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Abstract

Background: COVID-19 Convalescent Plasma (CCP) is a promising treatment

for COVID-19. Blood collectors have rapidly scaled up collection and distribution

programs.

Methods: We developed a detailed simulation model of CCP donor recruit-

ment, collection, production, and distribution processes. We ran our model

using varying epidemic trajectories from 11 U.S. states and with key input

parameters drawn from wide ranges of plausible values to identify key drivers

of ability to scale collections capacity and meet demand for CCP.

Results: Utilization of available CCP collections capacity followed increases in

COVID-19 hospital discharges with a lag. Utilization never exceeded 75% of avail-

able capacity in most simulations. Demand was met for most of the simulation

period inmost simulations, but a substantial portion of demandwent unmet during

early, sharp increases in hospitalizations. For epidemic trajectories that included

multiple epidemic peaks, secondwave demand could generally bemet due to stock-

piles established during the decline from an earlier peak. Apheresis machine capac-

ity (number of machines) and probability that COVID-19 recovered individuals are

willing to donate were the most important supply-side drivers of ability to meet

demand. Recruitment capacity was important in states with early peaks.

Conclusions: Epidemic trajectory was the most important determinant of

ability to meet demand for CCP, although our simulations revealed several

contributing operational drivers of CCP program success.
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1 | INTRODUCTION

The novel coronavirus SARS-CoV-2 has fueled a global
pandemic, with more than 37 million confirmed COVID-
19 cases and 1 million deaths as of October 12, 2020.1

Transfusion of convalescent plasma from recovered

individuals with a mature antibody response has been
successfully used for post-exposure prophylaxis and treat-
ment during other disease outbreaks, including two other
coronaviruses: severe acute respiratory syndrome (SARS-1)
and Middle East respiratory syndrome (MERS).2,3 In
response to the SARS-CoV-2 pandemic, blood collectors
rapidly established COVID-19 Convalescent Plasma (CCP)
collection, processing, and distribution programs during the† These authors contributed equally to this work.
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first half of 2020. Available evidence suggests that CCP is
safe and may be an effective treatment, although some
smaller trials did not find evidence of efficacy, and results
from large randomized controlled trials are pending.4–7

Because CCP is a new and unique blood product, limited
data are available regarding the operational challenges of
CCP collection and distribution programs during an
epidemic.

Using data from a nonprofit organization that collects
approximately 14% of the US blood supply, we developed
a simulation model of CCP donor recruitment, donation
collection, testing, and distribution processes. In this
paper, we use our simulation to evaluate how epidemic
trajectory, donor recruitment and retention, collections
capacity, and demand impact ability to meet competing
priorities of current clinical demand and stockpiling CCP
for future use in 11 different U.S. states. Our aim was not
to replicate the initial history of CCP collections in each
state but rather to analyze and gain insights into the
diverse set of drivers of a successful CCP program.

2 | METHODS

We ran our simulation for 11 epidemic trajectories while
varying parameters related to CCP donor recruitment and
return, collections capacity, and demand. Epidemic trajecto-
ries were based on calibrated state-level SEIR epidemic
models developed and published by ‘COVID Act Now’.8

We included 10 states with the highest cumulative per-
capita COVID-19 hospitalization rate as of August 31, 2020
(New Jersey, New York, Massachusetts, Illinois, Louisiana,
Connecticut, Indiana, Mississippi, Virginia, and Maryland)
and California, which had the highest overall number of
COVID-19 hospitalizations during this period. We excluded
Washington D.C. despite having the highest estimated per-
capita hospitalization rate because it had fewer than 10,000
total hospitalizations.

For each state, we estimated daily hospital admissions
and discharges from three reported outcomes in the
COVID Act Now state-level models (hospital beds
required, deaths, and infections by day) using a method
described in the appendix. We ran 10,000 simulations of
a 200-day period beginning on the date of the first dis-
charge of a COVID-19 patient and calculated two daily
outcomes: (1) the percent of CCP collection capacity uti-
lized and (2) the percent of CCP demand unmet. In each
simulation, we sampled seven input parameters related
to donor recruitment and return, collections capacity,
and CCP demand using uniform distributions.

Our simulation model consisted of two linked compo-
nents: (1) a microsimulation of the donor recruitment,
return, collections, and CCP screening processes and

outputs a number of usable units collected by day and
(2) a production model that accounts for production lag,
demand, distribution, and inventory.

2.1 | Donor recruitment and return

In the simulation, potential CCP donors (agents) entered the
model at discharge from hospital and become eligible for
CCP donation 14 days later. Across simulations, we varied
the probability a recovered individual would be willing to
donate CCP from 10% to 90%, and we varied capacity for
new donor recruitment from 0.2 to 2 new donors each day
per apheresis machine. Willing donors who were recruited
each day entered the donor pool. Each day, donors in the
pool were selected randomly and scheduled for donations,
subject to a collection capacity. Scheduled donations could
be incomplete due to donor deferral for other reasons (2%
probability) or failed or incomplete donation (1% probabil-
ity). Completed donations could be removed from the CCP
supply due to testing positive for disease markers (0.2% prob-
ability), not meeting the SARS-CoV-2 antibody release crite-
rion (8% probability), or testing positive for HLA antibodies
(9% probability for female donors). These probabilities were
based on data from the first seven months of the CCP pro-
gram. CCP donors could return for additional donation as
soon as 7 days later, a policy many U.S. blood centers
implemented in consultationwith the FDA as amodification
to the 28-day interval required for standard plasmapheresis
donation.9 Due to concern over potential antibody waning,10

which may affect neutralizing antibody titers and the prod-
uct's clinical effectiveness, donors in the model became ineli-
gible for CCP donation 180 days after discharge. For each
donor, we sampled the minimum number of days until a
subsequent donation attempt from an empirical distribution
fit to the CCP donation data.We developed separate distribu-
tions for time to return for the donor's second, third, and
fourth-or-greater donation, respectively, based on differences
in return donation propensity observed in the data
(Figure S1). We assumed that donors who do not return by
130 days would never return: 57%, 31%, and 11% of donors
never returned for a second, third, or fourth-or-greater dona-
tion, respectively.

2.2 | Capacity

In each state, we varied the per capita number of aphere-
sis machines from 4 to 55 per million residents. We
assumed that each machine could support on average 3.5
plasma collection procedures per day. Due to demand for
other apheresis products, we assumed that only 50% of
machines would be available for CCP collections each
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day. We based the range of per-capita apheresis machines
on the rates for three states for which we had data: Colo-
rado (eight machines per million residents), South
Dakota (34 machines per million residents), and North
Dakota (55 machines per million residents).

2.3 | Demand

We calculated daily CCP demand from the estimated
daily hospital admissions and three parameters: the prob-
ability each hospitalized COVID-19 patient requires CCP
(varied from 10% to 45% of patients), the number of CCP
units required per patient (varied from 1.5 to 4 units),
and the average delay from admission to receiving CCP
transfusion (varied from 1 to 5 days). In the simulation,
the daily number of CCP units produced and any existing
inventory was used to meet demand. If the available CCP
exceeded demand, it was added to inventory and avail-
able to meet future demand.

2.4 | Sensitivity analysis

For sensitivity analysis, we performed a separate set of
simulations in which we also varied donor return. To do
so, we fit an exponential distribution to the probability a
donor returns by t days from their last donation of
the form

P tð Þ= K 1−e−λ t− t0ð Þ� �
, if t≥ t0

0, otherwise

(

We set t0 (the minimal return time) to 7 days in line
with current practice, and fit λ (the exponential rate
parameter) and K (the asymptote limiting donor return)
to the empiric donor return data using maximum likeli-
hood estimation. As before, we used separate distribu-
tions for the second, third, and fourth-or-greater
donations. To vary return time, we added a scaling factor
s as follows:

P tð Þ= sK 1−e−sλ t− t0ð Þ� �
, if t≥ t0

0, otherwise

(

This distribution leads to greater return when s > 1
and less donor return when s < 1. In sensitivity analysis,
we varied s from 0.5 to 2.25 only in the distribution for
second donations.

To assess the sensitivity of the total percent demand
unmet to each parameter in each state, we regressed each

parameter on the outcome using locally estimated
scatterplot smoothing (LOESS), a non-parametric regres-
sion model that produces smooth curves. We then
predicted the outcome at the 1st, 25th, 50th, 75th, and
99th percentile of each input. We assessed the degree to
which the predicted outcome changed depending on the
quantile of parameter used to predict it, an indication of
how sensitive the ability to meet demand was to the
parameter (or how important the parameter was). We
developed an easy-to-use web-based modeling tool, avail-
able at https://vitalantri.shinyapps.io/ccp_model. All
code is open source and publicly available.11

3 | RESULTS

Across states, increases in collection capacity utilization
lagged behind increases in COVID-19 patient discharge
by 2 weeks, reflecting the delay in donor eligibility
(Figure 1). In periods when discharges fell sharply, col-
lections capacity utilization fell more gradually. In more
than 50% of simulations across all states, percent collec-
tion capacity utilized never exceeded 75% of available
machine time, indicating that fully utilizing available col-
lection capacity may be an important challenge.

In most simulations, states met most of the demand
during most of the period despite relatively low capacity
utilization (Figure 2). Demand was more likely to go
unmet during early increases in hospitalizations, particu-
larly in states with very steep hospitalization increases
(e.g., New York). Most of the demand was met in most
simulation for states with more gradual increases
(e.g., Virginia and California). In states with two epi-
demic peaks (e.g., Louisiana, Indiana) demand was
mostly met during the second wave using inventory
stockpiled during the downswing from the first peak
(Figure S2 shows inventory over time by state).

The sensitivity of percent demand unmet to uncertain
parameters is plotted in Figure 3 for four states and in
Figure S3 for the other states. Apheresis machine capac-
ity was a strong determinant of the percent demand
unmet. Given that we assumed recruitment capacity was
proportional to the number of machines, some of that
benefit could be attributed to increased donor recruit-
ment. Both the fraction of hospitalized patients requiring
CCP and the number of units transfused per patient were
more important parameters than the delay from admis-
sion to CCP administration. The scale multiplier on
donor return did not substantially impact ability to meet
demand. In most states, the probability COVID-19 recov-
ered individuals were willing to donate was the most
important donor-related parameter. However, the daily
donor recruitment capacity was more important in
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New York and New Jersey. Both these states experienced
very early, steep epidemic trajectories that yielded many
potential CCP donors, which may explain why capacity
to recruit was a more important parameter than

willingness to donate. In a scenario analysis, we found
that if inventory were shared across all states (as it is in
reality), the median percent of demand unmet over the
simulation period dropped from 27% to 16% (Figure S4).
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FIGURE 2 Percent of CCP demand unmet each day of the simulation period by state. The median of the percent demand unmet across

10,000 simulations is shown by a black line. The epidemic trajectory is indicated by a red line that shows how many patients were

discharged each day relative to the number discharged at the epidemic peak for each state. The 60th, 70th, 80th, and 90th percentiles of the

percent demand unmet are also indicated for each day of the simulation period by the boundaries between colored regions [Color figure can

be viewed at wileyonlinelibrary.com]
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FIGURE 1 Percent of available collections capacity used each day of the simulation period by state. The median of the percent

collections capacity used across 10,000 simulations is shown by a black line. The epidemic trajectory is indicated by a red line that

shows how many patients were discharged each day relative to the number discharged at the epidemic peak for each state. The

60th, 70th, 80th, and 90th percentiles of the percent collections capacity used are also indicated for each day of the simulation

period by the boundaries between colored regions [Color figure can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

Our analysis showed that epidemic trajectory was a key
driver of ability to meet CCP demand. While donor willing-
ness to return was not a driver of outcomes in our simula-
tions, the percentage of donors deferred or unwilling to
return increased to very high levels over the simulation
period in all states (Figure S5), indicating that it could be
important over a longer time horizon and when insufficient
CCP donors are recruited during initial epidemic peaks.

Unexpectedly, our analysis suggests that blood centers
may struggle to fully utilize capacity and meet demand for
CCP collections, particularly during rapid increases in the
epidemic. In periods when demand is not quickly growing,
blood centers can likely meet demand even when capacity
utilization is fairly low. While ability to meet demand was
sensitive to several parameters, epidemic trajectory was
most important (Figure S6). Our simulations also demon-
strated that having inventory on hand before an increase in
demand greatly increased ability to meet demand.

The evidence base for CCP, and both operational
practices and regulatory policies are evolving rapidly.
Our simulations were largely informed by the experience

of one large blood collector, which may differ from that
of other blood collectors. We also assumed donors would
not return after 180 days due to uncertainty around anti-
body waning. This assumption had minimal impact on
our analysis because we only modeled a 200-day period
starting with the first COVID-19 patient discharge in
each state. However, antibody waning and longer-term
donor return behavior are increasingly important consid-
erations as the pandemic progresses and in the context of
regulatory requirements to label CCP products as high or
low titer. We further assumed an early start to and stable
efforts in recruitment and collection, rather than a grad-
ual ramp-up. Despite these limitations, our analysis
reveals key drivers of the ability to utilize capacity and
meet demand for CCP during an epidemic.

ACKNOWLEDGMENTS
The authors thank the many Vitalant team members
who provided expertise and data that informed model
development. The authors also thank the COVID Act
Now team for developing the epidemic model used for
this analysis (http://covidactnow.org/). This work was
funded by Vitalant.

CA MD MS NY

C
a
p
a
c
ity

D
e
m

a
n
d

D
o
n
o
rs

20%40%60% 20%40%60% 20%40%60% 20%40%60%

Machines per million
population (4 − 55)

CCP units per patient
(1.5 to 4)

Delay from admit to CCP
(1 to 5)

Prob. patient requires CCP
(10% − 45%)

Donor return multiplier
(0.5 − 2.25)

Max. donors recruited
per machine per day (0.2 − 2.0)

Prob. willing to donate
(10% − 90%)

Total % demand unmet

Quantile

1%

25%

50%

75%

99%

FIGURE 3 Sensitivity of the total percent demand unmet over the simulation period to changes in seven parameters. Regression was

used to estimate how changing a single parameter from the 1st to 99th quantile of the values it took across the 10,000 simulations would

change the total percent demand unmet. Greater distance between plotted points indicates that ability to meet demand was more sensitive to

changes in the indicated parameter. Four states selected to represent a diverse set of epidemic trajectories are shown here; the remaining

seven states are shown in Figure S2 [Color figure can be viewed at wileyonlinelibrary.com]

1374 RUSSELL ET AL.

http://covidactnow.org/
http://wileyonlinelibrary.com


CONFLICT OF INTEREST
W.A.R. and B.C. have provided consulting services out-
side the submitted work for Terumo BCT, a manufac-
turer of apheresis equipment.

ETHICS/CONSENT
No human subjects or identifiable data were involved in
this analysis.

DATA AND MATERIALS
We have shared all data in a public repository except for
the individual donor return data.

CODE AVAILABILITY
We have shared all code in a public repository (https://
doi.org/10.5281/zenodo.4082755).

AUTHORS' CONTRIBUTIONS
All authors developed the research question and methods
and critically reviewed the manuscript. All authors iden-
tified sources and obtained data for the model. E.G. and
W.A.R. conducted the analysis (E.G. led development of
the donor microsimulation and W.A.R. led development
of the policy analysis) and wrote the manuscript.
B.C. provided critical review of the manuscript.

ORCID
W. Alton Russell https://orcid.org/0000-0003-1780-4470
Eduard Grebe https://orcid.org/0000-0001-7046-7245
Brian Custer https://orcid.org/0000-0001-6251-366X

REFERENCES
1. World Health Organization. WHO Coronavirus Disease

(COVID-19) Dashboard. 2020. [cited 2020 Oct 12]. Available
from: https://covid19.who.int/.

2. Ko JH, Seok H, Cho SY, Eun Ha Y, Baek JY, Kim SH, et al.
Challenges of convalescent plasma infusion therapy in middle
east respiratory coronavirus infection: A single centre experi-
ence. Antivir Ther. 2018;23(7):617–22. https://doi.org/10.3851/
IMP3243.

3. Yeh KM, Chiueh TS, Siu LK, Lin JC, Chan PKS, Peng MY,
et al. Experience of using convalescent plasma for severe acute
respiratory syndrome among healthcare workers in a Taiwan
hospital. J Antimicrob Chemother. 2005;56(5):919–22. https://
doi.org/10.1093/jac/dki346.

4. Joyner MJ, Bruno KA, Klassen SA, Kunze KL, Johnson PW,
Lesser ER, et al. Safety update: COVID-19 convalescent plasma
in 20,000 hospitalized patients. Mayo Clin Proc. 2020;95(9):
1888–97. https://doi.org/10.1016/j.mayocp.2020.06.028.

5. Klassen SA, Senefeld JW, Johnson PW, Carter RE, Wiggins CC,
Shoham S, et al. Evidence favoring the efficacy of convalescent
plasma for COVID-19 therapy. medRxiv. 2020;2020.07.29.20162917.
https://doi.org/10.1101/2020.07.29.20162917.

6. Simonovich VA, Burgos Pratx LD, Scibona P, Beruto MV,
Vallone MG, Vázquez C, et al. A randomized trial of

convalescent plasma in COVID-19 severe pneumonia. N Engl J
Med. 2020. https://doi.org/10.1056/NEJMoa2031304.

7. Agarwal A, Mukherjee A, Kumar G, Chatterjee P, Bhatnagar T,
Malhotra P. Convalescent plasma in the management of mod-
erate COVID-19 in adults in India: Open label phase II multi-
centre randomised controlled trial (PLACID trial). BMJ. 2020;
371:m3939. https://doi.org/10.1136/bmj.m3939.

8. COVID Act Now. COVID Act Now API 2020. [cited 2020 Sept
8]. Available from: https://covidactnow.org/resources#api.

9. Budhai A, Wu AA, Hall L, Strauss D, Paradiso S, Alberigo J, et al.
How did we rapidly implement a convalescent plasma program?
Transfusion. 2020;60(7):1348–55. https://doi.org/10.1111/trf.15910.

10. Perreault J, Tremblay T, Fournier M-J, Drouin M, Beaudoin-
Bussières G, Prévost J, et al. Waning of SARS-CoV-2 RBD anti-
bodies in longitudinal convalescent plasma samples within four
months after symptom onset. Blood. 2020;136(22):2588–91.
https://doi.org/10.1182/blood.2020008367.

11. Grebe E, Russell WA, Custer B. COVID-19 convalescent plasma
model. Zenodo. 2020. https://doi.org/10.5281/zenodo.4082755.

SUPPORTING INFORMATION
Additional supporting information may be found online in
the Supporting Information section at the end of this article.

How to cite this article: Russell WA, Grebe E,
Custer B. Factors driving availability of COVID-19
convalescent plasma: Insights from a demand,
production, and supply model. Transfusion. 2021;
61:1370–1376. https://doi.org/10.1111/trf.16317

APPENDIX

Eduard Grebe, W. Alton Russell, Brian Custer

PROCEDURE FOR ESTIMATING DAILY
HOSPITAL ADMISSIONS AND DISCHARGES
FROM COVID ACT NOW MODEL OUTPUT

Our microsimulation model of the donor recruitment
and collection process relies on a virtual cohort of poten-
tial CCP donors. At each time step, new agents are cre-
ated equal to the estimated number of individuals
discharged from hospital after recovery from severe
COVID-19. Our production and supply model relies on
the estimated number of new ICU admissions by day. We
estimated the number of discharges from hospital and
admissions to ICU from the output of state-level SEIR
epidemic models published by ‘COVID Act Now’.

The published ‘COVID Act Now’ model output time
series do not include new recoveries or hospital
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admissions and discharges. However, these can be esti-
mated from the variables that are provided:

• cumulativeDeaths (cDt)
• cumulativeInfected (cIt)
• currentInfected (It)
• currentSusceptible (St)
• currentExposed (Et)
• hospitalBedsRequired (Ht)

Given the following identities:

It+1 = It + infectionst−recoveriest−deathst
cIt+1 = cIt + infectionst
cDt+1 = cDt +deathst

we can obtain the number of recoveries at each timestep
by rearranging and substituting:

recoveriest = It−It+1 + infectionst−deathst
= It−It+1 + cIt+1−cIt½ �− cDt+1−cDt½ �
= It−It+1 + cIt+1−cIt−cDt+1 + cDt

By assuming that the proportion of recoveries that
represent discharges from hospital is equal to the propor-
tion of infected individuals that are hospitalized, we can
obtain the number of discharges from hospital by day:

dischargest = recoveriest �Ht

It

Once we have estimated the number of discharges by
day, we are able to obtain the number of new hospital
admissions by day:

Ht+1 =Ht−dischargest−deathst +admissionst
admissionst =Ht+1−Ht +dischargest +deathst

To estimate the number of ICU admissions by day,
we assumed that:

• a certain proportion of patients hospitalized with
COVID-19 never require critical care

• a certain proportion are admitted directly to the
ICU (pd)

• a certain proportion are stepped up to critical care (ps)
after a certain time (τ) in standard care

We assumed pd = 0.04 and ps = 0.12, which are similar
to observed values in hospitalization data from Québec,
Canada (based on data in the “MED-ECHO” system owned
by the Ministère de la Santé et des Services sociaux). The
distribution of times from admission to care step-up has a
long tail, but the vast majority of patients who are stepped
up to critical care are admitted to the ICU in the first few
days after hospitalization, with a median delay of 2 days
(τ = 2). For the purposes of estimating ICU admissions by
day we used the median value.

ICUadmissionst = pd �admissionst + ps �admissionst−τ
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