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Aims: Curved M-mode images of global strain (GS) and strain rate (GSR) provide

sufficiently detailed spatiotemporal information of deformation mechanics. This study

investigated whether a deep convolutional neural network (CNN) could accurately classify

these images in patients with atrial fibrillation (AF) who underwent radiofrequency catheter

ablation (RFCA) with different outcomes.

Methods and Results: We retrospectively evaluated 606 consecutive patients who

underwent RFCA for drug-refractory AF. Patients were divided into AF-free (n = 443)

and AF-recurrent (n = 163) groups. Transthoracic echocardiography was performed

within 24 h after RFCA. Left atrial curved M-mode speckle-tracking images were

acquired from randomly selected 163 patients in AF-free group and 163 patients in

AF-recurrent group as the dataset for deep CNN modeling. We used the ReLu activation

function and repeatedly performed CNN model for 32 times to evaluate the stability

of hyperparameters. Logistic regression models with the left atrial dimension, emptying

fraction, and peak systolic GS as predictor variables were used for comparisons. Images

from the apical 2-chamber (2-C) and 4-chamber (4-C) views had distinct features, leading

to different CNN performance between settings; of them, the “4-C GS+4-C GSR” setting

provided the highest performance index values. All four predictor variables used for

logistic regression modeling were significant; however, none of them, individually or in

any combined form, could outperform the optimal CNN model.

Conclusion: The novel approach using deep CNNs for learning features of left atrial

curved M-mode speckle-tracking images seems to be optimal for classifying outcome

status after AF ablation.

Keywords: atrial fibrillation, deep convolutional neural network, radiofrequency ablation, speckle tracking

longitudinal strain, recurrence
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INTRODUCTION

Speckle-tracking echocardiography (STE) is an imaging modality
for analyzing and tracking small segments of the myocardium
to provide greater detail for assessing global and regional
cardiac motion and function. Recently, STE has been applied
for assessing left atrial (LA) function, and has been proven
to be superior to LA size as a predictor of atrial fibrillation
(AF) recurrence after radiofrequency catheter ablation (RFCA)
(1–3). LA longitudinal global strain (GS) and GS rate (GSR)
are usually determined based on the average of six segmental
values per view. Inaba et al. reported that the mean peak
systolic GSR was significantly lower in patients with persistent
AF than in age-matched controls (4). In addition to reduced
LA deformation, LA mechanical dispersion is also pronounced
in AF patients, accessed by calculating the standard deviations
of segmental GS and GSR values (5). Alternatively, the curved
M-mode color images of GS and GSR provide detailed
spatiotemporal information of LA deformation mechanics.
However, using visual estimation to precisely differentiate these
images in challenging.

Deep learning, a class of machine-learning algorithms using
multiple layers to progressively extract higher level features
from raw input, has become a powerful method of classifying
several diseases (6). Through model training, convolutional
neural network (CNN) can interpret and analyze various features
within a dataset and use them to learn how to generate an output
label. CNNs have proven successful in learning patterns in images
to aid experts in image-based diagnosis and classification (7).
In the present study, we (a) assessed whether supervised deep
learning with CNNs can be used to analyze curved M-mode STE
images in patients with AF who have undergone RFCA and (b)
analyzed whether the predictions of a deep CNNmodel are better
than those of conventional logistic regressionmodels with the LA
dimension (LAD), emptying fraction (LAEF), apical 2-chamber
peak systolic GS (2-C GS), and 4-chamber peak systolic GS (4-C
GS) as predictor parameters.

MATERIALS AND METHODS

Study Population
In this study, we retrospectively evaluated 606 consecutive AF
patients (462 paroxysmal AF) who had undergone RFCA for
symptomatic AF refractory to antiarrhythmic drugs between
July 2008 and July 2019 at our institution. We obtained the
detailed medical history of all patients regarding AF and related
cardiovascular and systemic conditions. On the basis of the
outcomes of AF ablation, we divided patients into the following
two groups: Group 1, no AF recurrence with no antiarrhythmic
drugs (n = 443, 73.1%) and Group 2, including both recurrence
of atrial tachyarrhythmia responsive to antiarrhythmic drugs
(n = 93, 15.3%) or refractory to antiarrhythmic drugs (n =

70, 11.6%). The Institutional Review Board of Chang Gung
Memorial Hospital approved the study protocol (IRB No.
202000829B0), and written informed consent was obtained from
all patients.

Electrophysiological Study and RFCA
AF ablation was performed using a three-dimensional
electroanatomical mapping system (CARTO, Biosense Webster,
Diamond Bar, CA, USA) as previously reported (8). Briefly,
all patients underwent RFCA under endotracheal intubation
and general anesthesia. A 3.5-mm open-tip irrigated catheter
(NaviStar Thermo-Cool, Biosense Webster) was percutaneously
introduced through the right femoral vein for mapping and
ablation. Circumferential pulmonary vein antral isolation with
confirmation of entrance block was verified in all patients. If
AF persisted or left atrial flutter occurred after pulmonary vein
isolation, additional LA linear ablation was performed at the
operator’s discretion. External cardioversion was performed
to restore sinus rhythm if RFCA failed to convert AF. Non-
pulmonary vein triggers that reinitiated AF were ablated
as necessary.

Echocardiography
Patients underwent transthoracic echocardiography within 24 h
after ablation. All patients were in sinus rhythm during
echocardiography. Two-dimensional (2-D) echocardiography
was performed using a commercially available ultrasonography
machine (Vivid 9, General Electric Medical Health, Waukesha,
WI, USA) with a 2.5-MHz phased-array transducer. All
echocardiographic measurements were obtained in accordance
with the guidelines of the American Society of Echocardiography
(9). The 2-D LA volumewasmeasured from the apical 4-chamber
(4-C) view. LAEF was determined as the difference between the
maximum LA volume in ventricular systole and the minimum
LA volume in ventricular diastole, divided by the maximum LA
volume (10).

STE images of the left atrium obtained in apical 4-C and
2-chamber (2-C) views with a frame rate between 60 and
100 frames/s were captured and stored digitally for offline
analysis of LA GS and GSR (EchoPac PC, GE Vingmed, Horton,
Norway). Special care was taken during echocardiographic
image acquisition to ensure adequate LA tracking and avoid
interference with the pulmonary veins and LA appendage to
measure LA GS and GSR. The endocardium of the LA wall was
manually traced starting from the medial/septal to the lateral
mitral annulus in the apical 4-C view and inferior to anterior
mitral annulus in the apical 2-C view, and was tracked by the
2-D speckle-tracking software along the border (Figure 1A). The
operator manually adjusted segments that were not tracked.
STE determined regional changes in length and was expressed
as a positive value for lengthening or as a negative value for
shortening. LA peak longitudinal systolic GS was assessed as the
average of six segmental values per view.

The curvedM-mode images of GS and GSR in both apical 4-C
and 2-C views were also generated using the software, providing a
unidimensional view of GS and GSR which illustrated the change
in length and the change in strain/sec of the depicted LA wall
along the time axis, respectively (Figures 1B,C). CurvedM-mode
STE images represented the cyclic changes of strain and strain
rate at the region of interest along the time axis, starting from the
end of the T wave (conduit phase) to the contraction phase and
then the reservoir phase.
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FIGURE 1 | Examples of 2-D speckle-tracking echocardiography in two groups. (A) Echocardiograms of the apical 4-chamber view depicted the region of interest

generated using speckle-tracking echocardiography software. The depicted left atrial wall was divided into six segments marked by different color. GS = −13.3%

indicates peak systolic left atrial global strain = −13.3%. (B) Above: the longitudinal strain curves of six segments with different color labeled in (A); below: curved

M-mode strain image representing the cyclic changes of strain at the region of interest along the time axis. Blue indicates positive values and red indicates negative

values. The yellow lines separate the image into six portions labeled in (A). Red triangles indicate the period of recording, which started at the end of the T wave

(conduit phase), followed by the contraction phase. (C) Examples of curved M-mode strain (left) and strain rate (right) images obtained from apical 4-chamber and

2-chamber views in two groups, including paroxysmal atrial fibrillation (PAF) and non-PAF patients. Images in Group 1 show deeper red in the contraction phase and

more homogeneous pattern of color distribution, indicating a better mechanical deformation and synchrony of the left atrium than those in Group 2.

Intraclass correlation coefficients were calculated to quantify
the intra-observer and inter-observer variability of GS in
48 randomly selected patients, measured first by the same
investigator on two separate occasions for intra-observer
variability, and then by two independent investigators for inter-
observe variability. The two investigators were blinded to each
other’s measurements and the outcome status of AF ablation.
Repeat measurement was made at the same cardiac cycle of the
same image for each patient to avoid inherent variability caused
by different cycle lengths.

Follow-Up and Definition
Patients were followed up at 1 week, 1 month, 3 months, 6
months and every 3–6 months after RFCA and whenever
required due to AF symptoms. Twelve-lead electrocardiograms
and 24-h Holter ambulatory electrocardiograms were
recorded after RFCA and when the patient experienced
palpitation symptoms. Recurrence was defined as typical
palpitation episodes for >30 s or atrial tachyarrhythmia
on a 12-lead electrocardiogram, Holter monitoring, or
pacemaker/implantable cardioverter-defibrillator interrogation
records. Repeat RFCA as well as continuation of a previously

ineffective antiarrhythmic drug were suggested to patients with
AF recurrence.

Processing of Data Import
The curved M-mode RGB images of GS and GSR were extracted
and standardized into portable network graphic images of 120×
120 pixel. Because the classification ability was unclear, we used
four combinations of the curved M-mode GS and GSR images:
2-C GS+ 4-C GS (2S+4S), 2-C GSR+ 4-C GSR (2SR+4SR), 4-C
GS + 4-C GSR (4S+4SR), and 2-C GS + 2-C GSR (2S+2SR).
Because of an imbalanced feature of the study sample, images
from 163 randomly selected patients from Group 1 and 163
patients from Group 2 were used. In each replicate, 80% of the
patient data were randomly selected as training data and the
remaining were treated as testing data. The process of selecting
the study samples is illustrated in Figure 2A.

Architecture of the CNN
The CNN was then used to classify the subjects. As shown
in Figure 2B, the CNN architecture was set to have an input
layer, K sets of convolutional layer and max-pooling layer
(feature maps), one flatten layer, M fully connected layers,
and an output layer. For stable performance of the CNN
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FIGURE 2 | Import data and convolutional neural network (CNN) flow chart. (A) There was a total of 326 cases from which were split with 208 cases as the training

set, 52 cases as the validation set, and 66 cases as the test set in building the CNN model. (B) Architecture of the final CNN model. 2S, apical 2-chamber strain map;

2SR, apical 2-chamber strain rate map; 4S, apical 4-chamber strain map; 4SR, apical 4-chamber strain rate map.

model, the hyperparameters in the convolutional layer and
K were determined dynamically (11). The 2-D convolutional
layer built in Keras was used to construct the feature maps
of the images (12). The hyperparameters in the convolutional
layer included filter size, kernel size, stride, and padding.
These parameters were determined dynamically among the
parameter settings given in Table 1. We used the ReLu
activation function for the CNN model. To determine the
stability of the hyperparameters, the CNN model was performed
repeatedly for 32 times. The decision on the final setting
for the hyperparameters was based on the variability of
the accuracy from 32 runs. The optimizer used the Adam
algorithm with a learning rate set to 0.001 (13). CNNs were
implemented using TensorFlow version 2.0 (Google Brain,
273 Mountain View, CA, USA) and Keras version 2.2.4
software (GitHub, San Francisco, CA) using Python version
3.5 programming language (Python Software Foundation,
Beaverton, OR).

Statistical Methods
Numbers and percentages were used to summarize the basic
characteristics of the study sample. Two independent-sample
t-tests were conducted to evaluate the association between
continuous covariates and groups. A chi-square test was
performed to assess the association between discrete covariates
and groups. Logistic regression models were used to access the
predictive power for group classification. The predictor variables
included LAD, LAEF, 2-C GS, and 4-C GS. To understand
the predictive power of these variables, seven settings were
considered, including four individual predictors, LAEF+LAD,
2-C GS+4-C GS, and all four variables. Logistic regression
models were constructed using the same selected subjects for
training and testing the CNN model. The model was performed
using SAS (Version 9.4, SAS Institute Inc., Cary, NC, USA).

The diagnostic performance of the CNN and the logistic
regression models were evaluated using the confusion matrix
and the area under the receiver operating characteristic curve
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TABLE 1 | Clinical and echocardiographic data of the study groups.

Group 1 (n = 443) Group 2 (n = 163) P-value

Age (year) 58 ± 11 61 ± 13 0.002

Gender (male, %) 317 (71.6%) 92 (56.4%) 0.001

BMI 25.3 ± 3.5 25.6 ± 3.8 0.360

Paroxysmal (%) 384 (86.7%) 78 (47.9%) <0.001

AFD (year) 3.2 ± 3.0 4.3 ± 3.7 <0.001

Hypertension (%) 212 (47.9%) 88 (54.0%) 0.200

Diabetes mellitus (%) 73 (16.5%) 28(17.2%) 0.902

Dyslipidemia (%) 125 (28.2%) 62 (38.0%) 0.023

CAD (%) 22 (5.0%) 14 (8.6%) 0.119

Stroke (%) 22 (5.0%) 26 (16.0%) <0.001

ESRD (%) 17 (3.8%) 14 (8.6%) 0.023

RHD (%) 3 (0.7%) 16 (9.8%) <0.001

SSS (%) 41 (9.3%) 30 (18.4%) <0.001

RFCA times 1.3 ± 0.6 1.6 ± 0.8 <0.001

Echocardiographic data

LAD (mm) 40.34 ± 5.69 46.46 ± 7.39 <0.001

LAEF (%) 55.03 ± 9.99 38.78 ± 13.82 <0.001

LVEF (%) 67.22 ± 6.04 −13.13 ± 6.84 <0.001

MR degree <0.001

No 94 (21.2%) 12 (7.4%)

Mild 273 (61.6%) 75 (46.0%)

Mild to moderate 76 (17.2%) 76 (46.6%)

2-C GS (%) −19.34 ± 6.60 −13.13 ± 6.84 <0.001

4-C GS (%) −20.79 ± 38.40 −12.50 ± 6.05 0.005

AFD, atrial fibrillation duration; BMI, body-mass index; CAD, coronary artery disease;

ESRD, end-stage renal disease; LAD, left atrial dimension; LAEF, left atrial emptying

fraction; LVEF, left ventricular ejection fraction; MR, mitral regurgitation; RFCA,

radiofrequency catheter ablation; RHD, rheumatic heart disease; SSS, sick sinus

syndrome; 2-C GS, apical 2-chamber peak systolic global strain; 4-C GS, apical

4-chamber peak systolic global strain.

(AUC) (14). The confusion matrix was constructed using a cutoff
value of 0.5 and used to compute sensitivity, specificity, and
accuracy. For the CNN model, the box chart was used to display
the sampling distribution of the performance indices for 32 runs.
Furthermore, because of the relatively small sample used, the final
performance of the CNN model was determined by combining
the results from 32 runs, which was also used to illustrate the
ability of the source of images to predict abnormal status. The
index values were computed three ways. For each subject, an
abnormal status for one of the sources (i.e., “4S” or “4SR”) was
defined as when the average probability of an abnormal status
for 32 runs exceeded 0.5; for two subjects, an abnormal status
for two sources (i.e., “4S+4SR”) was defined as when the average
probability of an abnormal status for 64 runs exceeded 0.5.

RESULTS

Table 1 summarizes patients’ baseline clinical characteristics.
Group 1 patients were significantly younger than Group 2
patients. The proportions of men and paroxysmal AF were
higher in Group 1. Group 1 also exhibited lower percentages

of dyslipidemia, stroke, end-stage renal disease, rheumatic heart
disease, and sick sinus syndrome; shorter AF duration; and fewer
RFCAs. The echocardiographic data showed all four predictor
variables used for logistic regression modeling were significant.
Compared with Group 2, Group 1 demonstrated significantly
smaller LAD, better LAEF, and more negative values of 2-C GS
and 4-C GS.

There was excellent reproducibility of GS analysis. For
intra-observer variability, the mean difference and intraclass
correlation coefficient were 0.88 and 98.5%, respectively, for
4-C GS and 0.81 and 98.8%, respectively, for 2-C GS. For
inter-observer variability, the mean difference and intraclass
correlation coefficient were 1.30 and 97.0%, respectively, for 4-C
GS and 0.99 and 98.6%, respectively, for 2-C GS.

Logistic Regression Models
Table 2 lists the model estimates of the logistic regression
models. When only one predictor variable was included, all four
variables were significantly associated with outcome status after
AF ablation (Table 2A). Table 2B presents the estimates of the
logistic regressionmodels whenmore than one predictor variable
was included. Both LAD and LAEF were significant when they
coexisted in the model. When 2-C GS and 4-C GS were included,
2-C GS became less important. When all four predictor variables
were controlled for, 2-C GS and 4-C GS became non-significant,
whereas LAD was only significant at P = 0.046. Overall, LAEF
was the most influential variable for predicting outcome status
after AF ablation using logistic regression.

Performance Indices of CNN Models on
Assessing Curved M-Mode STE Images
The final settings for the hyperparameters are given in the last
column of Table 3. The performance of classification algorithms
was evaluated by computing the AUC, accuracy, specificity,
and sensitivity. Figure 3 presents the box plot for the index
values of 32 runs for the training and testing samples for four
image settings, and the summarized results of statistics for all
the performance indices were shown in Supplementary Table 1.
Under the selected hyperparameters, the AUC derived from the
training sample and testing sample was more than 0.8 for 2S+4S,
2SR+4SR, and 4S+4SR (the AUC derived from the testing
sample for 2S+2SR was <0.8). The accuracy for 4S+4SR was
more than 0.8, whereas that for 2S+4S and 2SR+4SR was lower
than 0.8. The sensitivity and specificity derived from 4S+4SR
were also higher than those for the other image settings. Overall,
4S+4SR had the best performance, whereas that of 2S+2SR was
low when the testing sample was used.

Table 4 presents the performance index values constructed by
combining the results obtained from 32 runs. For each type, the
performance indices were constructed based on three sources of
data. For example, for 2S+4S, the performance index values were
computed using results obtained individually from 2S and 4S and
then computed with the 2S+4S results. For the 2S+4S setting, the
performance index values computed from the results obtained
using 4S images were much higher than those using 2S images
for the testing sample. Moreover, the accuracy and specificity
computed from the results obtained using 4S images were slightly
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TABLE 2A | Estimates for the logistic regression models with only one predicting variable.

LAD LAEF 2-C GS 4-C GS

Variables Estimate SE P Estimate SE P Estimate SE P Estimate SE P

Intercept −6.07 0.99 <0.001 4.49 0.63 <0.001 2.34 0.39 <0.001 2.79 0.43 <0.001

LAD 0.14 0.02 <0.001

LAEF −0.10 0.01 <0.001

2-C GS 0.14 0.02 <0.001

4-C GS 0.17 0.03 <0.001

TABLE 2B | Estimates for the logistic regression models with more than one predicting variables.

LAEF + LAD 2-C GS + 4-C GS LAEF + LAD + 2-C GS + 4-C GS

Variable Estimate SE P Estimate SE P Estimate SE P

Intercept 0.43 1.50 0.774 2.98 0.44 <0.001 1.76 1.61 0.273

LAD 0.07 0.03 0.004 0.05 0.03 0.046

LAEF −0.08 0.01 <0.001 −0.06 0.02 <0.001

2-C GS 0.05 0.03 0.076 0.01 0.03 0.700

4-C GS 0.13 0.03 <0.001 0.07 0.04 0.083

LAD, left atrial dimension; LAEF, left atrial emptying fraction; SE, standard error; 2-C GS, apical 2-chamber peak systolic global strain; 4-C GS, apical 4-chamber peak systolic global strain.

higher than those using 2S+4S for the testing sample. Similarly,
for the 2SR+4SR setting, the performance index values computed
from the results obtained using 4SR were much higher than those
using 2SR for the testing sample. That is, distinct features were
observed for images from apical 2-C and 4-C views. Furthermore,
the performance index values computed from 4S+4SR were
much higher than that from 2S+2SR.

Comparisons of Model Performance
Table 5 provides the performance index values for all models.
The CNNmodel using 4S+4SR images had the best performance,
surpassing the logistic regression model using four predicting
variables in terms of accuracy and sensitivity. The third best
performance was achieved by the CNNmodel when using 2S+4S
or 2SR+4SR images. The logistic regression model based on
LAEF had similar sensitivity and specificity, whereas the one
based on 2-C GS+4-C GS had similarly higher sensitivity but
lower specificity.

DISCUSSION

The main finding of this study is that a deep CNN based on
curved M-mode STE images (4S+4SR) achieved the highest
prediction accuracy, sensitivity, and specificity compared with
logistic regression models using LAEF, LAD, 2-C GS, or 4-C
GS, individually or combined, as predictor parameters to assess
outcome status after AF ablation.

STE Imaging and CNN Models
Analysis of LA function is essential for the evaluation of patients
with AF, and STE allows identifying those patients who are prone
to develop AF and is a marker of LA fibrosis (15). Quantification
of LA function using STE images enables evaluation of LA

dysfunction due to AF (4), and is able to predict rhythm
outcomes after AF ablation (16). A meta-analysis by Ma et al.
indicated that LA STE images can facilitate the identification
of patients with a high risk of AF recurrence in patients with
paroxysmal AF, with a weighted mean AUC of 0.798 (17). STE
is a sensitive tool to measure ultrastructural changes that affect
LA mechanics before LA enlargement. LA deformation capacity
measurement by STE provides a comprehensive assessment of
atrial function and is more helpful for identifying abnormal atrial
substrate than conventional echocardiographic variables, thus
helping in the prediction of post-RFCA AF recurrence in both
paroxysmal and persistent AF patients (18).

Furthermore, Sarvari et al. reported that inhomogeneous
timing of LA contraction is potentially a predictor of AF
recurrence after ablation (5). The segmental dysfunction
corresponds to the LA substrate, and LA mechanical and
electrical dysfunction coexist in the early phase prior to LA
enlargement (19). STE can accurately assess regional myocardial
function and timing. Chao et al. reported that applying artificial
intelligence algorithms to the STE radial strain of the left
ventricle can assist in identifying cardiac resynchronization
therapy responders (20). They used complex mathematical
methods to compute the difference and standard deviation of
time to peak stain detected in each of the six regional strain
curves and to convert two strain curves on two ventricular
walls into a sequence of phase-space points (a total of 15
pairs) for phase space reconstruction. The authors applied a
support vectormachine using peak-strain timing and phase space
reconstruction as parameters to build classifiers with an average
accuracy, sensitivity, and specificity of >90%. For the left atrium,
because the GSR curves include three peaks [strain rate during
systole (SR-S), early diastole (SR-E), and atrial contraction (SR-
AC)] to assess LA reservoir, conduit, and contractile function,
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TABLE 3 | Parameter ranges for the hyperparameters in the convolutional layers.

Layer Hyper-parameters Ranges for parameter Final settings

Convolution Filter 16, 32, 64, 80, 95, 100, 105, 110, 128, 150, 256 32

Kernel size 2, 3, 4, 5, 8, 10, 12 3

Stride 1, 2, 3, 4, 5 2

Dropout rate 0.25, 0.35, 0.4, 0.5 0.5

K 1, 2, 3, 4 3

Max-polling Kernel 2 (default) 2

Stride 2 (default) 2

Dropout rate 0.25, 0.3, 0.4, 0.5 0.5

Fully connection Neuron (m) 128, 256, 512, 1,024 512

M 1, 2 1

FIGURE 3 | Comparisons of performance index values for 32 runs for four parameter settings. The 4S+4SR setting yielded the largest area under the receiver

operating characteristic curve, accuracy, sensitivity, and specificity scores during training and testing. 2S, apical 2-chamber strain map; 2SR, apical 2-chamber strain

rate map; 4S, apical 4-chamber strain map; 4SR, apical 4-chamber strain rate map.

it would be much complicated to apply artificial intelligence
algorithms on the LA GS and GSR curves to build classifiers for
patients post-AF ablation with different rhythm outcomes.

Alternatively, the spatiotemporal information of deformation
can be displayed in curved M-mode RGB images of GS and
GSR, on which red or blue, deep or light, and patterns of
color distribution provide information of the direction, strength,

and homogenization of LA deformation properties, respectively.
These images can be useful for assessing LA function. However,
these images have not been widely used clinically because visual
assessment is inherently subjective and prone to classification
error. Artificial intelligence in cardiac imaging is a fast-moving
field (21), and deep learning is a form of machine learning
devised to mimic the way the visual system works (22). Deep
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TABLE 4 | Performance index values constructed from combining 32 runs.

Train Test

Image settings Source Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

2S+4S 2S 86.19 83.21 89.31 72.06 73.53 70.59

4S 83.58 86.13 80.92 82.35 82.35 82.35

2S+4S 88.81 89.05 88.55 80.88 85.29 76.47

2SR+4SR 2SR 83.21 81.75 84.73 72.06 76.47 67.65

4SR 82.84 84.67 80.92 79.41 82.35 76.47

2SR+4SR 87.69 86.86 88.55 82.35 85.29 79.41

4S+4SR 4S 94.40 92.70 96.18 85.29 88.24 82.35

4SR 94.40 92.70 96.18 85.29 88.24 82.35

4S+4SR 94.40 92.70 96.18 85.29 88.24 82.35

2S+2SR 2S 95.90 94.89 96.95 69.12 70.59 67.65

2SR 95.90 94.89 96.95 69.12 70.59 67.65

2S+2SR 95.90 94.89 96.95 69.12 70.59 67.65

2S, apical 2-chamber strain map; 2SR, apical 2-chamber strain rate map; 4S, apical 4-chamber strain map; 4SR, apical 4-chamber strain rate map.

TABLE 5 | Performance indices for all models.

Train Test

Model settings Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

C1: 2S+4S 88.81 89.05 88.55 80.88 85.29 76.47

C2: 2SR+4SR 87.69 86.86 88.55 82.35 85.29 79.41

C3: 4S+4SR 94.40 92.70 96.18 85.29 88.24 82.35

C4: 2S+2SR 95.90 94.89 96.95 69.12 70.59 67.65

M1: LAEF 76.12 74.45 77.86 79.41 79.41 79.41

M2: LAD 67.16 70.80 63.36 57.35 64.71 50.00

M3: 2-C GS 71.27 72.99 69.47 80.88 88.24 73.53

M4: 4-C GS 70.52 72.26 68.70 70.59 79.41 61.76

M5: LAEF+LAD 77.24 76.64 77.86 79.41 79.41 79.41

M6: 2-C GS+4-C GS 73.51 75.18 71.76 80.88 88.24 73.53

M7: LAEF+LAD+2-C GS+4-C GS 76.12 75.91 76.34 83.82 85.29 82.35

C, CNN model; M, logistic model; 2S, apical 2-chamber strain image; 2SR, apical 2-chamber strain rate image; 4S, apical 4-chamber strain image; 4SR, apical 4-chamber strain rate

image; LAD, left atrial dimension; LAEF, left atrial emptying fraction; 2-C GS, apical 2-chamber peak systolic global strain; 4-C GS, apical 4-chamber peak systolic global strain.

CNN models were reported to correctly classify all types of
echocardiogram recordings (M-mode, Doppler, still images,
and videos) (23). Our findings indicate that a deep CNN
can successfully incorporate spatiotemporal features from these
RGB images into an overall assessment of LA deformation
mechanics. This deep CNN model may also be applicable to
left ventricular studies for identifying cardiac resynchronization
therapy responders in patients with severe heart failure and left
bundle branch block.

Previously, we reported that LAEF provides the optimal
prognostic information regarding the risk stratification of AF
patients undergoing RFCA (10). In this study, we placed the P-
wave in the middle of the time axis by setting zero reference
at the end of the T-wave corresponding to the onset of mitral
valve opening for a better illustration of LA shortening on curved
M-mode images of GS. Because the LA wall is longest at this

point, LA strain values were negative, and a prominent red
color can be seen in the middle of the images. As shown in
Figure 1C, Group 1 had a deeper and more homogeneous red
color zone in the middle of the map than Group 2, indicating
more effective and synchronized LA shortening. Current strain
software packages usually provide an electrocardiogram trigger
as a zero reference, which is frequently situated at the upslope
of the R-wave as a surrogate for end-diastole or at the onset of
LA contraction. Both are the currently used methods reported in
the latest European standardization documents (24, 25). Because
the entire strain curve changes its amplitude depending on the
definition of zero reference, LA GS values obtained by setting
zero reference at the peak of the LA strain curve in this study
would be much smaller than those obtained by setting zero
reference at the nadir of the LA strain curve in the currently
used method.
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Logistic Regression Models and CNN
Models
By incorporating the spatiotemporal information of LA
deformation properties, this study demonstrated that the STE
image-based CNN model (4S+4SR) had the best performance
and surpassed even the logistic regression model using all
four parameters. It implies that mechanical synchrony and
empty fraction of the left atrium both are important predictors
of post-RFCA AF recurrence, and also demonstrates the
potential advantages of supervised deep learning with CNNs
for image classification tasks. Why the apical 4-C view-acquired
images provided better discriminating information than those
acquired through the apical 2-C view for CNNs is unclear.
A possible reason is that the apical 4-C view is the easiest
and most reproducible to perform. To increase feasibility,
the consensus of the European Association of Cardiovascular
Imaging/American Society of Echocardiography/Industry Task
Force to Standardize Deformation Imaging (24) recommends
that using the LA longitudinal strain values obtained from a
single non-foreshortened apical 4-C view is acceptable.

Tracing the LA outline manually is time consuming.
Automated measurement of the left ventricular longitudinal
strain is feasible (26). Using the TOMTEC automatic cardiac
measurement software package and CNN models, the UCSF
Echocardiography Laboratory reported that the automated global
longitudinal strain values deviated from manual values by an
absolute value of 1.4% (relative value of 7.5%) (27). Therefore, a
future goal would be to achieve completely automatic generation
and interpretation of curved M-mode speckle-tracking images of
the left atrium to provide rapid and reproducible assessment of
LA deformation properties.

This study has some limitations. A large sample size is
required to achieve sufficient CNN model performance. Because
our patient number was limited, the performance index of
the deep CNN may have been underestimated in this study.
Moreover, results in the test datasets were substantially worse
than in the training, which suggests overfitting because of small
training datasets. Even if we have repeated the algorithms 32
times and summarized the result in terms of 32 runs to reduce
the random selection bias in the CNN modeling, increasing the
size of training dataset with growing number of AF patients who

have undergone RFCA is necessary to validate and strengthen the
performance of the proposed CNNmodel. Finally, all results were
derived from retrospective data. A prospective validation study
is required to verify the reliability of the proposed CNN model
before this approach is considered for clinical use.
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