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Abstract: Using directed transfer function (DTF) and partial directed coherence (PDC) in the in-
formation version, this paper extends the theoretical framework to incorporate the instantaneous
Granger causality (iGC) frequency domain description into a single unified perspective. We show that
standard vector autoregressive models allow portraying iGC’s repercussions associated with Granger
connectivity, where interactions mediated without delay between time series can be easily detected.

Keywords: instantaneous Granger causality; total partial directed coherence; information partial
directed coherence; total directed transfer function; information directed transfer function; Granger
connectivity; Granger influentiability

1. Introduction

Recent years have seen an abundance of approaches aimed at describing the ‘connec-
tivity’ between sets of observed time series. To this end, Granger causality-based ideas [1]
stand out prominently and involve a wide variety of time series techniques comprising
time [1,2] and frequency domain [3–5] descriptions.

Granger causality descriptions are centered on determining how helpful the past of
a time series can be insofar as predicting another time series. As such, eventual simulta-
neous relationships are not taken into account. This aspect is described via the so-called
instantaneous Granger causality (iGC), which is deemed to be present whenever modeling
residues between different time series are correlated.

This latter aspect has received relatively far less attention and, for a long time,
this time series residue connection meant that the idea remained restricted to time do-
main considerations. This state of affairs was changed following the work of Faes and
Nollo [6,7], who proposed adding extra coefficients to model interactions that are not
mediated by delay from which such descriptors as directed transfer function (DTF) [3] and
partial directed coherence (PDC) [4] could be generalized. More recently, an alternative [8]
based on comparing models over suppressed time series has surfaced.

Rather than contrasting the latter descriptions, here, we wish to show that the formal-
ism behind DTF and PDC can be naturally extended to include a reasonable frequency
domain description of instantaneous Granger effects when their information versions
iDTF/iPDC [9] are considered without the need for employing modified models as re-
quired by the other previous approaches [6–8].

This development is interesting furthermore since it also allows a rounded closed
form description, not previously available for directed frequency domain relationships,
that can be deduced from second order statistical information alone.

In the developments that follow, we shall employ the concepts of Granger connectivity
(G–C) and Granger influentiability (G–I), introduced in [10], which refer respectively to
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PDC- and DTF-based descriptions of the ties between time series. The first one focuses
on immediate connections between time series as opposed to the second one, which
summarizes all possible signal pathways that join them. More information is available
in [11].

The paper is organized as follows. Section 2 describes the main results after a brief
recap of the essential concepts (Section 2.1), including how to write coherency and partial
coherency in terms of iDTF/iPDC. This is followed by the newly proposed quantities of
the total directed transfer function (tDTF) and total partial directed coherence (tPDC) in Section 3.
Section 4 contains some brief numerical examples to illustrate the new concepts followed
by a brief discussion (Section 5) and the ensuing conclusions (Section 6).

2. Problem Formulation
2.1. Preliminaries

We assume that the multivariate time series data xpnq “ rx1pnq, . . . , xNpnqsT is ade-
quately represented by the vector autoregressive model as follows:

xpnq “
ÿ

r
Arxpn´ rq `wpnq, r ą 0 (1)

where wpnq “ rw1pnq, . . . , wNpnqsT stand for zero mean innovation (white) processes with
Σw as its covariance matrix.

Instantaneous Granger causality corresponds to a non diagonal Σw.
Under these conditions, it is possible to describe the joint spectral matrix of xpnq as

follows:
Spνq “ HpνqΣwHHpνq, (2)

where H is the Hermitian transpose and

Hpνq “ Ā´1pνq (3)

for Āpνq defined as a matrix whose elements equal

Āijpνq “

"

1´
ř

r aijprqe´j2πνr, if i “ j
´
ř

r aijprqe´j2πνr, otherwise
(4)

with j “
?
´1.

The elements of (2) are thus given by

Sijpνq “ hipνqΣwhH
j pνq (5)

where hkpνq “ rHk1pνq, . . . , HkNpνqs is the k-th row of Hpνq.
This immediately leads to the coherency between xipnq and xjpnq:

Cijpνq “
Sijpνq

b

Siipνq Sjjpνq
“

hipνqΣwhH
j pνq

b

phipνqΣwhH
i pνqqphjpνqΣwhH

j pνqq
. (6)

In [9] we defined information directed transfer function (iDTF) as

γijpνq “
σjHijpνq

b

hipνqΣwhH
i pνq

. (7)

Hence, we can express (6) as

Cijpνq “ γγγipνqRγγγH
j pνq, (8)
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where the R matrix collects the ρij correlation coefficients between wipnq and wjpnq and
where γγγkpνq “ rγk1pνq, . . . , γkNpνqs stands for the k-th row of what we define as the iDTF
matrix Γpνq. One might collect the quantities in (8) as elements of the coherency matrix as
follows:

Cpνq “ ΓpνqR ΓHpνq (9)

The instantaneous Granger causality is absent if and only if R reduces to the N ˆ N
identity matrix IN .

In [12] we showed that the partial coherency between pairs of time series xipnq and
xjpnqwithin the xpnq set can be written as

κijpνq “
āH

i pνqΣ
´1
w ājpνq

b

pāH
i pνqΣ

´1
w āipνqqpāH

j pνqΣ
´1
w ājpνqq

, (10)

where ākpνq stands for the k-th column of Āpνq.
For convenience, let D be a diagonal matrix collecting the standard deviations σi from

wipnq so that
Σw “ DRD. (11)

This implies that
Σ´1

w “ D´1R´1D´1 (12)

where one may further write
R´1 “ D̄ rR D̄ (13)

where D̄ is a diagonal matrix with σ̃i elements that further reduce rR to a matrix of partial
correlations ρ̃ij which is symmetric to those along the main diagonal.

If we rescale information partial directed coherence [9],

πijpνq “
Āijpνq{σi

b

āH
j pνqΣ

´1
w ājpνq

, (14)

as
π̄ijpνq “ σ̃iπijpνq, (15)

then we can rewrite (10) as
κijpνq “ π̄̄π̄πH

i pνq
rR π̄̄π̄π jpνq (16)

in complete analogy to (8), where π̄̄π̄πkpνq “ rπ̄1kpνq, . . . , π̄Nkpνqs
T is the k-th column of what

we name the iPDC matrix Πpνq, which allows writing the partial coherency matrix as

Kpνq “ ΠHpνq rRΠpνq (17)

The rescaling (15) is what allows writing (8) and (16) in formally similar ways.

To simplify notation, all future reference here to iPDC will employ the π symbol
without a top bar with the implicit understanding that it is the re-scaled version that is
being employed.

As before, it is easy to show that instantaneous Granger causality is absent if and only
if rR reduces to IN .

3. Total DTF and Total PDC

Before introducing the new quantities, some comments are due.
First of all, Equations (9) and (17) confirm the roles of iDTF and iPDC as factors of

coherency and partial coherency as we have repeatedly stated [4], where the standard plots



Entropy 2021, 23, 1037 4 of 15

for them are organized as graph panels with the same layout, portraying the magnitude
squared values of the entries in Γ and Π, respectively.

The originally defined directed transfer function [3] and partial directed coherence [4]
are simplified forms of (7) and (14), respectively, by fully dispensing with the instantaneous
aspects by replacing Σw with IN . Directed coherence [13] and generalized PDC (gPDC) [5]
lend scale invariance to the latter quantities by replacing Σw with a matrix comprised
only of its diagonal elements in (7)/(14). This means that the latter forms do not suffer
contamination from instantaneous effects as opposed to iDTF/iPDC which contain the full
Σw matrix in their definitions.

A couple of things are easy to show regarding DTF (DC)/PDC (gPDC). The first one is
that, when N “ 2, |DTFijpνq|

2 “ |PDCijpνq|
2 (|DCijpνq|

2 “ |gPDCijpνq|
2) and |DTFiipνq|

2 “

|PDCjjpνq|
2 (|DCiipνq|

2 “ |gPDCjjpνq|
2). It is easy to show that the same properties hold

between iDTF and the rescaled version of iPDC (15).
The second one is that fixing the target structure and adding the DTF/DC magnitude

squared contributions from all sources adds to 1. A similar result holds for PDC/gPDC, except
that now, one must fix the source and sum over the magnitude squared target structures.

However, even though at first sight, a strict normalization does not encompass iDTF
or iPDC, one may show a similar property by noticing that

Ciipνq “ 1 “ γγγipνqRγγγH
i pνq “ rγrγrγipνqγγγ

H
i pνq (18)

and that
κiipνq “ 1 “ πππH

i pνq
rRπππipνq “ πππH

i pνqrπrπrπipνq (19)

for
rγrγrγipνq “ γγγipνqR (20)

rπrπrπipνq “ rRπππipνq (21)

so that indeed it is the latter terms that lead to a normalization that reduces to that of
DTF(DC)/PDC(gPDC) when Σw is suitably replaced.

For future reference, we define rγijpνq and rπijpνq of (20) and (21) as the xjpnq to xipnq
latent directed instantaneous influentiability and connectivity, respectively. They represent
would-be frequency domain repercussions due to instantaneous Granger causality when
their respective j Ñ i iDTF or iPDC are not zero.

Finally, one should note that, even though iDTF and iPDC have interpretations of their
own in terms of mutual information rates between processes that describe the multivariate
xpnq process [9], the fuller impact of the presence of instantaneous Granger causality is, how-
ever, mostly concentrated at the correlation R and partial correlation rR coefficient matrices.

We can write down all terms whose addition produce the various Ciipνq along the
rows of a single matrix:

ΓpνqRd Γ˚pνq (22)

where d is Hadamard’s element-wise product, and ˚ stands for complex conjugation.
However,

R “ IN ` ρ (23)

where ρ stands for a matrix containing correlation coefficients as off-diagonal terms and
whose main diagonal has only zeros.

Therefore, we may rewrite (22) as

Γpνq d Γ˚pνq`Γpνqρd Γ˚pνq (24)

whose first term is readily recognizable as a matrix whose elements contain the magnitude
squared of iDTF in the standard form. The second term isolates influences associated with
iGC. Whereas the elements of the first term are real non-negative, the entries of the second
term are inherently complex.
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We propose to call (24) total DTF and denote it as
hkkkkj

Γ pνq
loomoon

total DTF

“ Γpνq d Γ˚pνq
loooooomoooooon

Squared iDTF

` Γpνqρd Γ˚pνq
looooooomooooooon

Residual directed DTF

(25)

where its first term contains the customary Granger influentiability description [10]

and the second its directed instantaneous influentiability counterpart. Both
hkkkkj

Γ pνq and
Γpνqρd Γ˚pνq are complex quantities.

Clearly, the row elements of (25) sum to 1. Because the elements in the rows of
Γpνq d Γ˚pνq are all real and non-negative, the sum of Γpνqρd Γ˚pνq along a row is also a
real number.

Since we can write
rR “ IN ` ρ̃ (26)

we may define total PDC as
hkkkkj

Π pνq
loomoon

total PDC

“ Π˚pνq dΠpνq
looooooomooooooon

Squared iPDC

`Π˚pνq d ρ̃Πpνq
loooooooomoooooooon

Residual directed PDC

(27)

where the entries in Π˚pνq dΠpνq describe what we called Granger connectivity [10] and
Π˚pνq d ρ̃Πpνq its directed instantaneous connectivity counterpart.

The column-wise sum of the elements of (27) adds to one, whereas those of the
columns of Π˚pνq d ρ̃Πpνq sum to a real number since the elements of Π˚pνq dΠpνq are
non-negative real.

To facilitate reference, the key symbols are given in Table 1.

Table 1. Symbol definitions for the quantities in the text. Equation numbers where they first appear
are also shown.

Quantity Matrix Elements Equation

iDTF Γpνq γijpνq (7)
Latent directed instantaneous DTF ΓpνqR rγijpνq (20)
Squared iDTF Γpνq d Γ˚pνq |γijpνq|

2 (25)

Total DTF (tDTF)
hkkkkj

Γ pνq
hkkkkj

γij pνq (25)
Residual directed DTF Γpνqρd Γ˚pνq qγijpνq (25)

iPDC Πpνq πijpνq (14,15) (see text)
Latent directed instantaneous PDC rRΠpνq rπijpνq (21)
Squared iPDC Π˚pνq dΠpνq |πijpνq|

2 (27)

Total PDC (tPDC)
hkkkkj

Π pνq
hkkkkj

πij pνq (27)
Residual directed PDC Π˚pνq d ρ̃Πpνq qπijpνq (27)

4. Numerical Examples

To provide some intuition, we examine the following numerical examples.

Example 1. Consider a system whose connections are contained in Figure 1. Dashed lines represent
instantaneous interaction aspects, while dotted lines reflect the additional instantaneous interaction
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aspect that becomes explicit upon rR computation (Equation (30)). The underlying system is a first
order one given by (1) and defined by

A1 “

»

—

—

–

0.5 0 0 0
1 0 ´0.95 0
0 0.95 0 0
0 0 1 ´0.75

fi

ffi

ffi

fl

(28)

with

Σw “

»

—

—

–

1 0 0 0.25
0 1 0 0
0 0 1 ´0.5
0.25 0 ´0.5 1

fi

ffi

ffi

fl

(29)

which allows appreciating the interplay of instantaneous effects with the connectivity/influentiability
structures, where the lack of connections/influences measured by iPDC/iDTF is immediately apparent.

4321

Figure 1. Link structure for the Example 1. Dashed lines indicate non zero covariance in Σw.
The dotted line portrays the partial correlation aspect in (30).

The computed σ̃i are contained in r1.04, 1.00, 1.17, 1.21s and

rR “

»

—

—

–

1.00 0.00 ´0.15 ´0.29
0.00 1.00 0.00 0.00

´0.15 0.00 1.00 0.52
´0.29 0.00 0.52 1.00

fi

ffi

ffi

fl

(30)

rounded to two decimal places.
The various quantities are represented in the allied graphs showing that iPDC instantaneous ef-

fects require the joint presence of partial correlations in rR and the presence of immediate connections
(see Figure 2). This conjunction only occurs from x3pnq to x4pnq.

      

      

      

0

.5

1

i =
 1

0

.5

1

i =
 2

0

.5

1

i =
 3

 0         .5
j = 2

 0         .5
j = 1

0

.5

1

i =
 4

 0         .5
j = 3

 0         .5
j = 4

Source

Ta
rg

et

Figure 2. Squared iPDC—|πijpνq|
2 (blue lines) and total PDC magnitude—|Ňπijpνq| (red lines) de-

picted for Example 1. When identical, the superposed traces are shown as dark purple lines.
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Likewise, iDTF instantaneous impacts require the existence of correlations in R so that altered
influentiability occurs from x1pnq to x4pnq but not in the opposite direction. Something similar also
takes place when x3pnq toward x4pnq is examined but not in the reverse direction (see Figure 3).

      

      

      

0

.5

1

i =
 1

0

.5

1

i =
 2

0

.5

1

i =
 3

 0         .5
j = 2

 0         .5
j = 1

0

.5

1

i =
 4

 0         .5
j = 3

 0         .5
j = 4

Source

Ta
rg

et

Figure 3. Squared iDTF—|γijpνq|
2 (blue lines) and total DTF magnitude—|Ňγijpνq| (red lines) ren-

dered for Example 1. When identical, the superposed graphs are shown as dark purple lines.

Example 2. To provide a clearer idea of iGC frequency domain repercussions for the same time
domain characterization as summarized by

Σw “

„

1 0.5
0.5 1.25



(31)

we consider a set of four slightly different bivariate systems.

Example 2.1 Disconnected System

Let the simplest one be described by

A1 “

„

1.3859 0
0 0.5



(32)

and

A2 “

„

´0.9604 0
0 0



(33)

The observed total DTF/PDC are trivially equal to zero for i ‰ j, yet because of iGC as
represented by (31), one sees that it manifests itself through a constant |rγijpνq| “ |rπijpνq| “ 0.447
that, in turn, leads to a constant magnitude coherence |C12pνq| of the same value as indicated by red
arrows on Figure 4a,b.
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Figure 4. (a) Latent directed instantaneous connectivity—rπijpνqmagnitude depicted as green lines,
shown with its real (blue lines) and imaginary (red lines) parts that portray iGC effects before
G–C inclusion. The value 0.447 of |rπijpνq|, for i ‰ j, (red arrows) is the same as in b. (b) Cross-
coherence magnitude |C12pνq| “ |C21pνq| “ 0.447 “ |rπ12pνq| “ |rπ21pνq| as the red arrow indicates
(Example 2.1).

In fact, it is possible to show that absence of G-connectivity implies |C12pνq| is constant. The
converse, however, is not generally valid. The results are in accord with the absence of delayed effects
between channels (no Granger causality).

Example 2.2 Unidirectional Granger Causality

If (32) is replaced by

A1 “

„

1.3859 0
0.5 0.5



(34)

we obtain a total PDC that reflects this change and still detects the lack of x2pnq Ñ x1pnq feedback
(Figure 5a). Furthermore, comparing |rπ21pνq| to |κijpνq| in Figure 5b, we see that the unidirectional
effect of x1pnq over x2pnq is what solely determines the magnitude of the resulting partial coherence.

a b
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1
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1

 0 .5

i =
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i =
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j = 2j = 1
Source

Ta
rg

et

.5

Figure 5. (a) Squared iPDC—|πijpνq|
2 (blue lines) and total PDC magnitude—|Ňπijpνq| (red lines) for

Example 2.2 portraying the absent feedback from x2pnq Ñ x1pnq. When identical, the superposed
traces are shown as dark purple lines. (b) Latent directed instantaneous connectivity magnitude—
|rπijpνq| (blue lines) and partial coherence magnitude—|κijpνq| (redlines), which show up as dark
purple when traces are identical, for Example 2.2.

Example 2.3 Instantaneous link between x1pnq and x2pnq.
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Now consider the data generation model given by

x1pnq “ 1.3859x1pn´ 1q ´ 0.9604x1pn´ 2q ` ε1pnq (35)

x2pnq “ 0.5x1pnq ` 0.5x2pn´ 1q ` ε2pnq (36)

where εipnq are independent identically distributed zero mean innovation processes.
Under least squares estimation, (1) ideally results in the model given by

A1 “

„

1.3859 0
0.693 0.5



(37)

and

A2 “

„

´0.9604 0
´0.4802 0



(38)

whose residual covariance matrix is also given by (31). This is easy to show by inserting (35) into (36).
The resulting total PDC is shown in Figure 6a (red lines) whereas the magnitude of |rπijpνq|

(Figure 6b) is further broken into its real and imaginary parts in Figure 7, where again the nullity of
the imaginary part of rπ21pνq constitutes a signature of the delayless relationship between x1pnq and
x2pnq.
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a b

Figure 6. (a) Squared iPDC—|πijpνq|
2 (blue lines) and total PDC magnitude—|Ňπijpνq| (red lines)

plots for Example 2.3 portraying the absent feedback from x2pnq Ñ x1pnq. (b) Latent directed instan-
taneous connectivity magnitude—|rπijpνq| (blue lines) and partial coherence magnitude—|κijpνq|

(red lines) for Example 2.3, which show up as dark purple when traces coincide.
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Figure 7. Latent directed instantaneous connectivity—rπijpνq’s real (blue lines) and imaginary (red
lines) parts plots for Example 2.3. Note that rπ21pνq’s imaginary part nullity is a signature of their
delayless relationship.
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Again, because iPDC from x2pnq to x1pnq is zero, the partial coherence magnitude |κijpνq| “
|rπ21pνq| (i ‰ j).

Example 2.4 Bidirectional Feedback

The introduction of a 0.5x2pn´ 1q feedback into (35) leads to the total PDC in Figure 8a with
the allied magnitude rπijpνq—latent directed instantaneous connectivity—in Figure 8b split into its
real and imaginary parts in Figure 9 where the delayless x1pnq to x2pnq instantaneous description
remains unaffected, while the partial coherence |κ12pνq| now depends on both directions.

a b
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j = 2j = 1
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Ta
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et
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.5

Figure 8. (a) Squared iPDC—|πijpνq|
2 (blue lines) and total PDC magnitude—|Ňπijpνq| (red lines)

plots for Example 2.4. (b) Example 2.4’s latent directed instantaneous connectivity magnitude—
|rπijpνq| (blue lines) and partial coherence magnitude—|κijpνq| (red lines) plots with no dark purple
coincidence line.

            
–1

0

1

 0 .5
–1

0

1

 0 .5

i =
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 2

j = 2j = 1
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Ta
rg

et

Figure 9. Example 2.4’s latent directed instantaneous connectivity—rπijpνq real (blue) and imagi-
nary (red) parts. Note that rπ21pνq’s imaginary part nullity is a signature of their delayless relationship.

Example 3. This example is borrowed from [7] whose theoretically equivalent model (Figure 6.3a
in [7]) as obtained by fitting (1) is given by:

A1 “

»

–

1.27 0.00 0.00
0.64 0.00 1.00
0.32 0.00 0.50

fi

fl (39)

A2 “

»

–

´0.81 0.00 0.00
´0.41 0.00 0.00
´0.20 0.50 ´0.64

fi

fl (40)
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and

Σw “

»

–

1.000 0.500 0.250
0.500 2.250 1.125
0.250 1.125 3.562

fi

fl (41)

which leads to σ̃ “ r1.06, 1.15, 1.09s and

rR “

»

–

1.00 ´0.31 0.00
´0.31 1.00 ´0.38

0.00 ´0.38 1.00

fi

fl (42)

rounded to two decimal digits.
What stands out is that total PDC is identically zero for x1pnq Ñ x3pnq due to the presence of

instantaneous Granger interactions (Figure 10). This nullity is consistent with the structure inferred
in [7] when instantaneous quantities are considered by including a zero term lag in (1) (Figure 6.3b
in [7]). This happens because qπ31pνq—the residual directed PDC from x1pnq Ñ x3pnq—in (27) is
of the opposite sign and instantaneously undoes the effect of iPDC (|π31pνq|

2q as it too has no delay
(look at the x1pnq Ñ x3pnq panel in Figure 11).

Since the relationship of x1pnq to x2pnq is also instantaneous as portrayed by the nullity of
the imaginary part of rπ21pνq, it is clear that x2pnq mediates this total PDC nullity from x1pnq to
x3pnq. Note as well that |rπ31pνq| “ 0 (Figure 12). The instantaneous link from x1pnq to x2pnq is
apparent in the nullity of the imaginary part of rπ21pνq in Figure 13; note also the same nullity in
rπ21pνq, whose real part is also zero consistently with zero total PDC from x1pnq to x3pnq.

Together, these observations lead to the conclusion that the relationship from x1pnq to both
x2pnq and x3pnq are instantaneous and mediated without delay, and that the one from x1pnq must
occur through x2pnq since the total PDC from it to x3pnq is zero.
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Figure 10. Squared PDC—|πijpνq|
2 (blue) and total PDC magnitude—|Ňπijpνq| (red) plots, indicated

as dark purple lines when traces coincide, from Example 3. Observe that |Ŋπ31pνq| “ 0 points to a lack
of total G-connectivity from x1pnq to x3pnq.
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Figure 11. Residual directed PDC—qπijpνq’s real (blue lines) and imaginary (red lines) parts plots
in Example 3, which show up as dark purple when traces coincide. Note qπ31pνq’s imaginary part
nullity, which is a signature of their delayless relationship but whose real part is equal and of the
opposite sign to squared iPDC (|π31pνq|

2), thereby leading to zero total PDC from x1pnq to x3pnq.
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Figure 12. Latent directed instantaneous connectivity magnitude—|rπijpνq| for Example 3, where it
is to |rπ31pνq| “ 0 such that the corresponding total PDC is zero.
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Figure 13. Latent directed instantaneous connectivity—rπijpνq real (blue lines) and imaginary (red
lines) parts plots for Example 3. Note that rπ21pνq and rπ31pνq have zero imaginary parts that point to
delayless directed relationships in this example. The real part of rπ31pνq is also zero (depicted as dark
purple line).

5. Discussion

The present expanded formulation takes care of the problem frequently met in data
analysis whose residuals in fitting (1) result in being mutually correlated and its consequences.

By examining the decomposition of coherencies and partial coherencies in terms of
the information versions of DTF and PDC [9], we managed several things that lend the
latter quantities a fundamental theoretical character.

The first such result was to show that the allied properly generalized total quantities
enjoy the same kind of normalization as the original DTF/PDC [3,4] (DC/gPDC [5,13]).
Likewise, the same ’inversion’ properties of the latter hold for the former when N “ 2.
A key point in obtaining the present symmetry of treatment between DTF and PDC was
iPDC’s rescaling (15).

The second result is that of emphasizing the importance of the magnitude squared
iDTF/iPDC in portraying, respectively, G-influentiability and G-connectivity that now
allow an extended picture to be drawn: that of Granger instantaneous influentiability (G–iI)
and connectivity (G–iC) by now considering the total DTF and total PDC, which are also
directed quantities.

One important aspect as portrayed in Example 1 is that instantaneous directedness
effects are due to the combined effect of non-zero off-diagonal Σw terms and non-zero
iDTF/iPDC.

Likewise the role of latent instantaneous iPDC (21) permits the careful analysis of
instances of instantaneous interaction as illustrated in Example 2.3 and Example 3.

Through Example 2, we learned that the very same time domain description of
instantaneous Granger causality has quite a few distinct repercussions depending on the
underlying G-connectivity that can only be properly described in the frequency domain.

When compared to other Granger dynamical characterizations that include instanta-
neous considerations, the present formulation has the advantage of dispensing with special
model estimation approaches. No special model to include the r “ 0 lag in (1) is required
with its more elaborate estimation considerations [7]. Likewise, also unneeded are the
estimations of multiple models as in [8]. All that is required is a standard least squares
model adjustment via (1), wherefrom all conclusions can be drawn.

There is still much work ahead. Here, to keep focus, we have exclusively examined
the details of Cijpνq and κijpνq; when i “ j, our next step is to examine the more general
i ‰ j case. Also needed now is the establishment of detailed asymptotic results for the
newly introduced total quantities as are available for iDTF [14] and iPDC [15].
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6. Conclusions

The present formulation has developed the necessary formalism to address the reper-
cussions of instantaneous Granger causality, whose proper description demands the fre-
quency domain, where they were shown to be dependent on G-connectivity details for size
and directedness. Also confirmed is our statement that iDTF/iPDC are natural fundamental
quantities that result from the respective decomposition of coherency and partial coherency.
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G–C Granger connectivity
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DTF Directed transfer function
DC Directed coherence
iDTF Information directed transfer function
tDTF Total directed transfer function
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