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Percutaneous interventions have completely refashioned the management of children
with congenital heart diseases (CHD) and the use of non-invasive imaging has become
the gold standard to plan and guide these procedures in the modern era. We are now
facing a dual challenge to improve the standard of care in low-risk patients, and to shift
our strategies from the classic open chest surgery to imaging-guided percutaneous
interventions in high-risk patients. Such rapid evolution of ultrasound technologies over
the last 20 years have permitted the integration of transthoracic, transesophageal
and intracardiac echocardiography into the interventional workflow to improve image
guidance and reduce radiation burden from fluoroscopy and angiography. Specifically,
miniaturization of transesophageal probe and advances in three-dimensional (3D)
imaging techniques have enabled real-time 3D image guidance during complex
interventional procedure, In addition, multimodality and fusion imaging techniques
harness the strengths of different modalities to enhance understanding of anatomical
and spatial relationship between different structures, improving communication and
coordination between interventionalists and imaging specialists. In this review, we aim
to provide an overview of 3D imaging modalities and multimodal fusion in procedural
planning and live guidance of percutaneous interventions. At the present times, 3D
imaging can no longer be considered a luxury but a routine clinical tool to improve
procedural success and patient outcomes.

Keywords: interventional echocardiography, 3D echocardiography, multimodality imaging, transcatheter
procedures, advanced imaging

INTRODUCTION

Percutaneous interventions have completely refashioned the management of children
with congenital heart diseases (CHD) and the use of non-invasive imaging has
become the gold standard to plan and guide these procedures in the modern era.
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Transesophageal probe miniaturization and advanced live
Three-dimensional (3D) imaging have permitted a massive
step forward in the ultrasound imaging guidance, and 3D
echocardiography is now recommended to guide catheter-based
interventions (1), since it provides high-quality and real-time
images without additional X-rays exposure.

In addition, fusion imaging systems, anatomical intelligence
and multimodality imaging can improve the understanding of
anatomical and spatial relationship between different structures
and provide better communication and coordination between
interventionalists and imaging specialists.

In this review, we aim to provide a “state of the art” of the
different imaging technologies that have been integrated to the
catheterization laboratory workflow and that are going to shape
the future of congenital transcatheter procedures.

ECHOCARDIOGRAPHIC TECHNIQUES

Transthoracic Echocardiography
Transthoracic echocardiography is the milestone of imaging in
CHDs and should be performed before and after any cardiac
catheterization procedure. In the pre-procedural planning it
guarantees a complete anatomical assessment; it can be helpful
in refining the diagnosis in patients referred for percutaneous
procedures, and in determining the need for mechanical support
in presence of ventricular dysfunction (2). In the post-procedural
time, it is fundamental to rule out complications such as
pericardial effusion, device dislodgment, valve or ventricular
function impairment.

Although the role of TTE has been limited in the
catheterization laboratory in favor of transesophageal and
intracardiac echocardiography in older patients, it still plays a
key role in some procedures, such as patent ductus arteriosus
closure in premature babies (3), atrial septostomy (4) and aortic
and pulmonary valvuloplasty in children (5, 6).

Transesophageal Echocardiography
General Considerations
Transesophageal echocardiography is considered the gold
standard technique to guide interventional procedures.
Miniaturization of probes allows the utilization in neonates,
with a suggested weight-limit of > 3.0–3.5 kg for the mini-
multiplane probe and > 2.5 kg for the micro-multiplane
one (7). Adult probes can be safely used in children
weighing at least 18–20 kg (8) to take advantage of the 3D
technology, nowadays available only in adult probes, but
miniaturization of 3D TEE probes in a close future will
allow another step forward in advanced 3D guiding for
percutaneous interventions.

Transesophageal Echocardiography (TEE) image quality is
better than TTE when analyzing atrial and ventricular defects,
left sided lesions and to monitor the catheter position (9), due
to the esophageal position of the ultrasonic transducer and to
the possibility of manipulating the probe in in several directions.
It can be advanced and withdrawn through the esophagus

(from upper esophageal to deep transgastric views) allowing the
visualization of more inferior and superior cardiac structures,
respectively, while a clockwise and counterclockwise rotation
permits to assess right and left side structures. Also, the probe
tip can be gently anteflexed or retroflexed to better visualize
anterior and posterior structures and flexed to the left or to the
right; this left-to-right flexion is usually not available in pediatric
probes, due to the small dimension of the esophagus. Lastly,
the multiplane probe allows a rotation of the scanning plane
through 180◦ (7).

Transesophageal Echocardiography (TEE) decreases
fluoroscopic time, radiation (10) and contrast load, and
this is very important considering that pediatric congenital
patients will undergo several catheterizations during their life.

For patient comfort, TEE in the catheterization laboratory
is usually performed under sedation/general anesthesia, thus
requiring orotracheal intubation. Probe insertion requires
expertise to avoid esophageal injuries. Imagers should also be
familiar with some technical features of probes, such as the
critical tip temperature above which probes are shutdown to
prevent esophageal burns (usually set at 42.0◦C) (11).

2D or 3D Transesophageal Echocardiography? Both!
Echocardiography is nowadays such a multimodality tool that
imagers can easily pass from bidimensional echocardiography
(2D) standard images to 3D detailed anatomy of cardiac
structures and multiplane reconstruction.

3DE adds value to 2D technique, since it allows a real 3D
visualization of complex cardiac anatomies that is, in 2DE, only
in imagers’ mind. However, it should be remembered that the
acquisition of good 2D images is fundamental to obtain valuable
3D data. Thus, 2D and 3D echocardiography (2DE, 3DE) have
a complementary role during interventional procedures, and it
is recommended to include 2D, Color flow and spectral Doppler
imaging as part of baseline TEE assessment (7).

Currently available 3D TEE transducers operating frequencies
ranges between 5 and 7 MHZ. There are different 3D
acquisition modes that can be used during procedures guidance,
including (1, 12):

- 2D simultaneous multiplane: it gathers 360◦ images,
so more than one plane of visualization is available
simultaneously (X-plane), with the main disadvantage of
a low temporary resolution.

- Real-time 3D (live 3D and 3D zoom): it allows an
adjustable pyramidal volume acquisition (around
30◦

× 60◦). It requires a small region of interest to
preserve a satisfactory spatial and temporal resolution
(frame rate: 20–30 HZ) (13). It is the most used modality
in interventional echocardiography, to assess atrial and
ventricular septal defects (ASD, VSD) and to guide their
percutaneous closure (14).

- ECG-gated multi-beat: the acquisition of a large
field of view (usually 60◦

× 60◦) with high-temporal
resolution (frame rate: > 30 HZ) makes this modality
widely used in pediatric interventions. The drawback
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related to the potential creation of breathing artifacts
(stitching artifacts), can be easily resolved during
interventional echocardiography by briefly suspending
mechanical ventilation.

- 3DE color flow Doppler: it is an additional tool to the above
modalities, but its use reduces temporary resolution.

Intracardiac Echocardiography
Phased-array intracardiac Echocardiography (ICE) requires
an additional venous femoral approach (8 or 10 F) to
advance the ICE catheter to the right atrium and displays
cardiac images from inside the heart. The transducer can
be deflected in four directions and is available with 2D
and Color-Doppler techniques, but imaging is limited to
a single longitudinal plane (90◦) (7). It provides a real-
time assessment of cardiac anatomy during interventional
procedures such as ASD closure, and a good guidance for
catheter manipulation in relations to the different anatomic
structures (15).

3D technology is also available, with the possibility of
acquiring a volume of 60◦

× 15◦ at a volume rate of 20, on a 10-
French probe (16, 17). However, the experiences are limited and
the costs still high.

Intracardiac Echocardiography (ICE) can be performed by
the interventionalists themselves, usually under local anesthesia,
thus avoiding intubation and the risks related to esophageal
trauma. It also reduces fluoroscopy exposure and procedural
timing (18). However, a learning curve is necessary to understand
how to manipulate the probe (19) and it should not be
considered a risk-free technique, since cardiac and venous
perforation, arrhythmias, and thromboembolism have been
described (9).

May I Say?
To provide an efficient procedure and the best as possible
result, a good communication and coordination between
interventionalists and imaging specialists is mandatory, starting
from pre-procedural planning to post-procedural monitoring.
During the procedures, they should use a common terminology
and spatial orientation. The echocardiographer must be familiar
with procedures and guarantee the best echocardiographic
projections to help the interventionalists who, in turns, should
communicate effectively with the imagers and pay attention to
his suggestions (20).

These considerations lead to an important message: in
the Cath Lab, physicians cannot improvise as imagers. As
consequence, a dedicated and standardized training in large-
volume centers (> 500 TEE/year) under the guidance of senior
experts, and including a defined number of different procedures
as well as the possibilities of obtaining international certifications
is advocated and should be followed by cardiologists who will be
in charge of guiding percutaneous procedures, as recommended
by scientific societies (21). This is even truer in the context
of CHDs procedures, where the variety of anatomic substrates,
lesions and surgical results should be interpreted and managed
by trained operators.

ECHO-GUIDANCE IN THE CATH-LAB:
CLINICAL APPLICATIONS

Ostium Secundum Atrial Septal Defect
Closure
Percutaneous technique is now considered the treatment of
choice for OS-ASD closure (22). TTE is usually sufficient in
the preoperative phase to select patients by evaluating rims and
size of defects. However, TEE is the best imaging technique for
carefully assess the interatrial septum. Periprocedural imaging
should assess:

- number, size, and area of defects: for a single defect, the
largest diameter measured in two perpendicular planes
is taken for sizing. Defects > 38 mm are considered as
complex, but percutaneous closure has been reported in
highly expertise centers (23).

- rims’ size: for a complete 2D evaluation, a rotation from
0◦ to 180◦ should be performed; rims are measured
at approximately 0◦ (posterior and antero-inferior), 45◦

(posterior-inferior and antero-superior), 90◦ (posterior-
inferior and posterior-superior), 135◦(coronary-sinus and
posterior-superior) (24); to date, percutaneous closure of
ASD with deficient posterior-inferior rim (< 5mm) is not
recommended (25) due to the risk of device embolization
and potential right-left shunt caused by straddling of
the inferior vena cava. Deficiency in other rims is not a
contraindication to percutaneous closure.

- features of the interatrial septum, particularly the
presence of atrial septal aneurysm and/or multifenestrated
septum (26).

- pulmonary venous returns.

3DE should routinely be used in ASD assessment, and some
live 3D modalities can rapidly be acquired during procedures.

While X-plane allows the simultaneous visualization of
two perpendicular planes, thus granting rims and diameters
assessment, 3D zoom from the mid—esophagus position
provides en face views of defects, either from the right or from
the left atrium, and a more precise localization and definition
of the surrounding structures, intuitive for interventionalists (27,
28). Also, it estimates more accurately the shape (oval or round),
the maximum and minimum diameter and area of defect, thus
allowing a correct device choice without the need for balloon
sizing (29).

Live 3D is also particularly helpful in complex cases, such
as multiple/fenestrated defects or when multiple devices are
needed (30). In case of multiple defects guarantees a better
visualization of both catheters position and defects, facilitating
catheter crossing the septum through the main defect to assure
the correct positioning of the main device. After device release,
3D imaging provides detailed information about device position,
shape and stability, residual shunts, and potential interference
with aortic/atrio-ventricular valves or with systemic/pulmonary
venous return (31). An example of double device implantation
for residual ASD is shown in Figure 1.
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FIGURE 1 | Atrial septal defect (ASD) closure with two devices. Residual ASD (yellow arrow) after device release (A); live 3D echo showing the guidewire passage
(yellow arrow) through the residual defect (B); 2D visualization of the devices (C); 3D visualization of devices position and shape (D).

Ventricular Septal Defects Closure
Transcatheter closure of muscular and, to a lesser extent,
perimembranous ventricular septal defects (mVSD, pmVSD) is
nowadays a valid alternative to surgical closure (32).

Imagers should know the main steps of the procedure,
which could be performed with either an anterograde or
retrograde approach.

Transthoracic Echocardiography (TTE) and TEE, either 2D or
3D, are mandatory in the preoperative and intraoperative phase
respectively, to determinate the VSD location, morphology, size,
the relationship to the aorta (for pmVSD) and to make the device
selection choice.

Real-time 3DE allows a unique en face view of VSDs from
the right or left ventricular side and a complete evaluation of
relative changes in VSD area throughout the cardiac cycle, with
an overall acquisition time close to that of a 2DE study (33). Then,
it better defines perimembranous ventricular septal aneurysms,
especially regarding the presence and extension of accessory
tricuspid tissue (34); it permits to visualize the tricuspid valve
chords and the defect in a single projection as well as to exclude
the presence of aortic valve prolapse, which can be difficult to
visualize on 2DE (35).

As for pmVSDs, the choice of the device size is made
considering that the device left-side size should be at least twice
the minimum VSD diameter on the right ventricular septum and
equal to or 1–2 mm greater than the diameter of the VSD at the
left ventricular opening (36). As for mVSD, an occlude 1–2 mm
larger than the maximum size of the defect is chosen (37).

Live 3DE is also helpful during and after device
deployment, to check the position of the two discs across
the interventricular septum, and to look out for potential
residual shunt as well as for aortic and tricuspid valve function.
An example of perimembranous VSD closure is shown in
Figure 2.

Coronary Artery Fistulae
Transcatheter closure of coronary artery fistulae is feasible, but
it requires an adequate preoperative assessment, including TTE
and, sometimes, cardiac Computed-Tomography.

Echocardiographic imaging of fistulae can be challenging; 2D
TTE and 2D TEE can give information about origin and distal
exit points of fistula, as well as volume overload and severity of
shunt (38), but they may have limitations in tracing its course and
precisely define the site of drainage (39). Although limited, some
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FIGURE 2 | Percutaneous closure of perimembranous ventricular septal defect (pmVSD). Transesophageal echocardiography (TEE), especially 3D, permits
visualization of catheter passage through the aortic valve (A) and in the right ventricle (B) (yellow arrow), and live monitoring during (C) and after device release (D)
(yellow arrow).

experiences of percutaneous procedures under 3D TEE have been
reported, highlighting how 3DE can add additional values in
these complex scenarios (40, 41).

Percutaneous Interventions in Patients
With Fontan Circulation and Atrial Switch
Few data is available on the role of echocardiography during
percutaneous interventions on patients with Fontan circulation.
3D TEE is useful to close fenestration situated in hardly
approachable positions (42) and to identify additional leaks
in the circuit as well as the presence of thrombus during
electrophysiologic procedures (43).

Among the long-term sequelae after atrial switch operation for
D-Transposition of Great Arteries, baffle leaks and obstruction
are common. Although the use of 2D TEE to aid stent placement
for systemic venous baffle obstruction/baffle leak is known to be
safe and effective (44) only 3DE can precisely localize the position
of the baffle leak, thus allowing a successful percutaneous closure
(45). An example of baffle leak closure is shown in Figure 3.

Lastly, patients with Fontan circulation or atrial switch are
at-high risk for arrythmias, and catheter ablation is more
and more performed. However, considering their anatomical
complexity and the need for transbaffle or transconduit puncture

to access the right atrium, a meticulous procedural planification
is required. Puncture simulation based on computed tomography
(CT) dataset is helpful in targeting the optimal puncture site,
and intraoprocedural TEE or ICE are mandatory to guide the
puncture and prevent complications (46, 47).

Tricuspid and Mitral Valve Interventions
Patients with CHDs are at risk for surgical reoperations and
carry a high surgical risk, often due to previous multiple
interventions. So, the interest in percutaneous valve-in-valve
implantations is growing, especially in patients with Ebstein
anomaly with failing bioprosthesis (48) and in adults with left-
sided degenerated bioprosthetic valves (49). However, promising
data about transcatheter mitral valve replacement in children
with CHD has also been published (50). Intraprocedural TEE
facilitates valve sizing and alignment to avoid left outflow tract
obstruction; it evaluates valve-in-valve function immediately
after the procedure, as well as the presence of potential leaks. 3D
TEE adds value in determining dysfunctional bioprosthetic valve
morphology before the procedure and valve-in-valve geometry
after (51).

Severe systemic tricuspid valve regurgitation (STVR) is
common either after atrial switch operations or in patients
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FIGURE 3 | 3D image of pulmonary venous channel in a patient who
underwent atrial switch (A). Baffle leak closure (B).

with congenitally corrected transposition of great arteries, and
percutaneous repair with MitraClip devices might represent an
option to improve symptoms in these complex patients (52,
53). To date, only one case of percutaneous treatment of STVR
with MitraClip device after atrial switch has been published, and
procedure summary is shown in Figure 4. Pre-procedural CT
determined the appropriate baffle puncture site, while 3D TEE
identified the anatomical orientation of the systemic tricuspid
valve, guided real-time the puncture site, and monitored the clip
release and valve function (52).

Aortic and Pulmonary Valvuloplasty
The goal of percutaneous balloon aortic valvuloplasty in neonates
and children with severe aortic stenosis is to achieve the lower as
possible gradient with the least degree of aortic regurgitation.

Since oversized balloons (balloon/annular ratio > 100%)
are associated with an increased risk of aortic regurgitation,
precise measurements of aortic annulus are essential (54)
to avoid this complication. Valvuloplasty is usually initially
performed with a balloon whose diameter is 80–90% of the aortic
annulus (55). 2D and 3D echocardiographic measurements are
well correlated and provide accurate measurements and good

procedural results (5, 56). However, 3D echocardiography assures
a better understanding of the aortic annulus shape, which is
usually oval, and allows more reliable values compared to 2D,
which often underestimates the aortic annulus diameter (5).

Also, recent data showed that percutaneous balloon
pulmonary valvuloplasty under echocardiographic guidance
seems to have the same results as standard valvuloplasty but with
lower contrast load and radiation, which is of great importance
in pediatric patients (6).

Patent Ductus Arteriosus Closure
Currently, PDA closure in extremely low birth weight infants
relies almost exclusively on TTE guidance with high-frequency
probes (57). Premature infants have tiny echocardiographic
windows, thus the challenge for imagers is to take clear images
moving in a very limited space.

Different measures are needed to help in device choice, such
as PDA diameter at the aortic and pulmonary end, and PDA
length (3). Usually, they are acquired from a high-parasternal
ductal view and suprasternal views. All the measurements should
be taken before instrumenting the PDA.

After PDA device deployment, the presence of residual
shunt, as well as potential left pulmonary artery and aortic
obstruction must be assessed. A Doppler velocity greater than
2.5 m/s associated with aliasing at Color-Doppler and 2D images
consistent with obstruction should advocate, if possible, device
repositioning (57).

Fetal Cardiac Intervention
In parallel with the improvement in fetal echocardiography
and prenatal diagnosis, the interest in performing percutaneous
interventions in fetuses either carrying potential progressive
diseases through gestation or at high risk for demise in utero/life
threatening at birth is growing (58).

Fetal aortic stenosis highly likely to develop hypoplastic heart
syndrome, pulmonary atresia with intact ventricular septum,
pulmonary stenosis and atrial septal interventions are the most
widely performed FCIs (59). Alongside with its role in patient
selections, echocardiographic guidance is mandatory during the
procedures to:

- measure the aortic annulus (60) or the tricuspid
annulus and the RV dimension (61), according to the
different procedures.

- assist the percutaneous puncture of the maternal abdomen,
fetal chest wall and myocardial wall.

- guide atrial septostomy or interatrial stent placement to
decompress the left atrium in hypoplastic heart syndrome
in patients with intact or restrictive atrial septum (59).

3D IMAGING AND MULTIMODAL FUSION
TECHNIQUES

The growing diversity and complexity of percutaneous cardiac
interventions necessitates true 3D visualization of cardiac
anatomy to facilitate optimal planning and tailored treatment.
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FIGURE 4 | MitraClip implantation for systemic tricuspid valve regurgitation. (A,B) Catheter and needle are positioned at the level of the anterior part of the intra-atrial
inferior vena cava channel under transesophageal echocardiography (TEE) guidance. The 80◦ TEE plane shows needle tenting and guarantees a distance of at least
40 mm between the tenting and the systemic atrio-ventricular valve (SAVV) and the alignment with the SAVV. (C) The balloon is inflated to enlarge the transbaffle
access. (D) TEE shows the right to left shunt on color doppler after balloon inflation. (E,F) The guidewire is positioned in the systemic atrium to advance the MitraClip
sheath. (G,H) MitraClip sheath is positioned on the systemic atrium at 40 mm or more from the SAVV. (I,J) The MitraClip system is advanced through the sheath and
positioned on top of the jet origin, with the clip fully opened. Perpendicular orientation of the clip relative to the anteroseptal commissure is guided by the Xplane
3DTEE in the mid-esophagus position. (K) XTR MitraClip fully closed at the level of the anteroseptal commissure creates a double-orifice SAVV with two mild residual
jets on color doppler. (L) Double-orifice SAVV on 3D Zoom true view mode after XTR clip insertion. (M) Inferior vena cava channel angiogram after placement of an
8 mm atrial septal defect (ASD) device to close the transbaffle access showing an absence of obstruction. (N) The 80◦ TEE view showing no residual shunt at the
level of the ASD device. (O) Post- MitraClip computed tomography showing the position of the clip at the level of the anteroseptal commissure.

Whilst fluoroscopy remain the cornerstone of imaging in
the catheterization laboratory, 3D imaging and multimodal
fusion techniques using rotational angiography (RA), CT,
magnetic resonance imaging (MRI), and TEE have gained an
increasing importance in the interventional workflow. Advanced
computing technologies and user-friendly interfaces allows
efficient generation of high-quality 3D reconstructions from
pre procedural or real time volumetric data sets to plan and
guide interventions.

3D Rotational Angiography
Rotational angiography uses fluoroscopy C-arm rotation in
concert with timed contrast injection to generate multiple 2D
datasets that can be reconstructed into high resolution 3D
models. Both the dynamic 2D rotational angiogram and 3D
reconstruction provide valuable spatial information of the target
lesion and relationships to adjacent anatomy such as the airways
which is not available from biplane 2D angiography. Several
studies have reported an additive diagnostic yield of 3D RA when
applied in the evaluation of pulmonary vasculature following
cavopulmonary connection in single ventricle patients, which
led to changes in patient management (62–64). Because the
reconstructed 3D model is in geometric correspondence with the
C-arm coordinate system, it can be manipulated to define optimal

projections for intervention and overlaid on live fluoroscopy
for continuous procedural guidance. These functionalities have
been shown to impact positively on the performance and
outcomes of various congenital and structural interventions
(65–73).

Application of 3D-RA during percutaneous pulmonary valve
implantation (PPVI) enables complete evaluation of RV outflow
tract morphology and calcification patterns and assessment of
potential coronary or aortic compression during balloon inflation
at the intended site of valve deployment (70). Further, real time
acquisition of RA after positioning of stiff guidewire provides
3D roadmaps with minimal anatomic shift, facilitating precise
deployment of the transcatheter valve.

An initial concern with 3DRA is the potential for additional
radiation burden. However, published experience of 3DRA for
various cardiac interventions have reported comparable or lower
exposure rates to standard biplane angiographic acquisitions,
particularly following dose optimization strategies (65, 67,
68, 74).

Image Fusion
Fusion imaging is the overlay of 3D rendered volumes acquired
from different imaging modalities on live fluoroscopy for
procedural guidance. A pre-requisite for image fusion is the
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FIGURE 5 | Use of echocardiography-fluroroscopy fusion (EFF) to facilitate mitral paravalvular leak (PVL) closure. (A,B) Anatomical markers placed on fluoroscopy
and echocardiography. Marker 1 (yellow arrow) indicate position of transeptal puncture. Marker 2 (white arrow) indicate site of mitral PVL. (B) Color flow Doppler
confirming mitral PVL. Combined EFF image allows efficient crossing of PVL (C,D). Continuous feedback from EFF facilitates alignment of delivery sheath and device
deployment. (E) Fluoroscopy showed good device position post release, (F) confirmed by echocardiography and no residual leak was observed. Courtesy of Dr.
Juan Pablo Sandoval, Instituto Nacional de Cardiologia Ignacio Chavez, Mexico City, Mexico.

spatial and temporal alignment of images, a process termed
image registration.

Static Computed Tomography/Magnetic Resonance
Imaging-Fluoroscopy Fusion
Computed tomography (CT) is the most commonly used
modality as the high-resolution acquisition of vasculature and
airway allow for easy segmentation and registration. MR imaging

has the advantage of avoiding additional radiation exposure
and the ability to incorporate cardiac and respiratory motion
during acquisition may improve image registration. Multiple
approaches have been described for image registration, including
automated 2D-3D registration in combination with fiducial
markers, or manual refinement with spine, airways, catheter
movement or cardiac silhouette as reference points (69, 75–78).
Fusion of preprocedural CT/MRI for various interventions such
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FIGURE 6 | Preprocedural simulation of sinus venosus atrial septal defect percutaneous closure. Courtesy of Philips Healthcare.

as PPVI (79), coarctation stenting (77), pulmonary artery and
vein interventions (69, 75) and paravalvular leak closure [(75),
Figure 5], have been reported to improve procedural efficiency,
thereby reducing contrast administration and radiation dose
(76). Current limitations to image fusion with pre-procedural
dataset include registration error caused by differences in patient
positioning or motion and distortion of anatomy by rigid wires
or delivery sheaths during the procedure. Development of new
algorithms and refinement of image registration processes are
expected to address these limitations.

Dynamic Transesophageal Echocardiography
-Fluoroscopy Fusion
Echocardiography- fluoroscopy fusion (EFF) overlays dynamic
2D/3D soft tissue information of the cardiac structure of
interest on live 2D fluoroscopy. Distinct advantages of this
fusion modality include the ability to show real time changes
in anatomy during the procedure, monitor for complications,
and comprehensive assessment of post-procedure outcomes,
providing important feedback to the operator. Image registration
is performed by tracking the movement of the transesophageal
probe on fluoroscopy. The EFF system automatically match
and align a computer-based model of the TEE probe with
the fluoroscopic image of the probe, allowing continuous and
instantaneous spatial registration of the two modalities each
time fluoroscopy is activated. After registration, the 3D TEE
volume (field of view cone) is displayed in the same anatomic
alignment as the fluoroscopic projection. Anatomical ‘markers’
can be placed to label the structure of interest. The markers are
visible in all views of the 3D TEE volume data and in spatially
correlated locations on the fluoroscopic image. Other features

including color overlay and 3D anatomic rendering additional
valuable information to guide specific interventions. Such
exposition of the target lesion/cardiac structure facilitates precise
catheter manipulation for crossing of defects or positioning
of devices and has been proven useful for ASD and VSD
closure, specifically in fenestrated defects (79, 80), percutaneous
pulmonary and tricuspid valve implant (79, 81), transeptal
puncture and Fontan fenestration creation (69, 82), mitral
valve procedures (83, 84) and paravalvular leak closures (82).
Several centers have reported decreased fluoroscopy time and
radiation dose when using EFF for ASD closure (79). In
comparison to image fusion with high resolution CT/MRI,
inherent drawbacks of 3D TEE fusion include the limited field
of view especially with imaging of anterior structures, variable
3D image resolution, and susceptibility to interference from
interventional equipment. Currently, the use of EFF is restricted
to patients weighing > 20kgs because the adult 3D TEE probe
cannot be placed in small patients (82).

3D Printing, Digital Reality Technologies
and Holography
Despite the advances in 3D imaging techniques, display of
3D data on conventional 2D screen hampers depth perception
and appreciation of the complex spatial relations of cardiac
structure. Advances in biomedical engineering have led to three-
dimensional printing or additive manufacturing that bridges
this gap through creation of a physical replica from CT and
3D RA data. The printed models allow true 3D visualization
of anatomy (85), procedural simulation (86) and device testing
(87), specifically for complex anatomies (88) or high-risk
procedures and novel interventional procedures such as the
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FIGURE 7 | Digital-reality technologies enable true three-dimensional (3D) modeling and simulation prior to patent ductus arteriosus (PDA) stenting. (A) The 3D
model of the PDA in relation to the airway, can be interrogated (B) using a range of interactive features including (C) measurement of distances in 3D space and
(C,D) overlaying of stent in the PDA. (E,F) Visualization of the morphology of the 3D model in unlimited planes allows selection of optimal angiographic projection for
intervention and planning of the number of stents and length of stent to cover the entire PDA. Post procedure angiography showing position of PDA stent as planned
with unobstructed flow into branch pulmonary arteries.

recently described covered stent correction of sinus venosus
ASD (89, 90) (Figure 6). Limitations of 3D printed models
for procedural simulation are the static representation of the
anatomy and structural properties of the printed material that
do not respond to implants, ballooning or stenting in the same

way as native tissue. Additionally, the time-consuming post-
processing and manufacturing required for 3D printing remain
important barriers to widespread adoption. Special efforts are
being made to integrate physicians’ and biomedical engineers’
work, and this is likely to improve in the next future not only
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the materials used to build the models but also the quality of the
models, making them more realistic and useful (91).

Digital reality technologies have emerged as an alternative 3D
visualization platform which can be used not only for planning,
but also to assist execution of procedures (Figure 7). The ability
for fully automated and instantaneous generation of 3D images
from CT/MRI data increases clinical accessibility and utilization.
Applications of fully immersive virtual reality technology have
been largely confined to pre-procedural planning or education
(92, 93). Mixed reality platforms, which allow simultaneous
interaction with the virtual and real environment, are intuitively
advantageous in the interventional laboratory. Several centers
have reported successful use of mixed reality or holographic
technologies for instantaneous 3D visualization of imaging data
to guide interventions in the cardiac catheterization laboratory
(94, 95).

More recently, patient-specific computational models
generated from 3D imaging have been developed for virtual
planning of intervention and prediction of procedural outcome
in pulmonary valve implantation and coarctation stenting.
Using simulation methodologies such as finite-element and
computational fluid dynamics, deformation of cardiac tissues
and blood flow pattern in the heart can be modeled during
virtual deployment of devices within the reconstructed surface
anatomies (96–98). For each intervention, computational 3D
modeling of different device sizes and configuration in the
target lesion allows assessment of hemodynamic outcome and
anticipation of potential adverse events, which can minimize
complications or alter management decisions (98, 99).

CONCLUSION

In tandem with the growing diversity and complexity of
percutaneous cardiac interventions, imaging must provide
reliable visualization of cardiac anatomy to facilitate optimal
planning and tailored treatment. 3D echocardiography and
multimodality imaging can no longer be considered only as a
luxury, but a daily clinical tool, playing a major role on today’s
practice and the future to come.
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