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A Variable Neighbourhood Descent 
Heuristic for Conformational Search 
Using a Quantum Annealer
D. J. J. Marchand1, M. Noori   1, A. Roberts1, G. Rosenberg1, B. Woods1, U. Yildiz1, M. Coons2, 
D. Devore2 & P. Margl2

Discovering the low-energy conformations of a molecule is of great interest to computational chemists, 
with applications in in silico materials design and drug discovery. In this paper, we propose a variable 
neighbourhood search heuristic for the conformational search problem. Using the structure of a 
molecule, neighbourhoods are chosen to allow for the efficient use of a binary quadratic optimizer for 
conformational search. The method is flexible with respect to the choice of molecular force field and the 
number of discretization levels in the search space, and can be further generalized to take advantage 
of higher-order binary polynomial optimizers. It is well-suited for the use of devices such as quantum 
annealers. After carefully defining neighbourhoods, the method easily adapts to the size and topology 
of these devices, allowing for seamless scaling alongside their future improvements.

The study of molecular structures is foundational to attaining an understanding of chemical processes. Chemical 
behaviour is determined in large part by the arrangement of atoms within participating molecules as a chemical 
process unfolds. A widely used approach for studying aspects of molecular structure is to limit the molecu-
lar degrees of freedom to torsions only, considering bond lengths and bond angles to be fixed at some values. 
By doing so, a given molecule with a specific connectivity of its constituent atoms may take on a variety of 
three-dimensional spatial arrangements, known as conformational isomers, or simply conformations. Whereas the 
internal bonds of distinct conformations are the same, the rotation angles around rotatable bonds of the molecule 
are what distinguish one conformation from another.

In medicinal chemistry, conformational analysis often involves identifying bioactive conformations of ligand 
molecules1,2. Protein folding is one illustration of function determined by conformation that is both very impor-
tant to the fields of medicine and biochemistry and extremely difficult to compute, making it a “grand challenge” 
for science3. In a broader context, conformational analysis is a topic of utmost importance in chemical and mate-
rials research. For instance, the conformational behaviour of polymers is key to determining crystallinity, shape, 
and entanglement of individual chains4 that in turn affect macroscopic materials’ properties such as elasticity, 
strength, or toughness.

Importantly, the geometrical differences between conformations result in different values for the molecular 
potential energy5–7, which is a key factor for molecular stability and reactivity. To this end, the problem of find-
ing the conformations associated with the local minima of the potential energy surface (PES) of the molecule, 
referred to as the conformational search problem, has been of long-standing interest. The local minima of the PES 
are often called conformers8, and the conformer with the lowest energy is referred to as the global minimum-energy 
conformer.

Over time, several practical approaches to the conformational search problem have been developed and crit-
ically reviewed8–11. For small molecules, one may be able to deterministically solve the conformational search 
problem via techniques such as branch and bound12–14. However, this is impractical for even moderately sized 
molecules, as the size of the conformational search space grows exponentially with the number of rotatable 
bonds15. Such increasing difficulty makes the conformational search problem computationally intractable for 
many of the molecules that have real-world applications and an attractive target for exploration with novel com-
putational technologies and techniques.
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To address the computational complexity presented by larger molecules, many metaheuristic approaches have 
been studied. Examples of such approaches include genetic algorithms16,17, conformational space annealing18,19, 
tabu search20,21, molecular dynamics (MD)22,23, and basin/funnel hopping24. Variations of the Monte Carlo (MC) 
method have also been widely used25,26 as a less computationally expensive alternative to MD8. In addition, par-
allel tempering (PT), also known as replica exchange27,28, can be applied to both MC and MD to further improve 
their sampling performance of the conformational search space.

A comparatively recent approach to address the growing computational complexity of optimization problems 
relies on the putative future advantage of specialized hardware like quantum annealers to solve binary quadratic 
optimization problems (see Supplementary Information for more details). One challenge lies in reformulating 
the optimization problems, a task that often requires approximations or simplifications. Our motivation was to 
develop such a formulation for the conformational search problem that avoids drastic compromises while pro-
ducing good conformers.

For this purpose, we propose an iterative heuristic method for the conformational search problem based on 
variable neighbourhood descent (VND). In each iteration of the method, we use the molecular structure to choose 
specialized conformational neighbourhoods that can be minimized efficiently. More specifically, using the struc-
tural graph of a given molecule, subsets of rotatable bonds are selected at each iteration. Fixing the values of other 
torsion angles, the problem of minimizing the molecular energy with respect to the selected torsion angles is then 
formulated as a binary program with an objective function that is a polynomial of a chosen degree. This allows the 
method to be adapted to the specifics of the optimizer by limiting the degree of the binary program. The values 
of the selected torsion angles are then set to the solution of this binary program before starting each subsequent 
iteration during which a new subset of rotatable bonds are optimized. The process continues until some stopping 
criteria are met.

Although the method can be readily extended to any chosen degree, we assume in this paper that a binary 
quadratic program is desirable as it is well-suited for optimization using quantum annealing29,30. Furthermore, 
by changing the parameters of the neighbourhood selection procedure, the method can be easily adapted to 
the size of the conformational search problem in terms of the number of rotatable bonds, as well as the size and 
connectivity of available quantum annealers. The flexibility of solving any conformational search problem using 
currently available quantum annealers, without imposing restrictions on the granularity of the conformational 
space, differentiates our work from a previous study on protein folding using quantum annealing31.

We evaluate the performance of our proposed algorithm over three families of molecules relevant to industry, 
using an algorithm that returns an exact optimal solution and the D-Wave 2000Q quantum annealer32–34. The lat-
ter provides an assessment using the latest available hardware at the time of writing of this work, whereas the for-
mer can be seen as a limiting ideal case. For each molecule, we compare the lowest-energy conformations found 
by our algorithm with those found by both parallel tempering MC (PTMC)27,35 and a simple local search method.

Preliminaries
We give some preliminaries before presenting the details of our proposed conformational search method.

Problem definition.  As discussed above, we consider the conformational search problem as a special case of 
molecular structure analysis, where the structure is kept fixed except for rotations around selected bonds. Each of 
these torsional degrees of freedoms we hereafter refer to as a torsion for simplicity. We denote the i-th rotatable 
bond by Ti and assign its rotational angle a variable ti, with i representing the torsion index. It is convenient to 
identify a conformation of a molecule with M torsions by a torsion vector = …t tt [ , , ]M1 . Without loss of general-
ity, we assume π∈t [0, 2 )i , for all i, knowing that the method remains unchanged if each torsion has its own range 
chosen based on prior knowledge, experimental data, or known symmetries. For simplicity, let us assume all 
torsion angle values are chosen from the same set of d values θ θΘ = …{ , , }d1 . The theoretical precision of this 
discretization scheme increases with d, while the size of the search space dM grows exponentially with the number 
of torsions.

Although it is natural to describe a molecule using a molecular graph, where the atoms and their bonds are 
represented by vertices and edges, respectively, we find it helpful to use the torsions to partition the molecule into 

+M 1 subsets called rigid bodies. The partitioning is performed such that all atoms within a rigid body are inter-
connected through non-torsion bonds. As a result, the relative positions of the atoms within a rigid body, denoted 
by Ra, remain invariant under rotation and are therefore independent of t. This simplified representation of the 
molecule is now easily described by a rigid-body graph G = R T( , ), where  is the set of +M 1 vertices and   is 
the set of M edges. In G, each vertex represents a rigid body and each edge represents a rotatable bond. Two ver-
tices are connected by an edge if their associated rigid bodies are connected by the rotatable bond that the edge 
represents. We will therefore use Ti to refer to both torsion i and its associated edge in the rigid-body graph. We 
further assume that each torsion is free to rotate independently of others, thus restricting the presence of ring 
systems or other cycles in the molecular graph to individual rigid bodies. Under this assumption, the rigid-body 
graph has no cycles and is a tree. An example of a simple molecule and its rigid-body graph is shown in Fig. 1.

The search space of the conformational search problem is a hypersurface described by an energy model (func-
tion) Θ →U: M . For a given t, U t( ) is the molecular energy consisting of the sum of all interatomic potentials in 
the molecule (e.g., van der Waals, torsional, and bending), which are dependent on the relative coordinates of the 
atoms. Various energy models or effective force fields can be used for our purpose, such as the widely used 
“Universal force field” (UFF)36. The conformational search problem, with the objective of finding the global 
minimum-energy conformer of a given molecule, can then be formulated as
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Upon changing the torsion angles of the molecule, some of the interatomic potential contributions will remain 
unchanged, while other contributions will change depending on the torsion angle vector t. To be more specific, 
let us denote the values of the torsion angles on the path connecting Ra to Rb on the rigid-body graph by a vector 
tab. The length of this path is represented by mab, meaning that tab has mab elements. The relative positions of the 
atoms in Ra with respect to the atoms in Rb depend only on the torsions on this path. Now,
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∈ ∈

≠

U U Ut t( ) ( ),

(2)
a R
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ab ab
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where Ua is the sum of the interatomic potentials of the atoms within rigid body Ra, which is invariant under rota-
tion, while Θ →U :ab

mab  such that for a given tab, U t( )ab ab  is the sum of the interatomic potentials of all pairs of 
atoms where one atom is in Ra and the other is in Rb.

Binary optimization formulation for the conformational search problem.  In order to use a quan-
tum annealer to solve the conformational search problem, one needs to reformulate it as a quadratic uncon-
strained binary optimization (QUBO) problem (see the Supplementary Information for more details). To this 
end, we start by applying a one-hot encoding to the discrete values of the torsion angles, establishing a mapping 
between the torsion angle vector space and a binary solution space. That is, for each ti, we assign a binary variable 
xik, ≤ ≤k d1 , such that

θ=
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As a result, ti can be expressed as
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where we add a constraint
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to ensure ti takes one and only one value at a time. The constraint (5) is commonly referred to as a one-hot encod-
ing constraint. Note that after applying the one-hot encoding, any arbitrary function f t( )i  can be written as
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Similar to Eq. (6), a binary representation for U t( )ab  can be found. For simplicity of presentation, let us assume 
that the torsion angles in tab are indexed sequentially from 1 to m, that is, = …t t tt [ , , , ]ab m1 2 . Now,
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where θ θ= … =U t t( , , )ab k m k1 m1
 can be pre-evaluated for all possible dm values of tab.
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R2
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Figure 1.  Illustration of the rigid-body graph for a simple organic molecule (pregabalin). The molecular 
structure, with seven rotatable bonds highlighted in yellow, is shown on the left. The rotatable bonds connected 
to the two methyl groups have been discarded for visual clarity. The associated rigid-body graph is depicted on 
the right.
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Substituting U t( )ab ab  from Eq. (7) into Eq. (2) results in a representation of the molecular energy U t( ) in terms 
of the binary vector x. We denote this representation of the energy function by →E: {0, 1}Md  and write the 
conformational search problem (1) as

∑. . = ∀ ∈ …

∈ .
=

E

x i M

x

x

min ( )

s t 1, {1, , },

{0, 1} (8)
k

d

ik

Md

x

1

To solve the above binary optimization problem using a quantum annealer, one faces three challenges. First, 
the objective function in formulation (8) is not necessarily quadratic as U t( )ab ab  may depend on more than two 
torsions, that is, >m 2ab . Second, it is a constrained binary optimization problem. These two challenges indicate 
that the problem cannot be solved directly on a quantum annealer. The third challenge is that if 

∈
mmax

a b R R
ab

, : ,a b

 is 

not much smaller than M, constructing an instance of formulation (8) becomes very computationally expensive 
due to the pre-evaluation of the coefficients in Eq. (7). In the following section, we propose a method that 
addresses these challenges in order to be able to use a quantum annealer for solving the conformational search 
problem.

Variable Neighbourhood Descent for the Conformational Search Problem
Neighbourhood search, or local search (LS), is known to be an effective heuristic algorithm for solving a large 
number of combinatorial optimization problems. In defining a neighbourhood relation between solutions of a 
problem, local search begins from an initial solution and iteratively explores the neighbourhood of the current 
solution for improvement. It has been shown that a solution produced by a local search algorithm will often not 
be globally optimal, but will be suboptimal with respect to another neighbourhood relation37. When multiple 
neighbourhood relations are considered, the algorithm is often referred to as variable neighbourhood search38. In 
the context of conformational search, a solution refers to a vector of torsion angles t.

Let Nk, for ∈ …k K{1, , }, denote a finite set of neighbourhood structures and N t( )k  be the set of all solutions 
in the k-th neighbourhood of t. Starting from an initial solution and a neighbourhood structure, in each iteration, 
variable neighbourhood descent finds the best solution in the neighbourhood of the current solution. It then 
updates the current solution with the best solution found, and changes the neighbourhood structure before pro-
ceeding with the next iteration. The VND method is summarized in Table 1.

A simple neighbourhood structure is obtained by considering two solutions as neighbours if and only if they 
differ by exactly one torsion angle value. Such a VND heuristic is exactly the LS heuristic described above. While 
computationally inexpensive, the performance of LS can suffer in cases where a decrease in the molecular energy 
cannot be achieved by changing only a single torsion angle value in an iteration. Our proposed VND method 
improves upon LS by exploring more-complex neighbourhoods. In the following, we describe the components 
of the method.

Initial Solution.  The initial solution in Table 1 can be selected in a variety of ways. One may simply choose a 
randomly generated torsion angle vector for the given molecule as the initial solution. Alternatively, one can use a 
greedy construction method. Another approach is to start from a known high-quality solution. This applies when 
using our VND method in conjunction with another conformational search method or by exploiting some prior 
knowledge about a given molecule Table 2.

Neighbourhood Structures.  We now describe a more powerful neighbourhood structure which, to our knowl-
edge, has not been previously studied. Let =G ( , )R T  be a rigid-body graph ′ ⊆  , and G′ be the graph resulting 
from contracting all edges in ′\   (see Fig. 2 for an example). If G′ is a star graph (a tree graph with at most one vertex 
of degree >1), then we say that ′  has the property of 2-torsion dependency. The motivation for using this terminology 
is that any two vertices of G′ are connected with at most two edges (torsions). We label the maximal 2-torsion-dependent 
subsets of   as …, , K1   and their associated star graphs as G1, …, GK. Then, the neighbourhood structure Nk defines 
neighbourhoods containing all solutions which differ only in torsion angle values corresponding to edges in k , for 

= …k K1, , . Solutions in neighbourhoods defined by an arbitrary Nk are also called neighbours under Nk.

Table 1.  Variable neighbourhood descent method.
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Neighbourhood structures are illustrated for an example rigid-body graph G = ( , )R T  in Fig. 3 that represents a 
molecule with three torsions. The maximal 2-torsion-dependent subsets of the torsions are  = T T{ , }1 1 3 ,  = T T{ , }2 2 3 , 
and = T T{ , }3 1 2 . The neighbourhood structure N1 defines neighbourhoods containing all torsion vectors that differ 
only in torsion angle values for T1 and T3. For example, = ° ° °t [5 , 10 , 20 ] and ′ = ° ° °t [0 , 10 , 90 ] are neighbours 
under N1 while = ° ° °t [5 , 10 , 20 ] and ′ = ° ° °t [5 , 15 , 20 ] are not because they differ in the torsion angle value for T2.

Neighbourhood Search.  Based on the discussion in Section 2.2, the problem of finding the best solution in 
N t( )k  can be formulated as a QUBO problem by restricting the optimization problem in (8) to the binary variables 
corresponding to the torsions in k and moving the one-hot encoding constraints to the objective function using 
the quadratic penalty method as follows:


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Here, the θ θU ( , )ij k ki j
 terms represent the interaction energy of the two vertices of Gk that are connected by Ti 

and Tj when θ=ti ki
 and θ=tj kj

. The θU( )i ki
 terms represent the interaction energy of the two vertices connected 

by Ti on Gk when θ=ti ki
 and p is a sufficiently large penalty coefficient that enforces the one-hot encoding con-

straints. The above QUBO problem can be solved using various methods39–41, as well as specialized hardware 
devices such as quantum annealers.

Neighbourhood change.  At each iteration, the neighbourhood is selected based on a random ordering, 
 φ →: , of the torsions. The pseudocode for the neighbourhood change function is given below.

Figure 2.  Example of a 2-torsion-dependent set of edges in a rigid-body graph (left). The star graph G′ (right) 
results from selecting a 2-torsion-dependent set ′  (dashed lines) and contracting all edges not in ′.

T2T1 T3

T2T1 T3

T2T1 T3

T2T1 T3

Figure 3.  Example of finding different neighbourhood structures of a rigid-body graph. The original rigid-
body graph, G = ( , )R T , is shown on the left. All neighbourhood structures defined by the maximal 2-torsion-
dependent subsets of   are depicted on the right.
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Practical considerations.  Here, we detail the practical considerations of the proposed VND method to 
accommodate the use of existing and future quantum annealers.

The formulated QUBO problem in (9) is fully connected, meaning that for all i and j ( ≠i j), the term x xik jki j
 

appears in the objective function. On the other hand, the connectivity of the qubits on the D-Wave 2000Q follows 
a “Chimera graph”; thus, the problem in (9) must be embedded onto the hardware graph using an embedding 
strategy42. There is a limit on the number of variables a fully connected QUBO problem that can be embedded 
onto the graph can have. We take this limitation into consideration by imposing a limit on the number of variables 
in the formulated QUBO problem for each selected subset of torsion angles k . We denote this parameter by s. In 
the following, we explain how this limit is imposed on the formulated QUBO problem.

For the selected neighbourhood structure at each iteration, we (randomly) select a total of s discrete values. 
That is, for each Ti in k, we randomly choose a set of Θ ⊆ Θi  discrete values such that = ∑ |Θ |∈s i T i: i k

. We have 
already defined the N t( )k  neighbourhood as the set of torsion angle vectors t′ that are different from t only in the 
angle values of the torsions in k . In addition, for any Ti in k, ′t i (i.e., the value associated with Ti in t′) takes on 
values only from Θi.

With the above choice of neighbours, for an arbitrary t, N t( )k  contains

∏= |Θ |
∈

S
(10)

k
i T

i
: i k

solutions. However, to find the best solution in N t( )k , we need to pre-evaluate only


∑ |Θ ||Θ | +

∈

≠

s

(11)
i j T T

i j

i j
, : ,i j k

energy terms to formulate the QUBO problem. As seen above, Sk grows linearly with the product of |Θ |i , for all i, 
whereas the growth of (11) is quadratic. This means that the number of energy pre-evaluations grows more slowly 
than the size of the neighbourhood as | |k  increases.

Another practical consideration for our proposed VND method is the stopping criteria. The first stopping 
criterion sets a limit on the computational effort of the method by introducing a maximum number of iterations, 
denoted by B. The second stopping criterion aims to terminate the method early if it becomes stuck at a local 
minimum or finds the global minimum of the problem. For this purpose, we introduce a parameter called A that 
represents the maximum number of consecutive iterations to can be performed without decreasing the energy.

With the above-mentioned practical considerations, the implemented VND method is summarized in Table 3.
Two important features of the VND method is its scalability and ease of adaptation to the size and connectivity 

of the quantum annealer. More specifically, one can simply increase s in the described method to take advantage 
of improvements in the number of qubits and their connectivity. The rest of the method remains intact. It is worth 
mentioning that although the focus here has been on quantum annealers, other QUBO problem solvers could be 
used.

Effect of the molecular structure.  As previously discussed, due to the limitations of current quantum 
annealers, we are able to jointly optimize only a subset of torsions that are 2-torsion dependent at each iteration 
of VND. The potential speedup of the quantum annealer over a naïve exhaustive QUBO problem solver depends 
on the cardinality of the selected subset of torsions.

Since ∑ |Θ |∈i T i: i k
 is fixed, the number of solutions in N t( )k , Sk, is maximized when the cardinality of each Θi is 

the same. That is, when |Θ | = | |s/i k  for all ∈ … | |i {1, , }k , resulting in the maximum number of solutions





=



| |






.
| |

S s
(12)

k
k

k

Sk is an increasing function of | |k  if | | ≥s e/ k , where e is the base of the natural logarithm.
As the potential speedup of the quantum annealer over an exhaustive QUBO solver is dependent on Sk, it is 

favourable to select each k with a large cardinality. The speedup diminishes when | | = 2k , which is the case for 
molecules with linear rigid-body graphs. The above discussion suggests that star-like molecules that have 
rigid-body graphs with high-degree nodes stand to benefit more (than those that do not) from using a quantum 
annealer to solve the QUBO problem at each VND iteration.

Table 2.  Neighbourhood change procedure.
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Experimental Results
In this section, we evaluate the performance of the proposed VND method. We first provide details about the 
molecules used in our experiments and then present the experimental results.

Trial molecules.  The performance of VND was evaluated using a testbed containing the nine molecules 
depicted in Fig. 4. These model systems include three organometallic molecules useful for catalyzing reac-
tions relevant to industry (labelled “A”43,44, “B”45,46, and “C”47,48), a set of three n-alkanes whose basic struc-
tural motif appears in fuels, lubricants, solvents49, and resins50 (labelled by D, E, and F), as well as a set of three 
ortho-phenylene oligomers that are of interest as electronic materials and nanomaterials (labelled “G”, “H”, and 
“I”)51,52.

The choice of model systems A–I was motivated by several considerations. First, it is important to show that 
our method can be applied to a wide variety of conformational search problems of relevance to industry. Second, 
the model systems are representative of a diversity of molecular graphs: systems A–C have star-like graphs, 
whereas D–I have linear graphs, albeit with different structures. Third, the model systems represent a significant 
variety of active torsions, ranging from very modest (e.g., A) to very substantial (e.g., F and I). Another moti-
vation for choosing these systems was the existence of experimental data pertaining to their three-dimensional 
structure (see the Supplementary Information for details).

Energy model.  In our experiments, the Lennard-Jones 6–12 potential is used to model the interaction energy 
of two atoms α and β as

α β ε
σ σ

=





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V

r r
( , ) 2 ,

(13)

12 6

where εαβ is the depth of the potential well, σαβ is the van der Waals bond length, and αβr  is the distance between 
the two atoms. An expression for Eq. (2) is then obtained by summing over all pairs of atoms. Values for the 
parameters εαβ and σαβ are taken from the UFF36 without modification. One should note that while we use the 
Lennard-Jones potential in what follows to provide a proof of concept for the proposed VND method, other force 
fields, that allow for representing the molecular energy as Eq. (2), can also be used.

Results.  We present the results of solving the conformational search problem for the selected molecules using 
the proposed VND method. Since the D-Wave 2000Q quantum annealer is not guaranteed to find an optimal 
solution, we first present results for VND, where an exact QUBO problem solver is used. These results focus solely 
on the performance of the VND method as a conformational search approach by preventing any deterioration 
of the results attributable to the use of a device that has imperfections. For comparison purposes, we also present 
the results achieved by performing a local search heuristic (LS), and a hybrid of the two methods (LS–VND) 
in which a random conformation is first optimized using LS and then passed to VND for further optimization. 
The comparison with LS is helpful in understanding the improvement that can be achieved through the use of 
a more complex neighbourhood than what is used for LS. We also present the VND results with the quantum 
annealer used as the underlying QUBO problem solver. Finally, we compare the results with those found by our 
implementation of the PTMC algorithm for the conformational search problem, a state-of-the-art metaheuristic 
for conformational sampling. Details of the parameters used for VND, the quantum annealer, and PTMC are 
presented in the Supplementary Information.

Reference Conformations.  We compare our results against reference conformations found using a PTMC con-
formational search method. More specifically, we use an initial conformation for each of the selected molecules 
as input to a PTMC algorithm and let it run with a sufficiently large number of sweeps, such that the resulting 

Table 3.  Conformational search VND method.
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reference geometry can be assumed to represent the absolute minimum conformation with a high degree of confi-
dence. Details of this procedure are given in the Supplementary Information. To ensure the fairness and accuracy 
of this comparison, the reference conformations are generated using the same potential energy model as the one 
we used for VND.

Performance Metrics.  The following metrics have been used for performance evaluation.

•	 Success rate: the fraction of runs that found a conformation with an energy within 1 kcal/mol (roughly chem-
ical accuracy) of the reference conformation’s energy.

•	 Number of energy evaluations: the number of molecular energy evaluations needed to arrive at the best found 
conformation, averaged over all runs.

•	 Residual: the energy difference between the best conformation found in a run and the reference conforma-
tion. The normalized residual, when reported, refers to the ratio of the residual to the number of atoms in the 
system.

•	 Time to solution (TTS): the time it took to find the best solution (conformation) in a single run.

Each run was terminated once it found a conformation within 0.1 kcal/mol of the reference conformation, or 
if it reached some other stopping criterion.

VND vs. LS vs. LS–VND.  As a baseline for comparison, we used an exact QUBO problem solver to optimize the 
selected set of torsions at each VND iteration in runs of both VND and LS–VND. The success rate, residual, and 
TTS for each of the three methods, for all nine model systems, are presented in Table 4. Here, the TTS for VND 
includes the time needed for selecting the neighbourhoods, formulating their associated QUBO problems, solv-
ing the QUBO problems with an exact solver, and translating the solutions of the QUBO problems back to torsion 
vectors. The number of energy evaluations reported for the VND method is based on the number of energy eval-
uations required to find the θ θU ( , )ij k ki j

 and θU( )i ki
 coefficients of the QUBO problem in (9). As shown, whereas LS 

is faster than VND and LS–VND, its success rate and residual results are generally inferior to the other two meth-
ods. Our implementation of LS terminates when there is no neighbouring solution which has a lower energy 
value, ensuring that the algorithm terminates at a locally optimal solution with respect to the single-torsion 
neighbourhood. Further, since LS–VND combines both the LS and VND methods, it is not surprising that its 
success probability and residual are generally at least as good as those of LS and VND.

VND Using a Quantum Annealer.  The results for VND using a quantum annealer as the underlying solver 
are presented in Table 5. Here, the TTS includes the time spent on all pre- and postprocessing steps needed 
to solve the QUBO problems on the quantum annealer. Note that the actual time spent using the quantum 
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Figure 4.  Graphical representation of the six model systems studied: three organometallic compounds (A–C), 
three n-alkanes (D–F), and three ortho-phenylenes (G–I). The thick (red) lines represent the torsion bonds. See 
the Supplementary Information for additional details about each model system.
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annealer, referred to as the annealing time, is much smaller than the reported TTS. In addition, to aid in 
visually assessing the found lowest-energy conformations, their graphical representations are provided in 
the Supplementary Information. A comparison of these results with the results of VND when using an exact 
QUBO problem solver (see Table 4) shows that those of the former are of lower quality. It is expected, how-
ever, that spending more effort on tuning the quantum annealer’s parameters would improve these results (See 
Supplementary Information for more details). Another observation from Table 5 is that VND employing a 
quantum annealer to solve QUBO problems has a larger TTS than VND using an exact QUBO problem solver. 
The quantum annealer solves a QUBO problem much faster than the exact solver, so one might think that its 
TTS should also be lower.

To explain this observation, one should note that it is not sufficient to solve QUBO problems merely fast, 
because if they are not solved optimally by the quantum annealer, the VND method may take longer to converge. 
Further, a significant portion of time is spent on transforming the QUBO problems into Ising problems (see the 
Supplementary Information), communicating with the quantum annealer, and mapping the results from the 
quantum annealer back to the logical bits. It is worth noting that elapsed real time is a fair measure of the time 
required to solve actual problems using a quantum annealer. This is in contrast to the customary approach of 
reporting only the annealing time, which is very small in comparison (on the order of a few microseconds per 
annealing cycle).

There are several known factors that make the QUBO problems generated at the VND iterations challenging 
for the current generation of quantum annealers. First, the problem graphs are fully connected, whereas the 
quantum annealer’s connectivity graph is extremely sparse, resulting in each logical bit being embedded onto 
chains of 17 qubits on the quantum annealer. It is difficult to maintain identical states for those qubits, resulting 
in a higher error rate. Second, these problems have a very large range of coefficients, due to the r1/ 12 and r1/ 6 
terms in the Lennard-Jones 6–12 energy model. On the other hand, the couplers of the existing quantum anneal-
ers have a limited bit precision and a fixed range. The large range of coefficients results in a loss of precision, 
which manifests itself in a lower success probability. Third, the current generation of quantum annealers has a 
high level of noise, referred to as intrinsic control error (ICE), leading to a significant loss in precision. Future 
quantum annealers are expected to mitigate these factors, with more-dense hardware graphs, higher bit preci-
sion, and lower ICE levels.

Method
Model 
system

Success 
rate

Num. 
energy 
evaluations

Normalized residual TTS (seconds)

Min 50th 75th Min 50th 75th

VND

A 1.00 4.6 × 104 0.00 0.00 0.00 19.7 90.2 110.2

B 0.60 1.42 × 105 0.00 0.01 0.01 90.9 271.6 320.3

C 0.04 2.11 × 105 0.00 0.13 0.16 127.3 418.7 498.3

D 1.00 1.96 × 104 0.00 0.00 0.00 3.0 10.0 13.8

E 1.00 4.22 × 104 0.00 0.00 0.00 11.7 25.9 30.7

F 1.00 7.25 × 104 0.00 0.00 0.00 34.0 64.1 78.5

G 0.16 1.23 × 105 0.00 0.14 0.21 37.0 101.1 153.5

H 0.00 1.69 × 105 0.02 0.25 0.31 67.5 211.6 243.4

I 0.00 1.87 × 105 0.01 0.30 0.38 155.7 374.1 391.4

LS

A 1.00 1.45 × 104 0.00 0.00 0.00 7.8 9.6 10.6

B 0.03 1.01 × 105 0.01 0.28 0.39 35.0 69.7 91.6

C 0.02 2.47 × 105 0.00 0.16 0.21 84.4 162.4 198.9

D 1.00 2.21 × 104 0.00 0.00 0.00 5.7 8.9 9.9

E 1.00 7.17 × 104 0.00 0.00 0.00 26.5 38.4 41.8

F 0.99 1.53 × 105 0.00 0.00 0.00 70.9 105.2 115.7

G 0.03 1.87 × 105 0.00 0.15 0.18 36.3 112.9 148.2

H 0.00 4.76 × 105 0.05 0.28 0.37 168.5 468.1 580.7

I 0.00 8.10 × 105 0.09 0.29 0.39 354.6 784.2 1078.2

LS–VND

A 1.00 1.45 × 104 0.00 0.00 0.00 7.5 10.3 11.4

B 0.44 2.23 × 105 0.00 0.01 0.13 68.9 294.5 421.7

C 0.04 3.58 × 105 0.00 0.12 0.16 135.6 305.8 474.3

D 1.00 2.16 × 104 0.00 0.00 0.00 5.7 8.7 10.0

E 1.00 7.19 × 104 0.00 0.00 0.00 25.8 38.1 40.9

F 1.00 1.48 × 105 0.00 0.00 0.00 76.6 101.0 109.3

G 0.17 2.30 × 105 0.00 0.15 0.18 26.3 142.0 199.0

H 0.03 5.88 × 105 0.00 0.23 0.31 272.6 576.6 742.7

I 0.02 8.42 × 105 0.00 0.30 0.39 435.1 1048.3 1284.8

Table 4.  Results for VND, LS, and LS–VND, when using an exact solver as the underlying QUBO solver. For 
each model system we report the minimum, median, and 75th percentile of the residual and TTS, over 100 runs.
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Comparison with PTMC.  The results for PTMC are presented in Table 6. PTMC had a high success rate for all 
model systems except for system F. It is worth noting that PTMC’s TTS and number of energy evaluations are 
generally significantly higher than that of VND.

Effect of the Neighbourhood Size on VND’s Performance.  In the VND experiments discussed above, we restricted 
the neighbourhood size, s, in each VND iteration to 63, the largest size of QUBO problem, whose underlying 
graph is complete, that can be solved using an equal-length embedding on the quantum annealer. In what follows, 
we report on the effect of s on the performance of VND. This is useful in predicting the performance improve-
ment achievable by increasing either the number of qubits or their connectivity.

Table 7 presents the results for molecules B and C for different neighbourhood sizes when an exact solver is 
used to solve the QUBO problem at each iteration. The reason for choosing these two molecules is that they have a 
star-like structure and, as discussed in Section 3.6, the advantage of using a quantum annealer over an exact solver 
is expected to be more pronounced for these molecules.

As shown, increasing the neighbourhood size from 30 to 60 and then from 60 to 90 noticeably improves the results 
for both molecules. However, the improvement exhibits diminishing returns when the neighbourhood size is increased 
beyond 90. We expect similar behaviour to occur at different neighbourhood sizes for different families of molecules.

Neighbourhood 
Size (s)

Model 
System

Success 
Rate

Residual (kcal/mol)

Min 50th 75th

30
B 0.07 0.2 16.7 26.0

C 0.00 1.1 19.4 25.6

60
B 0.39 0.0 1.3 1.9

C 0.04 0.1 13.4 17.1

90
B 0.55 0.0 0.9 1.5

C 0.09 0.0 8.7 14.8

120
B 0.58 0.0 0.9 1.5

C 0.10 0.1 8.7 14.1

Table 7.  Effect of the neighbourhood size on the performance of VND. For each model system, we report the 
minimum, median, and 75th percentile of the residual, over 500 runs.

Model 
system

Success 
rate

Num. energy 
evaluations

Normalized residual TTS (seconds)

Min 50th 75th Min 50th 75th

A 0.00 4.56 × 104 0.01 0.05 0.06 156.1 330.2 366.4

B 0.00 4.99 × 104 0.12 0.47 0.76 136.0 288.9 395.5

C 0.00 9.03 × 104 0.14 0.38 0.62 300.9 507.3 726.9

D 1.00 3.86 × 104 0.00 0.00 0.01 299.0 516.4 608.0

E 0.72 8.24 × 104 0.00 0.01 0.02 235.8 639.1 815.6

F 0.60 1.17 × 105 0.00 0.02 0.02 533.7 961.4 1038.8

G 0.00 9.28 × 104 0.08 0.24 0.34 385.8 788.3 990.1

H 0.00 1.27 × 105 0.19 0.43 0.64 445.7 982.2 1107.3

I 0.00 1.7 × 105 0.25 0.52 0.75 511.1 1221.2 1648.8

Table 5.  Results for VND using a quantum annealer as the underlying QUBO solver. For each model system we 
report the minimum, median, and 75th percentile of the residual and TTS, over 25 runs.

Model 
system

Success 
rate

Num. energy 
evaluations

Normalized residual TTS (seconds)

Min 50th 75th Min 50th 75th

A 1.00 1.12 × 105 0.00 0.00 0.00 40.1 107.5 143.3

B 1.00 3.83 × 106 0.00 0.00 0.00 301.0 787.5 1092.8

C 1.00 3.19 × 106 0.00 0.00 0.00 585.5 2068.3 3025.0

D 1.00 4.05 × 104 0.00 0.00 0.00 52.1 87.9 108.0

E 1.00 1.03 × 105 0.00 0.00 0.00 195.6 290.5 326.3

F 1.00 2.00 × 105 0.00 0.00 0.00 457.4 685.3 776.0

G 1.00 2.52 × 106 0.00 0.00 0.00 154.8 710.4 1085.0

H 0.60 5.54 × 106 0.00 0.00 0.05 1051.4 4711.6 5975.8

I 0.12 3.58 × 106 0.00 0.07 0.09 3025.9 5758.3 6631.8

Table 6.  Results for PTMC. For each model system, we report the minimum, median, and 75th percentile of 
the residual and TTS, over 100 runs.
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Conclusion
In this paper, we have presented a variable neighbourhood descent (VND) method for conformational search. We 
introduced the concept of a rigid-body graph and used this simplified molecular structure to carefully define a 
neighbourhood structure to allow for efficient optimization using a binary quadratic optimizer. Based on current 
quantum annealing hardware, we selected a 2-torsion-dependent neighbourhood at each iteration such that find-
ing the best solution in the selected neighbourhood could then be formulated as a QUBO problem. The size of the 
neighbourhood can be chosen such that the method can be adapted to the number of available qubits as well as to 
their connectivity on the quantum annealer. As a result, the proposed method is not only well-suited for current 
hardware, but can easily be adapted to take advantage of hardware improvements. Whereas the proposed method 
can be used as a standalone conformational search approach, it can be combined with existing conformational 
search methods for potentially improved performance.

Beyond a simple presentation of the method, we also conducted a preliminary case study based on an imple-
mentation of the VND method using the D-Wave 2000Q quantum annealer for two families of molecules. In 
this exploration, we compared the results of our method with those of PTMC, a state-of-the-art solver for con-
formational search. To understand how much of the gap between the results of PTMC and those of VND used 
with a quantum annealer can be attributed to the imperfections of the quantum annealer, we replaced it with an 
exact QUBO problem solver. VND used along with the exact solver was able to find noticeably better conforma-
tions than those found using VND and the quantum annealer together. This observation points to the potential 
improvement achievable in the short term through more-advanced tuning of the existing quantum annealer, and 
in the long term using improved hardware.

This work suggests a number of possible future research directions. For example, investigating refined neigh-
bourhood change functions rather than using a random ordering of the torsion angles to choose the neighbour-
hood could lead to significant improvements. This could involve further exploitation of the molecular graph or 
the solutions from previous VND iterations. In addition, an improved selection of the s discrete points at each 
VND iteration to account for hardware limitations could further improve the results. We leave these improve-
ments for future work.

We believe that the proposed method, based on careful hardware-aware neighbourhood selection, holds the 
potential to provide promising solutions to important optimization problems. While PTMC shows better per-
formance over the molecules studied, our method has opened a scalable path forward for leveraging emerging 
quantum technologies for conformational search, a critically important problem in the field of chemical and 
materials science.
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