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Abstract: The term aerogel is used for unique solid-state structures composed of three-dimensional
(3D) interconnected networks filled with a huge amount of air. These air-filled pores enhance the
physicochemical properties and the structural characteristics in macroscale as well as integrate
typical characteristics of aerogels, e.g., low density, high porosity and some specific properties of their
constituents. These characteristics equip aerogels for highly sensitive and highly selective sensing
and energy materials, e.g., biosensors, gas sensors, pressure and strain sensors, supercapacitors,
catalysts and ion batteries, etc. In recent years, considerable research efforts are devoted towards the
applications of aerogels and promising results have been achieved and reported. In this thematic
issue, ground-breaking and recent advances in the field of biomedical, energy and sensing are
presented and discussed in detail. In addition, some other perspectives and recent challenges for the
synthesis of high performance and low-cost aerogels and their applications are also summarized.

Keywords: aerogels; silica aerogels; porous materials; catalysts; sensors

1. Introduction

The term aerogel is used for ultralow density and lightweight materials derived from
organic, inorganic or hybrid molecular precursors. Aerogels contain 99.9% air in their
structure, which makes a chain of porous network. Therefore, aerogels are solids similar to
gel that contain air pockets [1]. Scientifically, aerogels are highly porous, light-weight and
unique solid-state structures composed of three dimensional (3D) interconnected networks
filled with a huge number of air pores [2]. These air-filled pores enhance the physicochemi-
cal properties and the structural characteristics in macroscale as well as integrate typical
characteristics of aerogels, e.g., low density, high porosity and some specific properties of
their constituents [3,4]. These extraordinary and attractive characteristics endow aerogels
as a first choice in highly sensitive sensing and energy applications, e.g., biosensors [5,6],
gas sensors [7], pressure strain sensors [8], supercapacitors [9], catalysts [10,11], energy
storage [12,13], piezoelectric [14], thermal insulators [15,16] and ion batteries [17]. The
term aerogel was coined by Kistler in the early 1931 to describe his synthesized gels, where
the liquid was replaced with a gas without collapsing the solid gel structure [18]. In the
beginning, there was limited research work on aerogels after their first discovery; the term
aerogel had a rebirth in the 1970s for the popularity of sol-gel synthesis methods and the
application of aerogels for storing rocket fuels. Afterwards, significant efforts were made
to simplify the synthesis methods, especially drying, for low-cost and facile synthesis of
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aerogels. This opened the gateway for a variety of aerogels, due to their open structure
and light-weight characteristics in different fields of applications.

The global development and continuous improvement in daily lifestyle have posed
a burden on natural energy sources such as fossil fuels. The scarcity of these traditional
resources and their impact on the surrounding environment has created challenges for
mankind. In order to decrease this burden, research work has been carried out in different
directions. One such direction is to rely on renewable energy sources such as solar energy.
The conversion of concentrated solar energy into thermal or electricity is under the con-
sideration of the scientific community. In this regard, porous materials provide a good
solution for improving the heat transfer characteristics in solar systems [19–21]. Porous
materials with their exceptional characteristics, i.e., low cost, light-weight and significant
potential to augment thermal properties, have received considerable attention. These
materials are used in different industrial applications, e.g., thermal insulation devices,
adsorption devices, energy storage devices, geothermal devices and evaporating devices,
due to their porosity and solid matrix structure [22]. The formation of a 3D network is a
key factor in the synthesis of aerogels, with better durability, stability and higher porosity.
Wet chemical methods are known as conventional methods to fabricate different types of
aerogels, including inorganic, organic and hybrid, and sol-gel synthesis is one of the most
prominent wet chemical methods for aerogel preparation [23]. Sol-gel method is generally
completed by mixing precursors, followed by hydrolysis, polycondensation and then
gelation, aging and finally drying by appropriate methods (ambient drying, super critical
drying, freeze-drying or lyophilization). In sol-gel synthesis, each step is realized by the
relevant variables, i.e., pH of the solution, concentration of precursors, time, temperature
and type of solvents in order to fine-tune the final properties of the aerogels. Acidic and
basic catalysts are used during hydrolysis and polycondensation reactions, depending on
the materials to be catalyzed; the reaction is catalyzed. The drying of the gel is the key step
among all the mentioned steps, which determines the overall efficiency and final properties
of the aerogels. To date, the most intensive and significantly used drying methods for the
preparation of aerogels are ambient drying (evaporation), freeze-drying (lyophilization)
and super critical drying. Figure 1 shows a schematic illustration of the conventional
aerogel synthesis procedure [24].
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The procedure illustrated above has been mainly used and reported for aerogels. All
other aerogel production techniques are either derived or altered from this procedure. Many
researchers synthesized various types of aerogels, including organic aerogels [25], silica-
based aerogels [26], metallic aerogels [27], carbon aerogels [28], chalcogenide aerogels [29]
and hybrid aerogels [30] by this method [31,32]. Intensive research studies were carried out
on the applications of aerogels in the past few years, indicating the great field of application
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for aerogels. There are many review papers available on the applications of aerogels;
however, this work is related to aerogels made of different materials, i.e., carbon, gold,
silver, zinc, titanium, cobalt and cellulose for biomedical, energy and sensing applications.
We compared the significance of other materials, especially cellulose, carbon and some
metals, with silica aerogels and demonstrated their importance for biomedical, energy and
sensing applications. Among other potential applications, sensors have gained tremendous
attention because they are vital in health monitoring, public safety, environment and
industries, and aerogels have demonstrated their worth as an excellent material for sensors.
The aim of this paper is to provide an up-to-date study on the applications of aerogels in
energy, environment and sensing forms.

2. Properties and Classification of Aerogels

Aerogels are considered ultra-high nano-porous structures. These structures enable
aerogels to be optimal candidates for many sensitive fields of applications, including en-
ergy, sensors and thermal protection. However, aerogels display mostly brittle behavior;
for thermal insulation of complex geometrical structures, this type of mechanical behavior
is not suitable because flexibility of the material is a primary concern. To allow certain
flexibility in the aerogel structures, research efforts had been made and materials synthe-
sized, which can be divided into two main categories, i.e., induced flexible and inherently
flexible aerogels. Most of the flexible aerogels that are commercially available belong to
induced-flexible aerogels, where the flexibility of the structure is induced by additives
and components other than the aerogel material itself. Aerogels are classified into organic,
inorganic and hybrid aerogels according to the type of precursor used during the synthesis
of aerogels. However, according to their surface chemical properties, they are categorized
into hydrophobic and hydrophilic aerogels. Table 1 shows the structural characteristics
of aerogels reported by various studies. As shown in the table, particle size and surface
area of the aerogels range between 2 nm to 5 mm and 300 to 1100 m2·g−1, respectively. The
density and porosity range between 40–350 kg·m−3 and 85–99.9%, respectively. The pore
diameter varies from 1–109.5 nm and thermal conductivity between 0.01–0.02 W·m−1·K−1,
respectively.

Table 1. Structural characteristics of different aerogels.

Aerogel Type Precursor Surface Area
[m2·g−1]

Density
[kg·m−3] Porosity Pore Size

Thermal
Conductivity
[W·m−1·K−1]

Reference

Silica aerogels C4H12O3Si 600–1000 350 85–99.9% 1–100 nm 0.010–0.020 [33]

Silica aerogels Na2SiO3 600–1000 300–350 - 20 nm - [34]

Silica aerogels C4H12O3Si 576 100 >90% 20–100 nm 0.020 [35]

Silica aerogels Na2SiO3 366 40–150 >90% 20–100 nm - [36]

Silica aerogels Na2SiO3 300–400 50–80 98% 20–40 nm 0.016–0.020 [37]

Carbon aerogels C3H8N2O 300 0.24 99% - - [38]

Carbon aerogels C2H3Cl 1600 - 98% 2 nm - [39]

Silver aerogels AgNO3 400 27 98% 10–100 nm - [40]

Zinc aerogels ZnC4H6O4 350 - 99% - - [41]

Titanium aerogels C16H36O4Ti 300 - 98% 20 - [42]

Cellulose aerogels Wood - - 98% - - [43]

Chitosan aerogels Chitosan powder 400 - 99% - - [44]

Biomass aerogels Konjac glucomannan - 47 95% - - [45]

It is revealed from Table 1 that most of the structural characteristics primarily depend
on synthesis route and type of precursor used. Silica aerogels are synthesized at the
earliest and classified as inorganic aerogels. Silica aerogels are widely studied due to their
facile synthesis and commercial development and are considered as a standard form of
aerogels for comparison with newly developed aerogels. The synthesis process of silica
aerogels consists of the following steps: silica gel is prepared as a first step and then the
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gel is processed for aging and drying. Ambient drying and supercritical drying processes
are mostly followed during the synthesis of aerogels. However, the lateral method is
challenging due to hazards and high cost in perceiving the large-scale production of
aerogels. In a previous study, Maleki et al. reviewed the synthesis of silica aerogels with
different methods and stated that ambient drying is a facile and cost-effective method to
synthesize the composites of aerogels. In addition, post gelation and high pressure makes
ambient drying more suitable for the bulk production of aerogels [46].

Another important type of aerogels is metal-based aerogels that are indispensable
for their excellent electrical conduction properties. Metallic aerogels have gained intense
attention in recent years due to their higher surface area and ultralow densities. Researchers
worked with various type of metals, i.e., gold, silver, copper, titanium, zinc, nickel, cobalt
and successfully fabricated metal aerogels with tunable surfaces, structural and electrical
properties [47–50]. In an experimental study, Qian et al. reported the synthesis of ultralight
gold aerogel monoliths with tunable pore densities and structures. Different solvents
and their suspension are crucial parameters for the systematic tuning of monolithic gold
aerogels with enhanced densities and pore architectures [51]. In a previous study, Qian et al.
synthesized ultralight silver aerogel monoliths with excellent conduction properties and
tunable densities via silver nanowires. Silver nanowires were used as building blocks, and
the freeze-casting method followed by sintering was used as the fabrication route for silver
aerogel monoliths [52]. Yan et al. reported a three-dimensional printing technique and
freeze casting method for the fabrication of metallic aerogels. The results demonstrated that
by using these techniques, the densities are controllable and high electrical conductivity is
achieved [53]. In a different study, Xu et al. fabricated ultralight flexible pressure sensors
with the help of copper nanowires. Copper nanowires were assembled into copper aerogels
via the one-pot method. The fabricated pressure sensors demonstrated excellent results for
sensitivity, tunable pore architecture and ultralow density [54].

The cost and properties of silica aerogels mainly depend on the fabrication methods.
The precursors mainly used for the synthesis of silica aerogels are sodium silicate and
various types of silanes, e.g., tetramethoxysilane, tetraethoxysilane and polyethoxydisilox-
ane. Due to their hazardous effects and higher cost, silanes are not commercially used
for the fabrication of silica aerogels. However, for bulk production and cost effectiveness,
sodium silicate is utilized as a cheaper precursor for the synthesis of silica aerogels [55]. In
a previous study, Carlson et al. reported that the synthesis of silica aerogels with sodium
silicate precursor is 7.7–13.5 times more cheaper than silanes precursors [56]. We came
to know that silica aerogels are brittle in nature and additives (polyethylene glycol) play
an essential role for maintaining the pore volume size and mechanical properties. The
addition of polyethylene glycol in the synthesis of aerogels control the strength of solution
matrix, which means a lower concentration of polyethylene glycol strengthens the solution
matrix and vice versa. In addition, the concentration of hydrophilic and water-soluble
polymers adjusts the pore size of silica aerogels.

Due to their remarkable properties and structure, graphene oxide (GO) has been
investigated and used in the synthesis of aerogels. GO improves the porosity during the
interaction with silica matrix, restricts the transfer of heat and enhances the thermal prop-
erties 1.5 times more than pure silica aerogels. In addition, GO enhances the mechanical
properties besides the augmentation in the thermal stability of the composite [57]. Lei
et al. worked with silica aerogels and added GO as a nanofiller during the synthesis of
GO/SiO2 composites aerogels. They reported that GO improves the thermal insulation
and mechanical properties of the aerogels. The positive influence of GO was due to the
homogenous distribution of GO inside the silica matrix and the interfacial interaction
between silica and GO nanosheets [58].

In a similar manner, the inclusion of fibrous material during the synthesis of aerogels
enhances the thermal and mechanical properties. Patil et al. investigated the effect of
carbon nanotubes, glass fibers and graphene nanosheets during the synthesis of silica
aerogels and compared the results with virgin silica aerogels. The results revealed that
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aerogels composed of carbon nanotubes, glass fibers and graphene nanosheets demon-
strate significant augmentation in tensile strength by nine, three and eight times and
11.5, 3.5 and 9.5 times augmentation in elastic modulus than standard silica aerogels, re-
spectively [59]. Li et al. conducted many studies on silica aerogels composed of aramid
fibers to enhance thermal and mechanical properties. The results revealed that silica aero-
gels with aramid fibers possess lower bending modulus with exceptional flexibility. The
compressive strength increased up to 1.2 MPa with extremely low thermal conductivity
0.0227 ± 0.0007 W·m−1·K−1 [60,61].

We came to know a fact through literature review that silica aerogels are mostly used
as commercial thermal insulating materials due to their economic raw materials and facile
drying process. The ambient drying process is mostly used for the commercial production
of silica aerogels due to its economic benefits. In general, aerogels are extremely high
thermally insulating materials with poor mechanical properties that may be improved or
adjusted by the inclusion of different additives, i.e., fibrous materials, carbon nanotubes
and graphene, during the synthesis mechanism.

3. Applications of Aerogels

Aerogels are special materials that have an enormous diversity of outstanding physico-
chemical properties, including mechanical, physical and chemical properties, and therefore
many applications have developed with aerogel utilization. Some of the most sensitive
applications are catalysis, thermal insulation, electrodes, solar thermal energy systems,
waste engine oil, oil spill cleaning, drug and protein delivery, medical implantable devices
and supercapacitors. This section presents the recent advanced technical applications
of aerogels in different fields, including biomedical engineering, energy, environment
and sensors.

3.1. Aerogels for Biomedical Engineering

Aerogel materials has proven potential applications in biomedicines and attracted
great attention in recent years. Aerogels have been applied in different applications, such as
tissue engineering, drug and protein delivery, implantable medical devices, bone grafting,
biosensing and blood sorption [62–64]. This section introduces various recent applications
of aerogels in biomedical engineering.

Aerogel has been widely used in tissue engineering for the regeneration of different
types of tissues, such as bones, skin, blood vessels, and cartilages. Muñoz-Ruíz et al. pro-
posed and evaluated the collagen-alginates aerogel for the regeneration of different tissues
using bio-based materials, in order to solve the problem of the potential complications
related to autografts. The results revealed that the induced properties after drying are
responsible for these changes. The aerogel microstructure was very stable and composed of
highly porous 3D interconnected networks that helps in cell attachment [65]. Osorio et al.
modified cellulose nanocrystal aerogels and used them as viable bone tissue scaffolds. The
experimental results demonstrated that cellulose-based aerogels are porous and flexible
and facilitate bone growth after their implant in bone defects. In addition, the aerogels
demonstrated an increase in cell metabolism [66]. Reyes-Peces et al. presented a hybrid
aerogel structure composed of chitosan and silica for bone tissue engineering. They syn-
thesized the hybrid aerogels by the sol-gel method followed by supercritical CO2 drying.
They used glycidoxypropyl trimethoxysilane (GPTMS) as the crosslinking or coupling
agent, and tetraethylortosilicate (TEOS) as silica precursor. The results of in vitro study
demonstrated that the proposed hybrid chitosan silica aerogel composite structure provides
a durable substitute in bone tissue engineering for cells recruitment and maturation by
inducing an excellent osteoblast response [67]. Groult et al. investigated the influence of
the drying process on the structural and release properties of pectin hydrogels, aerogels,
cryogels and xerogels. They prepared the porous pectin aerogels, xerogels and cryogels
using super critical drying, freeze-drying and evaporative drying under low vacuum. They
investigated and compared the kinetics of drug release from all the mentioned materials,
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including hydrogel. Scanning electron microscopy (SEM) images illustrate that the drying
method has a noteworthy influence on different properties of the pectin networks, as
shown in Figure 2. Shrinkage was observed for pectin cryogels that might originate upon
immersion of the sample into nitrogen for the freezing of water prior to sublimation. Due
to this, samples made with the freeze-drying method display very low density. Figure 3
shows the experimental samples with the dry core in pectin aerogels, which confirm the
slow solvent transport through the dry system, in contrast with the pectin hydrogels and
cryogels [68].
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Rostamitabar et al. produced cellulose aerogel fibers under the super critical CO2
drying method and tested their samples on the drug model. The surface morphology
and structural properties of the synthesized aerogels were characterized by different
spectroscopies. In addition, thermal stability, mechanical properties and drug release
assessments were also performed. The results revealed that fibrous structures were able
to absorb excessive amount of moisture and due to their open porous structure, aerogels
released the drug immediately and demonstrated non-toxic behavior [69]. In another
study, Marco et al. produced polysaccharide-based aerogels, which were further used as
carriers for drug delivery systems. They analyzed their samples on the basis of the life cycle
assessment and from an environmental point of view to minimize total emissions. Aerogels
of starch were synthesized under the following three steps: (1) Prepare the gel using an
aqueous solution; (2) replace the water by alcohol to develop alcogels; (3) use of the super
critical CO2 drying process to obtain bio aerogels. The experimental results demonstrated
that the carcinogens and mineral extraction were mainly the affected categories as a
consequence of the high energy consumption in the drying step; in addition, the respiratory
organics were infected due to the ethanol used in the alcogel formation [70].

Recently, Saadatnia et al. developed conductive aerogel films for the monitoring
of electrophysiological properties and proposed a novel model of wet electrode. The
electrodes were composed of cellulose nanocrystals and multi-walled carbon nanotube.
Cellulose nanocrystals were used as biopolymers and carbon nanotubes as conductive
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fillers. The produced electrode is featured to investigate the electrical, chemical, water
absorption and mechanical properties. The fabricated model has very high performance,
which makes it effective for wet electrode applications, thanks to the high percentage of
water absorption due to its hydrophilicity and porosity. In addition, the proposed model
guarantees the multiple use of a fabricated electrode for different applications, such as
remote and long-term monitoring of patients, and for different electrophysiological mon-
itoring devices, e.g., electroencephalography (EEG) and electrocardiography (ECG) [71].
In another study, Tetik et al. synthesized cellulose-based aerogels with excellent 3D ge-
ometries and shapes with overhang properties. They determined the impact of the used
method for the improvement of the mechanical properties of synthesized aerogels. In
addition, they evaluated the bonding strength to augment the stability of aerogels in order
to make them feasible for tissue engineering and biomedical applications. Figure 4 shows
the essential steps involved in the making of aerogels used in materials and methods as
well as the results of SEM observations [72].
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micrograph displaying the top surface of 3D freeze-printed aerogel. (e) SEM micrograph displaying
the cross-sectional surface of 3D freeze-printed aerogel. Reprinted with permission from [72].

3.2. Aerogels for Energy

Aerogels have the advantages of biodegradability and low density that make them
a good choice for solving serious environmental problems. Researchers have proposed
and developed many techniques that produce green and sustainable electrodes, based
on aerogels, as a solution for pollution and other environmental concerns [73–75]. In an
experimental study, Strobach et al. reported the synthesis of optically transparent and
thermally insulating monolithic silica aerogels with high solar transparency, especially
developed for the solar thermal receiver. They elaborated the effects of annealing at
different annealing temperatures. They explained that the structures and properties of
aerogels could be controlled by controlling the temperature. In addition, the time and
temperature of annealing were helpful in the optimization of aerogels for better optical
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and thermal properties. The results elucidated good prediction performance of aerogels in
solar thermal applications [76].

Li et al. introduced a modified evacuated receiver with solar transparent aerogels in
order to improve the receiver performance. In addition, they developed and validated an
optical-thermal model for modeling the energy transfer in the collector. Figure 5 exhibits
the traditional evacuated receiver that was chosen as a standard model and the modified
receiver that was designed with the addition of aerogels at an angle of 120◦ at a directly
illuminated region. The results revealed that the effects of aerogels on the modified receiver
are significant. Aerogels coating’s emittance greatly affects the receiver performance. The
optimal efficiency was achieved by adding aerogels with opaque insulation [77].
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Recently, Han et al. prepared thermally insulated aerogels using TiO2 and chitosan
under combined thermal reduction and freeze-casting methods. Experimental results
demonstrated that the produced aerogels have excellent mechanical properties, thermal
insulation behavior and good high-temperature service performance [78]. Lui et al. synthe-
sized novel and homogeneous TiO2/SiO2 aerogel composites with synchronous sol-gel
method. The proposed technique provides hydrophobic properties achieved by pre-heat
treatment and surface modification. The thermal conductivity test, structure characteriza-
tion, energy saving simulation calculation and infrared radiation heat transfer calculation of
TiO2/SiO2 aerogel composite were executed. Therefore, the thermally insulated properties
for steam pipe application that works for high temperatures were obtained accordingly.
The obtained results of TiO2/SiO2 aerogel composite were compared with hybrid glass
fiber/SiO2 composites. The results demonstrated that glass fiber/TiO2/SiO2 aerogel com-
posite had better results for thermal conductivity than others. The energy-saving effect
of the glass fiber/TiO2/SiO2 aerogel composite demonstrated excellent performance in
saving oil consumption silica aerogels [79].

The role of aerogels for energy applications, especially supercapacitors and batteries,
has been increasing day by day. Long et al. introduced a novel method for the fabrication
of N2 doped carbon aerogels for supercapacitors. They prepared the biomass-derived
carbon aerogel using glucose, cellulose nanofibers and dicyandiamide as precursors. The
multifunctional materials were validated on flexible electronics, sensors and energy stor-
age/conversion devices, i.e., supercapacitors, where they demonstrated excellent thermal
and mechanical properties [80]. In another study, Lui et al. reported the synthesis of
tungsten oxide (WO3) nanoparticles and their homogenous dispersion and deposition
on carbon-based aerogels for the development of supercapacitors. Experimental results
demonstrated that the addition of WO3 nanoparticles enhances the capacitance with a
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reduction in size and provides an exponential increase for capacitance values; however, dur-
ing cycling, carbon aerogels facilitate charge transfer. The proposed method achieved a high
value of capacitance in comparison with other kinds of nanomaterials deposited on carbon
aerogels for supercapacitor applications [81]. Carbon-based aerogels are generally famous
for lightweight and long-lasting batteries with excellent charge/discharge capabilities. Mu-
niyandi et al. worked with carbon-based hybrid aerogels for high performance lithium-ion
batteries. They successfully synthesized Li2FeSiO4/C aerogels with sol-gel method and su-
percritical drying. The electrode kinetics and storage performance of the synthesized aero-
gels were characterized by electrochemical impedance spectroscopy, cyclic voltammetry
and galvanostatic charge discharge methods. The results demonstrated that the fabricated
electrode delivers 140 mA·h·g−1 discharge capacity for 130 cycles [82]. In another experi-
mental study, Chen et al. incorporated Fe3O4 nanoparticles during the synthesis of carbon
nanotubes aerogels that significantly enhanced the electron transport, ion diffusion and
reduced volume expansion of lithium-ion batteries. Moreover, the results demonstrated
that the fabricated anode delivers extraordinary charge/discharge (reversible) capacity
after 100 cycles [83]. Jiang et al. worked with boron nitride nanomaterial-based aerogel
composites to achieve low thermal conductivity. They reported the fabrication of aerogel-
based thermoelectric batteries with excellent durability, no maintenance, long life and high
reliability [84]. Some other applications of aerogels are in the form of catalysts, construction
and building materials that possess the potential for environmental remediations [85–89].
Golder et al. reported the significance of aerogels in the development of insulating mate-
rials for construction and buildings. They deposited translucent aerogel glazing systems
in the walls and windows of different buildings for better insulation performance. The
results demonstrated that the deposition of aerogels in the wall and window insulation
and glazing systems has significant potential to reduce energy consumption and cost of
buildings [90]. Qi et al. reported the tribology behavior of silica aerogels reinforced with
polybutylene terephthalate for a deep-sea environment. They evaluated the tribological
properties, thermal and mechanical properties, absorption of binary nanocomposites and
seawater wettability. Their results demonstrated that the incorporation of silica aerogels
increase the wear-resistance, seawater repellency and thermal stability. However, they
decrease the acceleration of seawater absorption, mechanical strengths and wear rate of
polybutylene terephthalate. A schematic diagram of silica aerogels for sea environment is
illustrated in Figure 6 [91].
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3.3. Aerogels for Sensors

Aerogels and aerogel-based composite materials have strong mechanical strength,
excellent flexibility, high porosity, lightweight and excellent durability. These characteristics
attract the researchers interests and fulfill the requirements for the fabrication of various
types of sensors, e.g., gas sensors, electrochemical sensors, pressure sensors, humidity
sensors, flexible sensors and tactile sensors. With the advancement in science and research,
gas sensors have achieved significant importance in many fields for the detection of
explosive and toxic gases as well as the gases for disease diagnosis [92,93]. Resistive
types of gas sensors are mostly used due to their facile fabrication, low cost and easy
operation. In resistive sensors, the sensing operation takes place on the surface of the
active sensing material and the conductivity changes during the absorption of the gas
molecules on the surface of the active sensing layer. Aerogel-based sensors have two major
advantages, i.e., first, a high specific surface area and surface-to-volume ratio that provides
sufficient surfaces for the adsorption of gas molecules; second, a 3D porous interconnected
structural network that provides a stable and fast transport channel for the diffusion of gas
molecules. Thus, aerogel-based sensors demonstrate fast recovery rate, low detection limit,
high sensitivity and fast response rate. Table 2 shows some recent work on aerogel-based
gas sensors.

Table 2. Aerogel-based sensors and their performance.

Aerogel Type Analyte Response/Recovery Rate Sensing Range Detection Limit References

Graphene aerogel Ammonia 100 s/500 s 0.02–85 ppm 10 ppb [94]

Carbon aerogel Toluene and
n-hexane 25 s/20 s - - [95]

Graphene aerogel NO2 116 s/169 s 0.1–1 ppm 50 ppb [96]

TiO2/SiO2 aerogels H2S 53 s/74 s 0.5–50 ppm 0.5 ppm [97]

ZnO/graphene aerogels NO2 132 s/164 s 10–200 ppm 10 ppm [98]

Silica aerogels/ Carbon
quantum dots NO2 - 2–10 ppm 250 ppb [99]

Silica aerogel film Humidity 38 s/21 s 20–90% RH - [100]

Alizadeh et al. reported the fabrication of an ammonia gas sensor with the help of
graphene hydrogels characterized with ppb level determination capability. They followed
the hydrothermal method for the synthesis of 3D graphene aerogels. The mechanism of
sensing was related to the variation in electrical resistance. The fabricated device was highly
efficient and capable of sensing ammonia gas in a reversible manner at ambient temperature
under a short span of time [101]. Gao et al. fabricated gas sensors based on zinc oxide and
reduced the graphene oxide aerogel composites for the detection of nitrogen dioxide (NO2).
The obtained results reveal that after the freeze-drying method, aerogels have a regular
cylindrical shape with larger pore sizes; however, zinc oxide was homogenously distributed
on the surface of graphene oxide and provides a solid network of crosslinking. In addition,
the results demonstrated that the fabricated sensor provides a quick response for NO2
detection with a fast recovery rate and good reproducibility [102]. Bibi et al. reported
the fabrication of carbon aerogels and polyaniline-based gas sensor for the detection of
hydrogen sulphide (H2S) gas. They explained that aerogel-based composites were first
applied on the interdigitated electrode made of glass. Carbon aerogels were dispersed with
the spin-coating method on the electrode for gas sensing [103].

The pressure and strain sensors convert the applied pressure change and deformation
into the electricity of an object. These sensors have demonstrated their potential in different
fields, especially in wearable health monitoring devices and artificial skins. The sensing
mechanisms of any pressure and strain sensor are based on piezo resistivity, capacitance
and piezoelectricity. Piezoresistive pressure and strain sensors are the most promising
sensors, among other types of pressure sensors, and they are widely studied due to their
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facile read-out system and easy structures. In addition, the aerogel-based piezoresistive
pressure and strain sensors have enough tolerance for large deformation and high elasticity;
therefore, they provide a large sensing range. In an experimental study, Zhu et al. prepared
a sensitive piezoresistive sensor, based on reduced graphene oxide and carbon nanotube
aerogels, by using a hydrothermal redox method for human motion detection. Furthermore,
they proposed that the fabricated sensor provided good stability, fast response time, high
sensitivity and a wide working range [104]. Cao et al. reported the synthesis of polyacry-
lonitrile nanofiber-reinforced graphene aerogels for piezoresistive-sensing applications.
In this method, nanofibers worked as scaffolds for the graphene network and provide a
3D interconnected hierarchical microstructure. The results demonstrated excellent com-
pression resilience, fast response time, perfect sensing durability and structural stability.
Furthermore, the fabricated sensors were able to evaluate real time movements of the wrist,
fingers, wrist pulse and knee joints at a good sensitivity [105]. Wei et al. reported the
fabrication of the pressure sensor based on graphene/biomass hybrid aerogels. A facile
and green strategy was used to fabricate these types of sensors by the effective reduc-
tion of graphene oxide through bacteria cellulose and caffeic acid. The fabricated sensor
demonstrate fast response, high sensitivity and excellent reproducibility. Sensors exhibit an
integrated performance of ultralow limit of detection, high sensitivity and fast responses,
and clearly detect the subtle strain and monitor physical human motions. Figure 7 shows
the application of fabricated sensors during the capturing of human motion [106].
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Carbon-based aerogels are widely studied for their electrical properties, good com-
pressibility and high porosity as piezoresistive sensors. Bi et al. reported the fabrication of
electrodes made of carbon aerogels clustered on a carbon ball. The main purpose of the
proposed technique is to develop a electrochemical sensor from the biomass of taros. The
results demonstrated a high electrochemical activity performance and the proposed method
revealed its potential as a powerful electrode for the fabrication of multi-functional electro-
chemical sensors for practical applications [107]. Yang et al. fabricated superhydrophobic
and conductive aerogels with honeycomb-like microstructures under directional freeze-
drying methods for the piezoresistive pressure sensor. The fabricated sensor provides a
wide detection range, excellent electrical repeatability, stability and fast respond times. The
fabricated sensor was used to evaluate the motion of the human body, where it demon-
strated stable work under humid or sweaty environments. In addition, the fabricated
sensor detected real-time movements of finger joints, as illustrated in Figure 8 [108].
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4. Summary and Future Direction

v In this study, a brief history and the applications of aerogels based on their classifica-
tion and synthesis methods are reviewed and discussed. Aerogels are considered as
excellent candidates for biomedical, energy, environment and sensing applications,
and especially for high-performance sensors, where high sensitivity is required. Due
to their structural characteristics and other properties, including having a highly
porous structure, high specific surface area and other specific features provided by
the aerogel network, aerogels are suitable for many applications. Therefore, based
on the discussion, it is concluded that the combination of low dimensional active
building blocks induces fascinating properties in the resulting aerogels, which dis-
play satisfactory performances in multiple applications. However, there are many
challenges that still need to be addressed.

v The economic and bulk production of high-quality aerogels is still a major issue that
needs to be solved. Efforts have been made to simplify the synthesis mechanism in
order to scale up and to reduce cost. Therefore, freeze drying (lyophilization), modi-
fied super critical drying and ambient drying methods were used. However, during
the drying conditions, it was not easy to completely maintain the microstructure of
the gel, therefore, damage frequently occurred.

v Surface modification techniques employed for ambient drying inevitably causes a
negative effect on the performance of aerogels. The overall properties of aerogels
become disturbed during surface modification. The discussed studies demonstrate
the superiority of aerogels in comparison with powdered materials in different fields.
Therefore, aerogels with no structural variation own superior properties and a large-
scale production of low-cost aerogels with superior qualities is vital and should be
realized.

v Maintain the porosity of the structure, especially the microporosity of the aerogel
structure under stress during the fabrication of aerogel products, i.e., biosensors, gas
sensors, ion batteries and catalysts. During the fabrication of sensors, aerogels are dis-
persed in solvents in order to get a uniform dispersion and coated on other substrates
to make aerogel-based sensors. During this dispersion process, the microporous
structures of aerogels are deteriorated and a decrease in mass and energy transfer is
observed in the resultant sensor. However, in a comparison, these sensors still behave
better and display a much-increased sensing performance than powder-based sensors.
It is still believed that if the intrinsic porosity of the aerogel structures is retained well
during the fabrication of sensors, the performance of the aerogel-based sensor can
further be improved.

v The utilization of thin aerogel films covers the microporous structural damage caused
during the synthesis of sensors. Aerogels with excellent mechanical features are the
prerequisites for the synthesis of aerogel films. Therefore, the mechanical properties
of various types of aerogels, e.g., organic, inorganic and hybrid, should be improved.
In this matter, the inclusion of additives (supporting materials) is considered a facile
way to increase the overall mechanical properties. Although, when the mechanical
properties are enhanced and the structure of aerogel is controlled, the extension of this
technique remains a challenge for all kinds of aerogels. Therefore, it is compulsory
to develop a common method that works for all types of aerogels to enhance their
mechanical properties.
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