitrofural, had in vitro EC50 values < 1 μM
and also showed good activity in vivo in a T. cruzi mouse model.

For Ebola virus, these researchers used a broadly similar
Bayesian approach to model 868 molecules from the viral
pseudotype entry assay and the Ebola replication assay (Ekins
et al., 2015b). The binary data set was very unbalanced, with only
4% of the compounds in the active class. Although the model
could predict activity with >80% accuracy using 5-fold cross-
validation, an accuracy metric more appropriate for unbalanced
data sets (BCR, MCC or G-means) would have given a more
realistic estimate of the model performance. Nonetheless, the
model identified three compounds, quinacrine, pyronaridine, and
tilorone, subsequently tested in vitrowith EC50 values of 350, 420,
and 230 nM. Subsequent work identified the antimalarial drug
arterolane (IC50 � 4.53 µM) and the anticancer clinical candidate

FIGURE 2 | Novel inhibitors of DHFR with in vitro efficacy against M. tuberculosis. Adapted with permission from Santa Maria et al. (2017). Copyright (2017)
American Chemical Society.

Frontiers in Chemistry | www.frontiersin.org March 2021 | Volume 9 | Article 6140738

Winkler AI and ML for NTD Discovery

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


lucanthone (IC50 � 3.27 µM) as novel drug leads that have Ebola
inhibitory activity in HeLa cells and low cytotoxicity
(Anantpadma et al., 2019).

Korotcov and coworkers reported a comprehensive ML study
across a range of biological assays that included bubonic plague
(Yersina pestis), Chagas disease (T. cruzi), TB (M. tuberculosis),
and malaria (P. falciparum). The assay data were converted into
binary form (active/inactive) (Korotcov et al., 2017). The datasets
varied greatly in balance, with plague andmalaria having very low
percentages of active compounds. They compared the
performance of Bernoulli NB (BNB) methods with traditional
ML methods and DNN when trained using molecular fingerprint
descriptors. Using suitable metrics for unbalanced data (F1-score
andMatthews correlation coefficient) they found that BNB was as
effective at predicting the properties of the test set compounds as
the other ML and DNN methods.

While NB usually shows performance similar to that of other
ML methods such as SVM and RF, incorporation of Bayesian
methods in other ML algorithms can have substantial benefits in
terms of optimizing model complexity to avoid bias (underfitting)
or variance (overfitting) problems. When sparsity inducing
(Laplacian) priors are used with these methods (e.g., Bayesian
regularized neural networks or relevance vector machines),
models have fewer parameters and neural networks have fewer
effective weights, thus improving predictions and interpretability
of the model and descriptors (Burden andWinkler, 1999; Burden
and Winkler, 2008; Burden and Winkler, 2015).

The above studies have shown how accessible ML methods
trained on public domain data sets of activity for diverse NTDs
can be used to provide some mechanistic or structure-activity
information and also screen much larger collections of organic
molecules for potential lead. They provide very useful proof of
concept but do suffer from some shortcomings. They did not
explore a wider range of ML methods and descriptor classes to
exploit advantages of some of the newer techniques. They also
mostly convert continuous data into binary (active/inactive) data
sets and so lose information intrinsic to the data. They also screen
large databases without specifying whether the members lie in or
close to the domain of applicability of the models in most cases.

Deep Learning Models
Deep learning algorithms excel at analyzing image-based data to
extract subtle features. They are being adopted rapidly for disease
diagnosis and analysis of data from x-ray, CT, and MRI imaging.
There are an increasing number of papers now employing deep
learning methods for diagnosis of NTDs (e.g., Gao and Qian,
2018; Ting et al., 2018; Khalighifar et al., 2019; Rajaraman et al.,
2019; Yang et al., 2019; Fuhad et al., 2020) that are beyond the
scope of this review. Although deep learning methods offer state-
of-the-art performance in modelling the biological properties of
drug-like data for next generation drugs (Ferreira and
Andricopulo, 2019; Lavecchia, 2019), they have not yet been
widely adopted by the NTD research community.

One of the first studies that employed deep learning methods
was reported by Korotcov et al. (2017). They compared the
performance of several classic ML methods, NB, LLR, DT, RF,
and SVM, with deep neural networks (DNN). They modelled

several data diverse sets including aqueous solubility, bubonic
plague, Chagas, tuberculosis, and malaria using molecular
fingerprints (FCFP6) as descriptors, which had been
modelled previously by Clark et al. using traditional and
Bayesian ML methods (Clark et al., 2015). They assessed
whether DNN methods had advantages over the other ML
algorithms using traditional metrics. This study focused on
comparing methods useful for discovery of NTDs and they
did not actually apply the models to discovery. Although a very
useful proof of concept, the study had several shortcomings. The
biological data were converted in active/inactive classes using a
threshold value that varied for each data set. Most of the
resulting data sets were moderately to severely unbalanced.
Korotcov et al. concluded that DNNs had higher predictive
performance than the next best algorithm, SVM. However,
using the accuracy metrics for unbalanced binary data sets
(F1-score and MCC) shows that, for almost all data sets, only
NB and DT models had significantly lower prediction accuracy
for the test set. This is consistent with descriptors having the
largest impact on model quality, with different ML algorithms
giving models with very similar performance if trained using the
same descriptors (Winkler and Le, 2017). An interesting follow-
up study would be to use the ML and deep learning methods to
generate regression models of the biological end points and use
the models to screen a library of candidates to discover new
potential drugs.

A subsequent study by Lane and colleagues compared the
abilities of the same traditional, Bayesian ML and deep neural
networks to model and predict the efficacies of tuberculosis drug
candidates (Lane et al., 2018). Again, the quantitative data were
converted to binary active/inactive data using three different cut-
off concentrations. Five types of molecular fingerprint were also
used to train the models, ECFP6 and FCFP6 fingerprints,
MACCS keys, and RDKit and Toxprint descriptors. However,
no sparse feature selection was performed to reduce the
dimensionality of the models. The training and test sets were
again highly or moderately unbalanced and, not surprisingly, the
authors reported that the AROC values and other precision and
accuracy metrics did not necessarily correlate with the F1-score
and MCC metrics. Bayesian machine learning models trained on
literature TB data generated by different laboratories (18,886
compounds in training set) performed on average as well as deep
neural networks in predicting the activities of molecules in the
external test sets. There were sometimes large differences in test
set predication accuracies within the DNN models and between
DNN and other ML, depending on the activity cut-off and
descriptors used. Lane et al. proposed that these machine
learning models could help prioritize compounds for testing
in vitro and in vivo against tuberculosis.

Ekins et al. also used their suite of ML methods, which
included DNNs, to model HIV drug activity data from the
NIAID ChemDB HIV, Opportunistic Infection, and
Tuberculosis Therapeutics Database (Zorn et al., 2019). They
modelled HIV-1 wild type cell-based and reverse transcriptase
DNA polymerase inhibition assays that were moderately
correlated. Again, they compared predictive abilities of
multiple machine learning approaches and demonstrated that
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SVM, deep learning, and a consensus of all models gave
comparable predictions accuracies, as assessed by 5-fold cross-
validation and test sets. This study is again consistent with
previous studies of training and testing with multiple data sets
that show little difference between support vector machine and
deep neural networks models trained on the same data and
descriptors.

A new AI system, DeepMalaria, for discovery of
antiplasmodial drugs, has recently been reported by
Keshavarzi Arshadi and coworkers (Keshavarzi Arshadi et al.,
2020). A graph-based model was trained on 13,446
antiplasmodial hit compounds from GlaxoSmithKline dataset.
The model was validated by predicting hit compounds from
another compound library and an approved drug repurposing
library. DeepMalaria identified all compounds with nanomolar
activity and 87.5% of the compounds with greater than 50%
inhibition. One hit compound inhibited all asexual stages of P.
falciparum, making it a strong candidate for further
optimization.

Finally, a very recent and successful use of deep neural
networks was reported by Stokes and coworkers in Cell
(Stokes et al., 2020). In a study aimed at discovering new
antibiotics, they trained a deep neural network to identify
molecules with relatively broad-spectrum antibacterial
activity. They applied a model to multiple chemical libraries
and found an existing drug, halicin (1),

which was structurally distinct from conventional antibiotics and
displays wide bactericidal activity in vitro and in vivo. Halicin
operated by a novel mechanism of action, dissipation of the
transmembrane ΔpH potential in bacteria, and was also very
effective against M. tuberculosis. They also screened 107 million
compounds from the ZINC15 database and identified eight
antibacterial compounds that were structurally dissimilar to
known antibiotics. Two of these, ZINC000100032716 and
ZINC000225434673, displayed potent broad-spectrum activity
and overcame an array of common resistance factors. This was
the first successful demonstration of the use of DNN to repurpose
existing drugs and discover new drug leads.

Other AI Methods
Genetic algorithms (GAs) and genetic programming (GP) are
very effective at exploring very large feature spaces. They have
been used frequently to choose subsets of descriptors for ML
models of bioactivities of small molecules. Little genetic algorithm
research has appeared yet in the NTD literature. Kumari et al.
reported the use of GP approaches to elucidate the role of
descriptors in models of serine protease inhibitors as
antituberculosis drugs (Kumari et al., 2020). They modelled a
library of 918 phytochemical compounds as potential serine
protease inhibitors using the RF ML algorithm. Their best RF
model trained on descriptors chosen by a GA identified 126

antitubercular agents out of the 918 phytochemical compounds.
The genetic programming symbolic classification method they
employed optimized descriptors and provided an equation for the
mathematical model.

PERSPECTIVE

Impressive progress in the application of AI and ML methods to
most areas of science, technology, and medicine strongly suggests
a much larger role for these methods in the discovery of new
treatments for NTDs in the near future. The above illustrative
examples show how effective these methods can be in finding new
lead compounds. It is also clear from the literature that the rate of
adoption of these methods is increasing significantly. This is
driven by increasing use of high-throughput screens, increased
power and availability of open-source ML methods, and
development of novel DL methods that generate descriptors,
model relationships, and perform inverse mapping of models
to lead compounds. Some of these developments are
discussed below.

Developments in Assay Technologies and
Mechanism of Action Studies
Assays drive drug discovery and provide the data sets used to
train AI and ML models that leverage these data to design or
discover new drug leads. Robust identification and
characterization of potential leads require biochemical,
biophysical, and cellular data that are increasingly generated
by high-throughput methods. Recent efforts have resulted in
miniaturized assays arrayed in microtiter plates that can test
>100,000 samples/day; microtiter plate-free formats with
encoded libraries that can potentially screen billions of
compounds; a search for new drug modalities; and emphasis
on more disease relevant screens using complex cell models of
disease states. Developments in this area were reviewed recently
(Busby et al., 2020). Development of HTS assays for NTDs was
reported by Qing et al. for dengue fever (Qing et al., 2010).
Dengue virus-like particles were constructed using viral
structural proteins plus a luciferase reporter. High titer
particles (>106 foci-forming units/ml) were obtained whose
infection could be blocked by antibodies against viral
envelope proteins and by viral NS5 polymerase inhibitors.
The infection assay was run in a 384-well format and
provided a simple, robust, and rapid response suitable for
screening large chemical libraries for compounds inhibiting
dengue entry, translation, and replication.

The abilities of machine learning methods to improve
information extraction from imaging data are finding new
applications in mechanism of action studies. Because these
methods do not work well with heterogeneous cellular
phenotypes and require human training, Ashdown and
coworkers reported a combined human- and machine-labelled
approach for data from mixed human malaria parasite cultures
(Ashdown et al., 2020). Trained on high-throughput and high-
resolution screening data, their approach tolerates natural
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parasite morphological heterogeneity and correctly orders
parasite developmental stages. They successfully detected and
clustered drug-induced morphological outliers by mechanism of
action, opening the door for faster and more robust cell-based
drug discovery.

Quantitative ML Models and Multitarget/
Multidrug Strategies
As this review has illustrated, many AI and ML models of drugs
and targets for NTDs have been binary classification models (e.g.,
active/inactive). It is not clear why continuous data sets have been
converted into binary data sets for modelling purposes as this
loses considerable information. One reason may be that binary
classification model generates relatively high-performance
metrics compared to continuous regression models, as the
model is essentially fitting only two clusters of data points
rather than the whole span of data. Sometimes binary models
provide misleading estimates of model predictive power,
especially when data sets are unbalanced. There are accuracy
measures such as G-means (geometric mean of sensitivity and
specificity) and F1-factor (harmonic mean of sensitivity and
specificity) that provide more realistic estimates of predictive
accuracy that are often not used. Other methods of removing
class bias are under sampling of the majority class and imputing
new data for the minority class.

Ultimately, using computational methods to generate effective
descriptors and to map them to biological activities using
continuous data offers significant advantages. These include
better estimates of the contributions of specific molecular
features to the biological activities and the ability to predict
specific EC50, LD50, and other values across several orders of
magnitude. This provides a lot more information about
differences between molecules in the active class than do
binary classification models. Given the relatively large amount
of effectiveMLmodelling software available in the public domain,
quantitative modelling is an important ML application for
discovery of more effective drugs for NTDs.

The concurrent usage of multiple medications is necessary
for some diseases, especially to manage or minimize the
development of drug resistance. Resistance to mainstream
drugs is a particular problem with NTDs (Pramanik et al.,
2019). Drug resistant malaria and TB are common, with
almost 500,000 new cases of multidrug-resistant tuberculosis
in 2016 and a 45% mortality rate worldwide. ML methods are
being used to predict resistance phenotypes (Wheeler et al.,
2020) and the effects of multidrug dosing and drug synergies. A
novel application of ML to predict synergistic combinations of
antimalarial drugs was reported by Mason et al. (Mason et al.,
2018) The discovery of synergistic combinations of antimalarial
drugs is potentially very important, but an exhaustive
experimental screen of every antimalarial drug with all others
is not tractable. Mason and coworkers used SVM to model a
dataset of 1,540 antimalarial drug combinations, of which 22%
were synergistic. Cross-validation showed that synergistic
predictions are enriched between 2.7- and 1.5-fold compared
to random selection. This depends on whether compounds in a

combination are known from other combinations in the
training data or are entirely novel combinations.

Siddique et al. reported the use of SVM, GB, and LR to
estimate the generalized propensity score, the probability of
receiving a specific treatment (Siddique et al., 2019). They
modelled data from 9,290-patient multidrug-resistant TB
treatment outcomes, from 31 observational studies, to
compare the results of the different treatment regimens. The
different ML models often agreed on the best regimens but
produced sometimes differing estimates of probabilities of
treatment success. A novel hybrid approach has been
suggested recently by Riches and coworkers (Riches et al.,
2020). They described new anti-giardia agents that contain
more than one toxophore and are capable of killing pathogens
by multiple mechanisms of action.

Use of ML and DL Methods to Generate
More Effective and Interpretable Models
and Improve Docking Scores
As the author stated, the quality of models and their predictive
power is largely controlled by the relevance and interpretability of
the molecular descriptors used to train them. By employing
chemically interpretable descriptors that can be effectively
mapped back onto prototype molecules, chemists gain
substantial insight into how to improve activity and selectivity
and reduce toxicity of drug candidates. There is a trend away from
using effective but arcane molecular descriptors to train ML
models of drug activity because these models often provide
little insight into how to improve lead molecules. Molecular
fragments and fingerprint methods are being increasingly used
to provide both efficiency and interpretability (Muegge and
Mukherjee, 2016; Hessler and Baringhaus, 2018; Kleandrova
and Speck-Planche, 2020), and kernel-based methods like
those reviewed above are also very useful. As alluded to, DL
methods are providing paradigm shifts in the generation of
effective descriptors and to a lesser extent (at least for the
present) in interpreting molecular features in ways that
medicinal chemists can use.

MLmethods have also been used to improve, augment, or even
replace molecular docking methods used to screen chemical
libraries for compounds binding to specific protein targets. For
example, Kinnings and coworkers reported use of SVMs to
improve the docking scores of compounds (Kinnings et al.,
2011). They generated models that mapped individual energy
terms from molecular docking to the known binding affinity of
compounds from HTS experiments. This improved the predicted
binding affinities from docking programs. They applied the
method to predict the binding energies of inhibitors of M.
tuberculosis InhA. This identified the potential for
phosphodiesterase inhibitors to be repurposed anti-TB drugs.
The methods are generally applicable to other NTD target
structures. DNNs are being increasingly used to emulate
docking of small molecules to proteins. Jastrzębski et al.
recently reported the application of a deep neural network to
predict docking outputs directly from a two-dimensional
compound structure (Jastrzębski et al., 2020). Their procedure
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is orders of magnitude faster than typical docking software, and it
provides interaction fingerprints for ligand–receptor complexes.
This development greatly facilitates screening of vast compound
libraries, or libraries of existing drugs, clinical trials candidates,
and approved natural products that have already been in man, for
repurposing in NTDs.

Broad Screening of Large Chemical
Libraries or Leads, Particularly Repurposing
Drugs
The repurposing of registered drugs, clinical trials candidates, and
approved natural products, whose safety and pharmacokinetics in
man are known, is a rational approach to rapid discovery of new
drugs for NTDs. Drug repurposing (repositioning) discovers new
disease indications for previously approved drugs, especially
relevant for NTDs where the estimated US$1-1.3Bn required
to get a new drug on the market is more difficult to raise. This
discovery paradigm has been dramatically accelerated by the
COVID-19 pandemic as has been described recently (Guy
et al., 2020). Computational methods of drug repurposing
have rapidly gained favor because of their speed, low cost,
improved accuracy, and accessibility due to the impressive
amount of ML software available in the public domain. The
rationale and principles for repurposing drugs for new diseases
have been reviewed (Pushpakom et al., 2019). Very recent reviews
have summarized HT and computational repurposing for NTDs
(Hernandez et al., 2018; Andrade et al., 2019; Bustamante et al.,
2019).

A very important but sometimes overlooked fact is that ML
models of biological responses have specific domains of
applicability. These are determined by the ranges of the
molecular descriptors and the range of biological activities
used to train models. Larger and more chemically diverse
training sets will generate models that have larger domains of
applicability and will be able to generalize to new data more
broadly than smaller, less diverse training sets. If members of
virtual screening libraries do not have properties that lie within,
or at least close to, those of the training compounds, then
predictions made by the models will be less reliable.

Schuler and colleagues have published a useful in silico study
of drug repurposing for Ebola virus (Schuler et al., 2017). They
also provide a helpful list of software and servers used for
computational drug discovery. Ebola virus is a particularly
difficult repurposing problem mainly due to the small
amount of structure-activity data available in the literature
with which to train models. As the studies reviewed in Case
Studies Using AI and ML to Discover New Drugs for NTDs show,
most other NTVs have large or very large databases of
compounds with associated biological activity data. These
resources can be used to train ML models with broad
domains of applicability that can be used for drug
repurposing. However, drugs whose molecular features lie
outside these domains usually have their biological properties
poorly predicted. Schuler et al. stressed the importance of
multitargeting approaches, especially when preclinically or
clinically validated. Several of the approaches they reviewed

are broadly applicable to other pathogens, outbreaks, epidemics,
and pandemics and to general drug discovery and development.

Use of Evolutionary Methods and Other AI
Methods to Discover NTD Leads
Although almost all applications of AI methods to discovery of
drugs for NTDs have focused on ML methods, there are
additional AI technologies that show promise. Wang et al.
have summarized the current and future impact of AI
methods on infectious diseases (Wong et al., 2019). Given the
immensity of drug-like chemical space (∼1060 compounds) and
the need to optimize several properties simultaneously to
generate good NTD drug leads, evolutionary methods are
beginning to be employed in mainstream drug discovery.
These represent the structural and physicochemical properties
of molecules by mathematical “genomes.” They use a
combination of desirable (e.g., activity, pharmacokinetics) and
undesirable (e.g., toxicity, cost) properties as a fitness function to
be optimized. By assessing the fitness of small libraries, mutating
the genomes of the best candidates, and synthesizing new pools of
improved candidates, drug leads can be rapidly optimized.
Depending on the type of mutation operator used, large jumps
into novel chemistry space can be achieved (scaffold hops).
Although there are no examples of evolutionary optimization
of drugs for NTDs yet, the current state of the art for mainstream
drug discovery has been reviewed recently (Le and Winkler,
2015). An interesting application of evolutionary methods to
assess risk factors for Chagas disease was very recently published
byHanley et al. (2020). The data were derived from surveys of 64
risk factors believed to be relevant to infestation of households.
The results may inform the design of eco-interventions aimed at
slowing the spread of Chagas disease.

Autonomous experimental systems are under development in
several laboratories. These aim to create a closed loop system that
automatically designs and synthesizes molecules that are fit for
purpose. Most systems rely on evolutionary methods to perform
the successive cycles of optimization until no further improvement is
achieved or an acceptance metric is reached. They consist of robotic
synthesis methods (or alternatively, a large pool of available
compounds), one or more assays to determine the “fitness” of the
molecules, a means of mathematically “mutating” members of the
fittest populations, and synthesis of these that is carried out by the
synthesis robot (or members chosen from the large pool). A robot
scientist “Eve,” an automated system using AI to discover knowledge
through cycles of experimentation, aims to make drug discovery
faster andmore economical (Williams et al., 2015). It performs library
screening, hit confirmation, and lead generation usingQSARmodels.
Williams and coworkers used econometric modelling to show that
Eve outperforms standard drug screening on an economic basis. It
employs as fitness measure assays that can be quickly and cheaply
engineered using synthetic biology. Conspicuously, Eve has
repositioned drugs against parasites that cause tropical diseases.
They used a drug library to identify repurposed drugs against
malaria, Chagas, African sleeping sickness, and schistosomiasis. In
particular, the antimicrobial compound fumagillin, an angiogenesis
inhibitor, investigated as an anticancer drug, inhibits growth of P.
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falciparum strains (including resistant strains) and inhibits
parasitemia in a mouse model.

Computationally guided discovery of new drugs for treating
NTDs has benefitted from sophisticated methods developed for
pharmaceutical drugs used to primarily treat major illnesses in the
developed world. Although application of HTS andMLmethods to
discover new drugs for NTDs has lagged behind that for
noninfectious diseases, the stage is set for rapid adoption by
scientists working on NTDs, especially those in the developing

world. The new technologies foreshadowed in Perspective bodewell
for more rapid and informed discovery and, ultimately, design of
more potent, selective, and safe drugs for NTDs in the future.
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