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Background:Because neurofibromatosis type I (NF1) is a cancer predisposition disease,

it is important to distinguish between benign and malignant lesions, especially in the

craniofacial area.

Purpose: The purpose of this study is to improve effectiveness in the diagnostic

performance in discriminating malignant from benign craniofacial lesions based on

computed tomography (CT) using a Keras-based machine-learning model.

Methods: The Keras-based machine learning technique, a neural network package

in the Python language, was used to train the diagnostic model on CT datasets. Fifty

NF1 patients with benign craniofacial neurofibromas and six NF1 patients with malignant

peripheral nerve sheath tumors (MPNSTs) were selected as the training set. Three

validation cohorts were used: validation cohort 1 (random selection of 90% of the

patients in the training cohort), validation cohort 2 (an independent cohort of 9 NF1

patients with benign craniofacial neurofibromas and 11 NF1 patients with MPNST), and

validation cohort 3 (eight NF1 patients with MPNST, not restricted to the craniofacial

area). Sensitivity and specificity were tested using validation cohorts 1 and 2, and

generalizability was evaluated using validation cohort 3.

Results: A total of 59 NF1 patients with benign neurofibroma and 23 NF1 patients

with MPNST were included. A Keras-based machine-learning model was successfully

established using the training cohort. The accuracy was 96.99 and 100% in validation

cohorts 1 and 2, respectively, discriminating NF1-related benign and malignant

craniofacial lesions. However, the accuracy of this model was significantly reduced to

51.72% in the identification of MPNSTs in different body regions.
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Conclusion: The Keras-based machine learning technique showed the potential of

robust diagnostic performance in the differentiation of craniofacial MPNSTs and benign

neurofibromas in NF1 patients using CT images. However, the model has limited

generalizability when applied to other body areas. With more clinical data accumulating

in the model, this system may support clinical doctors in the primary screening of true

MPNSTs from benign lesions in NF1 patients.

Keywords: computed tomography, craniofacial lesion, neurofibromatosis type I, malignant peripheral nerve sheath

tumor, machine learning

INTRODUCTION

Neurofibromatosis type 1 (NF1) is a common autosomal
dominant genetic disorder with an incidence of ∼1 in 3,000
individuals worldwide (1). The majority of affected individuals
are predisposed to benign peripheral nerve sheath tumors
(PNSTs), including cutaneous neurofibromas and plexiform
neurofibromas (PNFs) (2, 3). Up to 10% of cases suffer from
disfigurement and dysfunction caused by craniofacial lesions
and often undergo plastic surgeries (4). As it is a benign
tumor, most patients experience a course of treatment for
several years without worrying about malignant transformation
or tumor metastasis. However, 5–10% of PNF patients could
develop NF1-related malignant peripheral nerve sheath tumors
(MPNSTs) (5). Malignant peripheral nerve sheath tumor is an
aggressive peripheral nerve tumor and is the leading cause
of death in these patients, with a 50% rate of metastasis at
the time of presentation and a dismal prognosis of several
months (6, 7). Therefore, early diagnosis and intervention are
vital, and complete surgical resection, if possible, improves
prognosis (8, 9).

Radiology plays a vital role in the diagnosis and management
of patients with NF1. Several imaging modalities or imaging-
dependent methods, including magnetic resonance imaging
(MRI) (10), fluorodeoxyglucose (FDG) positron emission
tomography (PET), and PET/computed tomography (CT)
(11), and PET/CT-guided percutaneous biopsies (12), are
considered to be essential in determining malignancy formation,
especially MPNSTs arising from benign PNFs in NF1 patients.
Clinical studies even recommended NF1 adult patients to
conduct whole-body MRI as routine medical surveillance (13).
However, the methods mentioned above are costly; thus,
there is an urgent and continued need for more economical
imaging methods for the preliminary evaluation of MPNSTs in
NF1 patients.

Computed tomography provides a safe and relatively
affordable method for first evaluating head and neck
NF1, but this anatomic imaging method was not effective
enough to distinguish MPNST from benign NF1 (14).
However, the development of a machine learning system
might provide another way to obtain information from
CT images. In this work, we explore a robust pattern
recognition method based on Keras neural networks for
differentiating between benign NF1 and MPNST with CT
images (15).

MATERIALS AND METHODS

The data obtained for this analysis were approved by the local
institutional review board (approval no. SH9H-2019-T163-2),
and the authors had control of these data.

CT Image Data Acquisition
We retrospectively reviewed the cases of 50 patients with benign
plexiform neurofibromatosis type 1 (PNF) in the head and neck.
Consistent with this, six patients with NF1-related head and neck
MPNST were also included. All patients underwent contrast CT
scan, and a total of 133 benign PNF slices and 33 MPNST slices
were selected as training set. Furthermore, 9 other benign PNF
and 11 MPNST slices from the CT images of these patients
made up the new testing set. All these images were collected
from the image archive and communication system in Shanghai
Ninth People’s Hospital between December 2012 and April 2019.
The selections of slices were carried out by two experienced
radiologists and an experienced doctor whose expertise was in
head and neckNF1. They carefully chose slices with typical tumor
region included. Meanwhile, another criterion for selections
was that slices from each patient should be no more than 10
slices. Unlike in other tumors, there is no approved radiography
guideline for the differentiation of benign and malignant NF1. As
a result, no feature selection or classification before training could
be carried out. To minimize the influences of non-tumor parts in
the image, most images were selected at a similar slice of the head
based on the typical tumor regions included. The images were
collected in DICOM format, and the slice thickness was 5 mm.

To examine the possible usage of this model in diagnosing
MPNST from benign NF1 in different body regions beyond
the head and neck, we collected images from eight MPNST
patients in another hospital with different tumor locations,
including the waist, mediastinum, legs, liver, heart, chest walls,
retroperitoneum, and head. Twenty-nine slices were selected
from these images to build the third testing set. The constitution
of each set is shown in Figure 1. Matplotlib, a Python package,
was applied to read and resize the images to standardize them to
the same size. All the diagnoses had been previously proven by
pathological biopsy.

Keras Machine-Learning Model
The machine learning techniques comprised 2 steps. The first
was a training step that used the CT images and an input–
output system to train the model. This step was followed by
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FIGURE 1 | Flowchart shows the constitution of each set.

the testing step, where the prediction model was tested for
accuracy. Keras, written in Python language and working on top
of TensorFlow, CNTK, or Theano, is a high-level neural network
application programming interface (15). In general, Keras, as
a neural network learning package of biological networks,
contains an input layer, one or several hidden layers, and
an output layer.

In this work, we used the Keras and TensorFlow framework
to build the model for differentiating benign NF1 and MPNST.
Supervised learning was applied in the model training. First,
convolution layers were applied to derive the features of each
image by sliding kernels (size = 3) through convolution.
Then, pooling layers generated from the convolution layers
were used to reduce the features and retain the most critical
parts (Figure 2). Each image model exhibited two non-linear
relationships between the input and output layers (Figure 3).
For imbalanced number between benign PNF slices and MPNST
slices, we adopted oversampling for relatively final balanced
training cohort. All the images were testedmultiple times, and the
machine calculated the classification rates of each image based on
the image characteristics explored by the machine. If the rate was
more than 0.5, this image was assumed to be MPNST. Otherwise,
it would be recognized as benign NF1. A rate closer to 0.5 showed
that the machine was vacillating about the malignancy, whereas
the opposite indicated a firm belief in the identification. The
program codes for building, training, and validating this model
are shown in Supplemental Materials 1, 2.

RESULTS

Model Training and Validation
An entire machine learning system is mainly composed of three
data sets: a training set, a validation set that generally arises
from the training set by the machine automatically, and a
testing set. The training set comprised a total of 133 benign
head and neck NF1 and 33 MPNST images, and the machine
randomly chose 90% of the training set to build the validation
set. The characteristics of the study participants are summarized
in Table 1. We first built a relatively simple model with less
density to prove the practicability of the Keras-based machine
learning method in performing the differentiation. After 16
epochs of training, the total accuracy of the training set was
83.33%. The model was then applied in the validation set, and
the validation accuracy was 77.78%. This model indicated the
diagnostic ability of the Keras-based system, but the accuracies
needed further improvement.

As the numbers of benign NF1 and MPNST images were
different, a condition called imbalanced data, we used the
auto imbalanced function of Keras to create a balanced batch
generator to train this model. Then, we applied 24 epochs of
training, and the total accuracy of the training set was 90.74%
in this new model, whereas the validation set accuracy reached
88.89%. Both of these results indicated the high performance
of this Keras-based machine-learning model in differentiating
MPNST and benign neurofibroma by CT images.
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FIGURE 2 | The machine learning system uses pooling layers generated from convolution layers multiple times to reduce the features in the computed tomography

images, and only critical parts are retained.

FIGURE 3 | The Keras-based machine learning system is a high-level neural network, containing multiple hidden layers between input and output layers. Non-linear

relationships are established among these hidden layers.
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TABLE 1 | Patients characteristics.

Characteristic Training and validation

set/testing set 1

(n = 56)

Testing set 2

(n = 6)

Testing set 3

(n = 8)

Age* 19 (10–25) 16 (14–45) 55 (48–70)

Male 27 4 7

MPNST patients 6 3 11

Unless otherwise specified, data are number of patients.

*Data are medians, with interquartile ranges in parentheses.

TABLE 2 | The process of convolution and pooling layers.

Layer (type) Output shape Param #

conv2d_4 (Conv2D) (None, 64, 64, 32) 896

max_pooling2d_3 (MaxPooling2) (None, 32, 32, 32) 0

conv2d_5 (Conv2D) (None, 16, 16, 32) 9,248

max_pooling2d_4 (MaxPooling2) (None, 8, 8, 32) 0

conv2d_6 (Conv2D) (None, 4, 4, 64) 18,496

global_average_pooling2d_2 (MaxPooling2) (None, 64) 0

dropout_3 (Dropout) (None, 64) 0

dense_3 (Dense) (None, 64) 4,160

dropout_4 (Dropout) (None, 64) 0

dense_4 (Dense) (None, 1) 65

Model Testing
For the relatively rare images from MPNST patients, we first had
to use the same image samples that we used to train the model
to build the first testing set, and the total accuracy was 96.99%.
The total trainable parameters were 32,865, and the parameters
in each layer are listed in Table 2. However, presenting the
same testing data is commonly believed to increase the accuracy
beyond the real ability of the machine-learning model. To make
this model more convincing, we then built another testing set
composed of novel images, selecting 9 other benign NF1 and
11 MPNST images. All these images were from the slices of
images that were not chosen in the first training and testing sets,
and all these slices also presented evident tumor regions. Images
in this new testing set contained manifold types of non-tumor
“backgrounds.” Surprisingly, the results were all unanimous with
the pathological report, and the rates of each image are shown in
Supplementary Table 1. These data of probabilities showed that
this model could better diagnose benign NF1, and the variation
of rates in each MPNST image of this model showed difficulties
in verifying the malignant tumor. This phenomenonmight result
from the scarcity of training images of MPNST patients, which
makes it difficult to explore all the characteristics of the model.
With more images collected and training this machine-learning
model, the accuracy will increase and show a better robust
diagnostic performance.

In concert with this, the third testing set was also applied
to this model to examine the possibility of its usage in tumors
in other regions. The total accuracy was 51.72%, and the
rates of each image are shown in Supplementary Table 2. The
unsatisfactory results compared with the other 2 testing sets

above suggested the limited usage of this machine-learning
model only in differentiating head and neck benign NF1
and MPNST. Interference by non-tumor regions might be
responsible for these results because themodel might be confused
by different “backgrounds.”

DISCUSSION

Abrupt pain, enlargement, and new neurological signs appearing
in a short time are considered phenomena associated with the
transformation from benign NF1 to MPNST (16). Malignant
peripheral nerve sheath tumors often metastasize to other places,
such as the brain, lung, liver, bone, and skin, and have a poor
prognosis (9, 17). As a result, whole-body imaging is an efficient
method for MPNST detection in NF1 patients (13). Whole-
body MRI with diffusion-weighted imaging/apparent diffusion
coefficient (ADC) was studied as a useful tool for NF1 patients
who have a risk of transforming to MPNST (18, 19). The ADC
value has been widely used as a marker in soft tissue imaging, and
its usage in MRI could represent cellularity in tissues and signify
malignancy (18, 20). Consistent with this, a study demonstrated
serial whole-body 18F-FDG-PET/CT as an efficient screening tool
for the detection of early-stage MPNST in NF1 patients (21).
Additionally, these whole-body imaging tools present doctors
with information for surgeries.

However, both of these methods either are very expensive or
increase patient anxiety, and they require a relatively long time to
obtain results. Compared with PET CT and whole-bodyMRI, CT
images provided a relatively economical choice for NF1 patients.
More importantly, most of the NF1 patients only have benign
tumors with relatively long overall survival, which indicates that
regular clinical follow-ups are required for these individuals. The
CT, rather than PET/CT or whole-body MRI, is the most suitable
tool for regular assessment. For first-time clinical assessment or
if there is a need to find all tumor regions in the whole body,
PET/CT and whole-body MRI are better choices. But for lifelong
regular test, CT is a more affordable and widespread method.

Nevertheless, it has been well-established that no diagnostic
CT feature has been confirmed in differentiating MPNST from
benign neurofibroma (14). Our study evaluated a Keras-based
machine-learning model to predict the malignancy of head and
neck NF1 on CT images, which yielded a high and stable
measure. This model using CT images based onmachine learning
technology provides a new tool for MPNST screening in NF1
patients and reduces the cost. Furthermore, CT is a routine
test for most follow-up benign PNF patients, and the usage of
CT images in first screening will significantly assist the early
diagnosis of MPNST and finally contribute to early treatment.
Patients with MPNST suspension by this model indicates further
needs of biopsy or other clinical tests for confirmed diagnosis,
and we also recommended these patients receiving more regular
clinical follow-up.

The unsatisfactory results of the third testing set suggest the
interference of non-tumor background. To reduce the impacts
of these backgrounds, scientists usually apply large quantities
of image data and draw a contour line to restrict the tumor
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regions to minimize the effects (22). Restricted by the limitation
of the number of patients, the work could hardly be carried out
in whole-body machine-learning model training. Nevertheless,
given the exciting accuracies of the existing model in head and
neck malignancy differentiation, the potential usage of machine-
learning models in the future diagnosis of MPNST from benign
NF1 in different regions should be seriously considered with
more data added.

Our study is not devoid of limitations. First, because of the
limited number of patients with head and neck MPNSTs, only a
comparably small number of patients were included. Consistent
with this, some patients with MPNST had no CT record in
our hospital. Both of these reasons limit the performance of
the Keras-based machine learning technique that relies on large
datasets. For this reason, we first had to use the same training
and test set, which might contribute to higher accuracies than
in the real world. In concert with this, for relatively balanced
training set, the usage of oversampling would also contribute to
somewhat overfitting. Moreover, the result might be influenced
by tumor heterogeneity because of the use of multiple images of
one patient. Furthermore, there are no guidelines in radiography
for MPNST compared with benign NF1 in the head and neck,
limiting the usage of tumor features to preprocess the images.
We could only choose to use similar slices to train the model
to minimize the effects of non-tumor parts, which also restricts
the selection of images in each CT set. However, we then used
9 new benign PNF images and 11 new MPNST images from
the same patients but different slices of the image set to build
another test set for the machine-learning model. Surprisingly,
all the images in the new test set were correctly classified. The
high accuracy indicates the future clinical usage of this model, at
least as a useful primary screening tool for differentiating head
and neck MPNST from benign NF1. Potentially, with extensive
radiomics analyses and more data collected in the future, the
accuracy of the machine-learning model could increase, and the
model performance could be improved.

Machine learning technologies have been used in the medical
field, especially in radiography. Their ability to differentiate
benign nodules and malignant tumors by multiple types of
imaging methods has been proven in thyroid nodules (23),
lung cancers (24), and breast cancer (25). Beyond this, machine
learning systems in these cancers have also been developed for
recurrence prediction (26), therapy efficiency assessment (27),
and tumor staging (28). Various types of machine learning tools
were found usable in radiography, such as the extreme learning
machines, support vector machines, and neural networks (29).
However, the establishment of machine-learning models in NF1
is rare until now, and the restrictions of development are mainly
two parts. First, the number of patients is relatively low, and
the acquisition of images is much more difficult. In concert

with this, no approved staging consensus has been made in
NF1 radiography with circumstances. Our work indicates the
potential future usage of machine learning in NF1, and more
machine learning systems could be further explored by aided
clinical doctors. Meanwhile, with the gradual complementarity of
studies and consensuses in NF1, these models might show higher
performance in more fields.
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