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A B S T R A C T   

Corona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS- 
CoV-2), is a highly contagious disease that has affected the lives of millions around the world. Chest X-Ray (CXR) 
and Computed Tomography (CT) imaging modalities are widely used to obtain a fast and accurate diagnosis of 
COVID-19. However, manual identification of the infection through radio images is extremely challenging 
because it is time-consuming and highly prone to human errors. Artificial Intelligence (AI)-techniques have 
shown potential and are being exploited further in the development of automated and accurate solutions for 
COVID-19 detection. Among AI methodologies, Deep Learning (DL) algorithms, particularly Convolutional 
Neural Networks (CNN), have gained significant popularity for the classification of COVID-19. This paper 
summarizes and reviews a number of significant research publications on the DL-based classification of COVID- 
19 through CXR and CT images. We also present an outline of the current state-of-the-art advances and a critical 
discussion of open challenges. We conclude our study by enumerating some future directions of research in 
COVID-19 imaging classification.   

1. Introduction 

Coronavirus or COVID-19 is a viral disease that was first identified in 
Wuhan, China, in December 2019 and later spread quickly worldwide 
[1,2]. It is caused by Severe Acute Respiratory Syndrome Coronavirus-2 
(SARS-CoV-2) and has affected millions of people worldwide. COVID-19 
infection starts in the throat’s mucous membranes and spreads to the 
lungs through the respiratory tract. COVID-19 is a highly contagious 
disease; therefore, it is vital to rapidly screen, diagnose and isolate pa-
tients to prevent the spread of the disease and accelerate their proper 
treatment. Diagnosis of COVID-19 infection through medical imaging, 
such as CXR and CT scans, has been reported to yield accurate results 
and is being used widely in the screening of the disease [3–5]. However, 
successful interpretation of results through images faces several chal-
lenges due to the very recent development of the disease and similarities 

with other pulmonary disorders such as pneumonia [6] (refer to Fig. 1). 
Due to the complex nature of COVID-19, its accurate diagnosis is a 
relatively complicated time-taking task that requires the expertise of 
radiologists to achieve acceptable diagnostic performance. 

Control and eradication of COVID-19 depend heavily on isolating the 
infected and vaccinating the susceptible. At present, the gold standard 
for COVID-19 detection is the RT-PCR (Reverse Transcription Poly-
merase Chain Reaction) test; however, it requires more time to process 
the specimen and generate the result. Also, it has been observed that 
many patients may test positive for COVID-19 after recovery [7]. 
Vaccination is known to immunize people against the virus; however, 
they are still prone to the infection. Developing an effective and safe 
vaccine with prolonged efficacy is still in progress and will take sub-
stantial time. Further, vaccination of the entire global population will 
also take time due to the constraints on the availability of the vaccine 
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and the geographical spread of the population. 
At the same time, efforts are underway for devising quick diagnostic 

solutions for COVID-19 detection through CXR and CT images that are 
analyzed routinely by radiologists. The manual diagnosis of COVID-19 is 
time-consuming, prone to human errors, and needs the assistance of a 
qualified radiologist. The availability of an expert radiologist is also 
required because the abnormalities during the early stages of COVID-19 

may appear similar to the other pulmonary syndromes of Severe Acute 
Respiratory Syndrome (SARS) or Viral Pneumonia (VP) that can also 
pose an impediment to the timely diagnosis and treatment of COVID. As 
an example, some samples of CXR and CT images of COVID and non- 
COVID cases are shown in Fig. 2 and Fig. 3. The axial images show 
bilateral scattered ground-glass opacity with air-space consolidation in 
the posterior segments of lower lung lobes with the peripheral and 
subpleural distribution. Since CXR and CT are recommended for various 
pulmonary abnormalities, any automated solution designed to diagnose 
COVID-19 should also consider other respiratory disorders to develop a 
more comprehensive and robust diagnostic system. 

The successful application of DL in computer vision and the 
biomedical domain has encouraged researchers to explore AI-based so-
lutions for COVID-19 detection using CXR and CT-scan images. With the 
ongoing outbreak of COVID-19, though the research area is nascent but 
has shown tremendous potential and is progressing fast. Several studies 

Fig. 1. Most common classes considered for labelling of CXR and CT-scan 
images, where SARS stands for Severe Acute Respiratory Syndrome and 
MERS stands for Middle East Respiratory Syndrome. 

Fig. 2. CXR images of (2a) a COVID-19, (2b) a bacterial pneumonia, (2c) a viral pneumonia, and (2d) a healthy subject.  

Fig. 3. CT-scan images of (3a) a COVID-19 and (3b) a healthy subject.  
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have been conducted for the automated diagnosis of COVID-19 using DL 
techniques [5,8]. Typically, the DL-based model consists of a hierar-
chical structure with a Convolutional Neural Network (CNN) as an 
important block, where each layer extracts the features pertinent to 
COVID-19 that can be used to classify COVID-19 images from 
non-COVID images. Propelled by CNN’s automatic feature learning ca-
pabilities, deep neural networks-based COVID-19 classification is being 
widely used. 

Of late, detection of COVID-19 using only CXR or CT images has 
shown potential in developing automated solutions. However, it is 
important to note that any automated solution for practical application 
needs a high detection rate and consistent performance over an unseen 
dataset. Thus, it requires advanced methods that can yield universally 
acceptable performance. Multimodal data analysis has the potential to 
yield better performance compared to single-modal data analysis 
because a DL model can learn robust and accurate features from a large 
heterogeneous dataset of multiple modalities and hence, can provide 
better classification performance [9,10]. Multimodal data analysis can 
be undertaken by considering CXR and CT images, thermal images, 
cough/speech, and blood samples. Due to the public availability of CXR 
and CT datasets, several single modal and multimodal data analysis 
studies have been published recently on COVID-19 detection having 
advantages, limitations, and challenges. To further increase the pace of 
research in COVID-19 diagnosis using CXR and CT images, a systematic 
survey and a comprehensive review of recent literature are required that 
can assist the researchers in the near future. 

Motivated with the above, we present a review of single modal and 
multimodal DL-based research studies of COVID-19 and introduce an 
overall pipeline. We also highlight various challenges and limitations in 
this area and briefly discuss the future scope. Since the development of 
DL-based methods has been facilitated by the public availability of many 
CXR and CT datasets, we also present a detailed description of each 
dataset along with a summary of relevant information in a tabular form 
to highlight its popularity in the COVID-19 literature and also provide 
the links for the same. 

Since the research in this field has started recently and is progressing 
fast, it is important to continuously review the developments that can 
help in catching up with the recent and push towards future de-
velopments. In literature, a few survey papers on COVID-19 image 
classification have been published [11–14] but a majority of these have 
reviewed a relatively small number of research papers mainly published 
in 2020. Our review includes a total of 71 research articles. Compared to 
the other survey papers, we only discuss studies that have used 
state-of-the-art DL techniques, have reported higher accuracy results, 
and are mainly published in 2021. In addition, our review is a 
comprehensive study that includes broad topics, such as DL-based 
classification pipeline, popular databases for COVID-19 classification, 
elaborate tables with details on pre-processing and, online data and code 
availability. Finally, we present a discussion on unique challenges and 
future directions of DL-based COVID-19 classification. Furthermore, 
compared to the other review studies that have focused only on either 
CXR or CT images, we have also covered multimodal works using both 
CXR and CT images. 

A key objective of this review is to summarize notable DL-based 
studies that can help future researchers in overcoming the challenges 
to the successful realization of automated solutions for the quick and 
robust diagnosis of COVID-19. The salient contributions of this study are 
as follows:  

1. It briefs the pipeline of different popular DL-based methods 
employed in the related studies;  

2. It provides details of the widely used COVID-19 datasets available 
publicly; 

3. It presents an overview of data augmentation, pre-processing meth-
odology, and K-Fold cross-validation used in DL approaches along 
with their code and data availability for reproducing the results. This 

information is important because it can help the researchers ascer-
tain the reliability of the studies and can give the required push to 
further research; and  

4. Finally, it suggests possible research directions by discussing unique 
challenges and future work based on:  
● the contribution percentage of each CNN learning method in the 

studied papers to find the most popular technique, and  
● the contribution percentage of COVID-19 dataset in the studied 

papers to target the creation of standard benchmark dataset. 

This review paper is organized as follows. Section II presents an 
overview of a DL pipeline. Section III summarizes the publicly available 
imaging datasets for COVID-19 diagnosis. A literature review on CXR, 
CT, and multi-modality-based COVID-19 diagnosis is carried out in 
Section IV. Challenges with COVID-19 image analysis are presented in 
section V. Opportunities and future work are discussed in Section VI. 
Finally, Section VII concludes the study. 

2. Deep learning-based COVID-19 classification 

DL has advanced to a high level of maturity because of three primary 
factors: 1) availability of a high-end performing Graphics Processing 
Unit (GPU), 2) advancements in machine learning algorithms, especially 
CNN, and 3) access to a high volume of structured data. Consequently, 
DL methods have been very successful in COVID-19 detection using 
imaging data, whose details are presented next. 

2.1. Overview of pipeline for COVID-19 image classification 

Automated COVID-19 diagnosis with DL algorithms can be per-
formed using data of various imaging modalities. The algorithm may 
include several steps, including pre-processing, segmentation, feature 
extraction, classification, performance evaluation, and explainable 
model prediction. Fig. 4 depicts a generic pipeline of DL-based COVID- 
19 diagnosis with steps discussed below. 

2.1.1. Data pre-processing 
Pre-processing involves the conversion of the raw images into an 

appropriate format for further processing. Medical images collected 
from different devices vary in size, slice thickness, and the number of 
scans (e.g., 60 and 70 in CT). Together, these factors generate a het-
erogeneous collection of imaging data leading to non-uniformity across 
datasets. Thus, the pre-processing step largely involves resizing, 
normalization, and sometimes transformation from RGB to grayscale. In 
CT data, the voxel dimension is also resampled to account for the vari-
ation across the datasets that is also known as resampling to an 
isomorphic resolution [15]. Furthermore, images are improved via 
smoothing to improve the signal-to-noise ratio so remove the noise. 

Another pre-processing step involves the extraction or segmentation 
of desired regions of interest from an image for the classification task. 
For example, the lungs are majorly prone to COVID-19 infection. 
Therefore, for a successful diagnosis, lung regions are segmented from 
CXR and CT images and fed to the next processing step. It is laborious, 
tedious, and time-consuming to manually segment the lung area, which 
also depends heavily on the knowledge and experience of the radiolo-
gists. DL-based segmentation techniques such as a few-shot segmenta-
tion [16,17] and semantic segmentation [18–20] can automatically 
identify infected regions providing rapid screening of COVID-19 images. 
For the segmentation task, there are widely-used segmentation models 
such as fully convolutional networks (FCN) [21], U-Net [22,23], V-Net 
[24], and 3D U-Net++ [25]. Sometimes, pixel values are thresholded to 
obtain a proper range of Hounsfield units (HU) to obtain the lung region. 
This step is particular to the dataset being used. The lung is an organ 
filled with air, and the air is the least dense object. Hence, pixel values 
are thresholded to segment the other non-lung tissue (e.g., skin, bone, or 
scanner bed) that may negatively impact the analysis. 
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Of all DL models, U-Net is the most famous architecture for seg-
mentation. It consists of two parts. The first part, considered as encoder, 
consists of a sequence of two 3x3 convolutional layers followed by a 2x2 
Max Pool layer to learn the features at various levels. The second part, 
considered as a decoder, performs upsampling, concatenation with the 
correspondingly cropped features from the decoder layer, and two 3x3 
convolutional operations. Through decoder operation, it tries to restore 
the learned feature maps to an image of original input size. U-Net has 23 
convolutional layers in total. Karthik et al. (2021) [26] utilized 
repository-inspired U-Net architecture for segmenting lungs from CXR 
images.1 Oh et al. (2020) [27] utilized FC-DenseNet103 architecture for 
the segmentation of lungs from CXR images and also compared the 
performance with the U-Net. It was also shown that the segmentation 
algorithm could be used for small training datasets, and the morphology 
of the segmentation mask can be used as a discriminatory biomarker. 
The segmentation scheme was tested on a cross-database to show sta-
tistically significant improvement in the segmentation accuracy. 
Another work by Wang et al. [28] utilized VGG based network for lung 
segmentation from CXR images. One famous work by Javaheri et al. 
(2021) [15] utilized BCDU-Net [29] to segment the lung area. This ar-
chitecture was inspired by U-Net and utilized Bi-directional ConvLSTM 
along with densely connected convolutions. U-Net has also been used in 
other studies for lung segmentation [30–34]. Ouyang et al.(2020) [35] 
considered VB-Net [36], a combination of V-Net [24] and bottle-neck 
structure for segmentation. 

2.1.2. Feature extraction and classification 
The main step of DL-based COVID-19 diagnosis is feature extraction 

and classification. DL methods extract features automatically and carry 
out binary or multiclass classification. Feature extraction can be per-
formed in two ways: using transfer learning with a pre-trained model or 
a custom CNN model developed from scratch. CNN is the core block of 
many DL-based neural networks that perform feature extraction from 
the input images. It consists of several convolutional and pooling layers. 
Apart from these basic layers, it also consists of several layers of batch 
normalization and includes Dropout. A schematic representation of a 
typical CNN is shown in Fig. 5 and is explained below.  

1. Convolutional Layer: It consists of learnable filters (or kernels) that 
are convolved with the input images. It performs an element-wise dot 
product and sum to provide a number as an element of a matrix, 
called the feature map. Convolution operation follows two important 
features: Local Connectivity because filter weights are multiplied to a 
local area of the input image at a time, and Weight Sharing because 
the same filter weights are multiplied to every spatial location of the 

input image. Convolutional layers work in a hierarchical manner, 
where low-level features are extracted in initial layers, and high-level 
features are extracted in deeper layers. The convolution operation is 
followed by an activation function (e.g., ReLU) that introduces non- 
linearity into the network.  

2. Pooling Layer: This layer performs dimensionality reduction of the 
feature maps along the spatial dimension. It reduces the number of 
learnable parameters and thus, provides a reduction in the compu-
tational complexity. Average-Pooling and Max-Pooling are the two 
dominantly used pooling techniques.  

3. Fully-connected Layer: It performs the actual classification task. It 
consists of several neural network layers. The number of layers and 
the number of nodes in each layer are called the hyperparameters 
required to be tuned optimally. It is followed by a softmax layer that 
provides a class score for every class to an image, similar to the 
probabilities of belonging to different classes. An input image is 
classified to the class corresponding to the highest class score. 

Pre-trained models are the ones that have already been trained on 
other datasets by researchers. Generally, these models are trained on 
large databases such as the ImageNet database of natural images [37]. 
At first, forcing models to learn general image features is a preventive 
measure to avoid overfitting and learning domain-specific features. 
After ImageNet pre-training, the final 1000-node classification layer of 
the trained ImageNet model is removed and replaced by a n-node layer, 
corresponding to the n-class classification for COVID-19 detection. In 
transfer learning, learned weights of the pre-trained DL architecture are 
used as the initial starting point for training the new dataset. A sche-
matic representation of the transfer learning approach is shown in Fig. 6. 
Transfer learning can be accomplished either by the fine-tuning weights 
of all the layers or by fine-tuning the weights of a few deeper layers. 
There are several pre-trained models that are used for COVID-19 diag-
nosis such as AlexNet [38], different versions of Visual Geometry Group 
(VGG) [39] and ResNet [40], Inception [41], Xception [42], Incep-
tionResNet [43], DenseNet [44], etc. Apart from these pre-trained 
models, custom models are also popular for COVID-19 classification 
training, which implies training a model from scratch without utilizing 
any pre-trained model. 

2.1.3. Performance evaluation 
The performance of the overall pipeline is assessed by evaluation 

metrics such as accuracy, sensitivity, specificity, precision, F1-score, 
Area Under the receiver operating characteristic curve (AUC), and so 
on. Typically, the data is partitioned into training, validation, and 
testing sets for the experiment. The training data is used to develop a 
particular model, while the appropriateness of the training and the 
model is assessed by monitoring the overfitting or underfitting, respec-
tively, on the validation data at the same time. Finally, the performance 

Fig. 4. A work flow of Deep learning based COVID-19 detection pipeline.  

1 https://github.com/imlab-uiip/lung-segmentation-2d. 
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of the developed model is tested on the unseen test data. 

2.1.4. Explanation of model prediction 
Deep learning models are trained as black-box classifiers with no 

evidence of the correctness of the features extracted. Explainable AI is an 
emerging field that assigns important values to the input image regions 
leading to the predicted outcome. This assists radiologists in locating 
abnormalities in the lungs and gives an insight into important spatial 
areas that are responsible for distinguishing COVID-19 images from 
others. A few explainable models, including GRAD-CAM and GRAD- 
CAM++, used for COVID-19 diagnosis, are described in Table 1. 

2.2. CT vs CXR 

CXR is the most easily accessible and the fastest form of imaging with 
lesser side effects on the human body. CXR imaging has been tradi-
tionally used for the detection of pneumonia and cancer. Although it can 
detect COVID-19 infection, it fails to provide fine-order details of the 
infected lungs. CT scan is a more sophisticated technique to evaluate the 
level of infection in various lobes of the lungs and is used to calculate the 
CT severity score of the patient. In fact, CXR is a 2D imaging, whereas CT 
provides 3D scans of organs from various angles. CXR imaging can be 
used for COVID-19 detection; however, to evaluate the level of severity 
of the infection, a CT scan is compulsory. This is one of the reasons that 
multimodal detection of COVID-19 using both CXR and CT scan images 
can give a better generalization ability to a neural network architecture. 

3. Public imaging datasets for COVID-19 detection 

In all, about 35 public datasets (CXR and CT images) have been 
referred to and used by researchers to validate the algorithms in the 
articles reviewed in this work. The details are listed in Table 2. Some of 

Fig. 5. Schematic representation of a typical Convolutional Neural Network architecture.  

Fig. 6. Schematic representation of Transfer Learning approach.  

Table 1 
Techniques for visual explanation of Deep CNN.  

Technique Details 

CAM [45] Class Activation Mapping is a visual explanation technique for 
deep convolutional neural networks by providing class- 
discriminative visualization. The CNN model must be re-trained 
because it is modified by removing all dense layers and adding a 
Global Average Pooling layer before the softmax layer. 

Grad-CAM [46] Gradient-CAM is an upgrade of CAM that does not need any 
architectural change or re-training. It uses the gradient details 
passing into the last convolutional layer to visualize the 
significance of each neuron. In an image, if the same class occurs 
multiple times, it fails to localize objects accurately. Also, it is not 
able to produce the heat map of the complete object. 

Guided Grad- 
CAM 

This technique upsamples the Grad-CAM maps and performs 
point-wise multiplication with the visualizations from Guided 
Backpropagation. It provides fine-order and class-discriminative 
visualization. 

Grad-CAM++

[47] 
Grad-CAM++ uses more sophisticated backpropagation to 
overcome issues of CAM and Grad-CAM techniques. It provides 
better visual explanations of CNN model predictions in terms of 
better object localization as well as explaining occurrences of 
multiple object instances in a single image.  
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these datasets contain CXR images and CT-scan images of COVID-19, 
while others include those of normal subjects and different pulmonary 
diseases. The reason for using the latter type of datasets is to create more 
generalizable algorithms that can detect COVID-19 from a pool of more 
diverse radiography images. We briefly discuss some of these datasets 
and provide the download links for the dataset in Table 2 for ease of the 
readers and further research. 

3.1. CXR dataset 

We have included 20 datasets for CXR images, among which Ker-
many et al. (2018) [48] is the most popular dataset for normal and 
pneumonia CXR images. This dataset [48] consists of 5856 images, 
where 2780 images are of bacterial pneumonia, 1493 are of viral 
pneumonia, and 1583 belong to the normal subjects. The participants 
were recruited at the Guangzhou Women and Children’s Medical Center. 
This dataset was used to develop Mooney dataset (2017) [49], which is a 
CXR dataset available as a Kaggle competition on viral and bacterial 
pneumonia classification. It consists of 5247 CXR images of normal. 
viral, and bacterial pneumonia with varying resolution. Out of 5247 
CXR images, 3906 images are from different subjects affected by 
pneumonia (2561 images for bacterial pneumonia and 1345 images for 
viral pneumonia), and 1341 images are from normal subjects. Wang 
et al. (2017) dataset [125] has also been used in various studies. This 
dataset was released by the National Institutes of Health (NIH), having 
108,948 CXR images of normal lungs with no lung infection and 
non-COVID pneumonia cases. A Kaggle dataset with only pneumonia 
images was developed by Ali [50] which includes viral and bacterial 
pneumonia CXR images from 53 patients. Radiology Society of North 
America (RSNA) collaborated with US National Institutes of health, the 
society of thoracic radiology, and MD.ai to develop a 
Pneumonia-Detection-Challenge database on Kaggle [111] which in-
cludes CXR images of 6002 normal and 20599 pneumonia patients. 

To verify the performance of the proposed classification algorithm 
for differentiating COVID-19 CXR images from other pulmonary syn-
dromes, authors have used datasets such as BIMCV (2020) [52], JSRT 
dataset [97], Irvin et al. (2019) [95] and Jaeger dataset [96,114]. Bustos 
et al. (2020) [52] introduced a dataset of more than 160,000 CXR im-
ages collected from 67,000 subjects at Hospital San Juan (Spain) from 
2009 to 2017. This dataset includes CXR for COPD, pneumonia, heart 

Table 2 
Public Imaging Datasets used for COVID-19 Diagnosis.  

Reference Image 
type 

Links Reference Papers 

Ali (2020) [50] CXR https://www.kaggle.com 
/ahmedali2019/pneumonia 
-sample-xrays 

[51] 

BIMCV (2020) 
[52] 

CXR https://bimcv.cipf.es/bimcv 
-projects/padchest/ 

[53] 

CC-CCII database 
[54] 

CT http://ncov-ai.big.ac.cn/ 
download?lang = en 

[30,55] 

Chest Imaging 
(2020) [56] 

CXR https://threadreaderapp. 
com/thread/12439285819 
83670272.html 

[5,57] 

Chung (2020) 
[58] 

CXR https://github.com/agchung 
/Actualmed-COVID-chestxra 
y-dataset 

[26,57,59–61] 

Cohen et al. 
(2020) [62] 

CXR 
and CT 

https://github.com/ieee 
8023/covid-chestxray-data 
set 

[5,9,10,23, 
26–28,51,53,55, 
57,59–61,63–90] 

COVIDGR [91] CXR https://dasci.es/es/tra 
nsferencia/open-data/covi 
dgr/ 

[91] 

Dadario AMV. 
COVID-19 X- 
rays 

CXR 
and CT 

http://dx.doi.org/10.34740/ 
KAGGLE/DSV/1019469 

[72] 

European Society 
of Radiology 
[92] 

CXR 
and CT 

https://www.eurorad. 
org/advanced-search?search 
=COVID 

[65] 

Gunraj et al. 
(2020) [93] 

CT https://www.kaggle.com/h 
gunraj/covidxct?sele 
ct=2A_images 

[94] 

Irvin et al. (2019) 
[95] 

CXR https://stanfordmlgroup. 
github.io/competitions/ch 
expert/ 

[57] 

Jaeger et al. [96] CXR https://openi.nlm.nih. 
gov/faq#faq-tb-coll 

[23,27] 

JSRT [97] CXR http://db.jsrt.or.jp/eng-01. 
php 

[23,27,70] 

Kermany et al. 
(2018) [48] 

CXR https://data.mendeley.com/ 
datasets/rscbjbr9sj/2 

[23,69,72,75,77, 
81,89,90,98,99] 

Khoong (2020) 
[100] 

CXR https://www.kaggle.com/kh 
oongweihao/covid19-xray- 
dataset-train-test-sets 

[59] 

LIDC–IDRI 
database [101] 

CT https://wiki.cancerimaging 
archive.net/display/Public/ 
LIDC-IDRI 

[30] 

Montgomery 
tuberculosis 
[96] 

CXR https://www.kaggle.com 
/raddar/tuberculosis-che 
st-xrays-montgomery 

[23,27] 

Mooney (2017) 
[49] 

CXR https://www.kaggle.com/ 
paultimothymooney/chest- 
xray-pneumonia/version/2 

[5,10,26,57,60, 
63–65,67,72,73, 
76,85,87,88] 

MosMedData 
[102] 

CT https://mosmed.ai/datasets 
/covid19_1110/ 

[30,103] 

Patel et al. (2020) 
[104] 

CXR https://www.kaggle.com/p 
rashant268/chest-xray- 
covid19-pneumonia 

[94] 

Praveen et al. 
(2020) [105] 

CXR https://www.kaggle. 
com/praveengovi/cor 
onahack-chest-xraydataset 

[27] 

Rahman et al. 
(2020) [106] 

CXR https://www.kaggle.com/ 
tawsifurrahman/covid19-r 
adiography-database 

[5,51,59,61,74, 
75,107] 

Radiology 
Assistant 

CXR 
and CT 

https://radiologyassistant. 
nl/chest/covid-19/covid19-i 
maging-findings 

[63] 

Radiopaedia 
[108] 

CXR 
and CT 

https://radiopaedia.org/se 
arch?lang = us&q = covid 
&scope = cases 

[5,9,26,60,79,90, 
109,110] 

RSNA (2020) 
[111] 

CXR https://www.kaggle.com/c 
/rsna-pneumonia-detec 
tion-challenge 

[5,26,28,80,90, 
109,112] 

Sajid [113] CXR https://www.kaggle. 
com/nabeelsajid91 
7/covid-19-x-ray-10000 
-images 

[59]  

Table 2 (continued ) 

Reference Image 
type 

Links Reference Papers 

Shenzhen [114] CXR https://lhncbc.nlm.nih.gov/ 
LHC-publications/pubs/ 
TuberculosisChestXrayIma 
geDataSets.html 

[23] 

SIRM (2020) 
[115] 

CXR 
and CT 

https://sirm.org/category/ 
senza-categoria/covid-19/ 

[5,26,57,60,65, 
90,109,110] 

SARS-COV-2 CT- 
Scan (2020) 
[116] 

CT https://www.kaggle.co 
m/plameneduardo/sarsco 
v2-ctscan-dataset 

[9,59,117,118] 

Tianchi-Alibaba 
database [119] 

CT https://tianchi.aliyun.com/d 
ataset/dataDetail?dataId =
90014 

[30] 

USCD-AI4H [120] CT https://github.com/ 
UCSD-AI4H/COVID-CT 

[10,59,117,118, 
121–123] 

Vaya et al. (2020) 
[124] 

CXR 
and CT 

https://bimcv.cipf.es/bimcv 
-projects/bimcv-covid19/ 

[23,53] 

Wang et al. (2017) 
[125] 

CXR https://github.com/muha 
mmedtalo/COVID-19/tree/ 
master/X-Ray, https://www. 
kaggle.com/nih-chest-xra 
ys/sample 

[53,66,68,69,79, 
83,84,98] 

Wang et al. (2020) 
[126] 

CXR https://github.com/li 
ndawangg/COVID-Net 

[112] 

Yan et al. (2020) 
[127] 

CT https://ieee-dataport.or 
g/authors/tao-yan 

[103]  
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insufficiency, pulmonary edema, pulmonary fibrosis, emphysema, 
tuberculosis, and other pulmonary syndromes. 27% of the data was 
manually labeled by physicians, and the rest was labeled using recurrent 
neural network. The Japanese Society of Radiological Technology 
(JSRT) dataset [97] was marked by radiologists for the detection of lung 
cancer nodules. This dataset contains 247 CXRs from 14 institutions, out 
of which 154 cases contain nodule markings. In addition, lung masks are 
also provided that can be used to study the performance of lung seg-
mentation. The dataset of Irvin et al. (2019) [95] includes 224,316 CXRs 
of 65,240 patients divided into 14 classes, including no findings, 
enlarged cardiom, cardiomegaly, lung lesion, lung opacity, and edema; 
however, no COVID-19 cases were included in this study. The U.S. Na-
tional Library of Medicine has made two datasets of Postero Anterior 
(PA) CXR images of various pulmonary diseases with a majority of cases 
considered for pulmonary tuberculosis (TB) [96]. These two datasets 
were collected from the Department of Health and Human Services, 
Montgomery County, Maryland, USA, and Shenzhen No. 3 People’s 
Hospital in China. The former dataset consists of 138 frontal CXR, 
including 80 normal and 58 TB cases. The Shenzen dataset consists of 
662 CXR, of which 326 are normal and 336 are TB [114]. 

The above-mentioned CXR datasets do not include COVID-19 infec-
ted CXR images and are, thus, insufficient for validating COVID-19 
classification algorithms. For this purpose, datasets like Rahman et al. 
(2020) [106], Chest imaging (2020) dataset [56], Chung dataset [58], 
COVIDGR dataset [91] have been developed. Rahman et al. (2020) 
[106] is a COVID-19 CXR database created by a team of researchers from 
Qatar University (Doha, Qatar) and Dhaka University (Dhaka, 
Bangladesh) along with the collaborators from Pakistan and Malaysia. 
The dataset consists of COVID-19 positive, normal, and viral pneumonia 
CXR images, and it is constantly updated with new CXR images. Chest 
imaging dataset [56] includes 103 COVID-19 CXR images from a thread 
reader uploaded by a doctor from Spain. Chung dataset [58] developed 
in the University of Waterloo Canada, includes 35 COVID-19 and 
non-COVID-19 CXR images from 31 patients. COVIDGR dataset [91] is a 
homogeneous and balanced dataset that includes mild, moderate as well 
as severe cases of COVID-19 and also normal cases. It includes 426 
positive and 426 negative PA CXR views. The dataset was developed in 
collaboration with Hospital Universitario Clínico San Cecilio, Granada, 
Spain. 

There are several publicly available datasets, such as Mooney dataset 
[49], which do not include new original images but have been devel-
oped by collating the data of existing datasets. For example, Wang et al. 
(2020) [126] developed a dataset, COVIDx, consisting of 13,975 CXR 
images of 13,870 patients. The dataset was developed using five publicly 
available datasets, where COVID-19 cases were acquired from Cohen 
[62], Chung [58], and Rahman [106]. Non-COVID-19 pneumonia cases 
were acquired from Cohen [62] and RSNA pneumonia detection chal-
lenge dataset [111]. Finally, normal cases were collected from RSNA 
pneumonia detection challenge dataset [111]. The Khoong dataset 
[100] was constructed using normal and COVID-19 manifested CXR 
images from Cohen dataset [62], and from https://github.com/Jor 
danMicahBennett/SMART-CT-SCAN_BASED-COVID19_VIRUS_ 
DETECTOR/. Another such dataset available on Kaggle is Patel [104], 
which consists of 6432 CXR images from normal, COVID-19, and 
pneumonia infected subjects acquired from three datasets, namely 
Cohen dataset [62], Mooney [49], and Chung dataset [58]. To include 
other pulmonary syndromes, Praveen [105] constructed a dataset con-
sisting of 5800 CXR images from normal, COVID-19 pneumonia, SARS, 
Streptococcus, and ARDS (acute respiratory distress syndrome). These 
images have been acquired from Cohen dataset [62]. Sajid [113] con-
sists of 10,000 CXR images created using data augmentation techniques. 
These images include normal and COVID-19 cases; however, the original 
source of the dataset has not been mentioned. This data set has been 
used so far by Ref. [59], where eight different datasets were used to form 
a COVID-R dataset consisting of 2843 COVID-19 CXR images, 3108 
normal, and 1439 viral and bacterial pneumonia manifested CXR 

images. These eight datasets include Cohen [62], UCSD-AI4H dataset 
[120], Chung dataset [58], SARS-COV-2 CT-scan dataset [116], Khoong 
dataset [100], and Rahman [106]. 

3.2. CT dataset 

SARS-COV-2 CT-Scan dataset [116] has 1252 CT scans of 60 patients 
infected by COVID-19 and 1230 CT scan images of 60 infected patients 
by pulmonary diseases. CC-CCII dataset [54] is a dataset of the CT im-
ages collected from cohorts from the China Consortium of Chest CT 
Image Investigation. Seven hundred fifty CT scans were collected from 
150 COVID-19 subjects, and these slices were manually segmented. All 
CT images are classified into novel coronavirus pneumonia (NCP) due to 
SARS-CoV-2 virus infection, common pneumonia, and normal controls. 
LIDC-IDRI dataset [101] includes CT-scan images of 1018 lung cancer 
with labeled annotated lesions. The dataset was collected in collabora-
tion with seven academic centers and eight medical imaging companies. 
MosMedData [102] consists of 1110 CT-scans of COVID-19 patients 
collected between March 1, 2020 and April 25, 2020 in municipal 
hospital Moscow. Yan et al. [127] published a dataset on IEEE dataport 
consisting of 416 CT-scan images of 206 COVID-19 patients from two 
hospitals. The dataset also includes 412 CT-scan images of 
non-COVID-19 pneumonia patients. UCSD-AI4H dataset [120] consists 
of 349 CT-scans of 216 COVID-19 patients. The dataset has been 
confirmed by a radiologist from Tongji hospital. Tianchi-Alibaba data-
base [119] consists of 20 CT scans of COVID-19 patients along with the 
segmentation of lungs and infections. 

The above-mentioned dataset included CT-scan images collected in 
collaboration with hospitals. There are other publicly available datasets, 
sometimes available as Kaggle competitions, which have been devel-
oped by combining two or more of the original datasets. For example, 
Gunraj et al. [93], also known as COVIDx CT dataset, is available on 
kaggle. The first version was released in December 2020, and the second 
version was released in January 2021. The dataset includes three classes 
normal, pneumonia, and COVID-19. This dataset is presented in two 
subsets, “A” and “B”, where the former includes cases with confirmed 
diagnoses and the latter includes all images from “A” and also those 
which are weakly verified. This dataset was constructed using publicly 
available datasets like Radiopaedia.org [108], MosMedData [102], 
CNCB 2019 novel coronavirus resource (2019nCoVR) AI diagnosis 
dataset [128], COVID-19 CT lung and infection segmentation dataset 
[129], LIDC-IDRI [101], and integrative CT Images and Clinical Features 
for COVID-19 (iCTCF) [130]. 

3.3. CT and CXR dataset 

Cohen et al. [62] is a publicly available dataset consisting of CT-scan 
and CXR images from 468 COVID-19 patients, 46 bacterial cases of 
pneumonia, 10 MERS, 5 Varicella, 4 Influenza, 3 Herpes, 16 SARS, 26 
Fungal cases, and 59 unknown cases. Italian Society of Medical and 
Interventional Radiology (SIRM) COVID-19 database [115] consists of 
COVID-19 positive radiographic images (CXR and CT) with varying 
resolution. This database is constantly updated with new images. Vaya 
et al. [124] is a multimodal dataset introduced from the Valencian Re-
gion Medical Image Bank (BIMCV) containing chest radiographs of 
COVID-19 patients, having 2265 chest radiographs belonging to 1311 
patients. There are no normal cases in this dataset. Radiopedia [108] 
dataset consists of case studies of several diseases, including COVID-19. 
It provides both CXR and CT images and has been considered as an 
authentic source of dataset for deep learning-based analysis. 

4. Recent advances in COVID-19 image analysis 

CXR images are generally used as a first-line imaging modality for 
patients under investigation of COVID-19 and have been analyzed in 
numerous studies of COVID-19 diagnosis. This imaging is comparatively 
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inexpensive and is less hazardous to human health owing to being a low 
radiation modality. Table 3 lists the most relevant state-of-the-art 
studies in this direction published in recent years. 

CT images are processed differently than CXR images. CT data is 
three-dimensional (3D), consisting of several slices (16, 32, 64, 128, 
etc.) acquired during the scan. The slice capturing the largest lung re-
gion is selected and is often treated as a separate image. Some publicly 
available datasets consist of only one CT slice per subject. In other cases, 
all the slices are treated as independent samples for diagnosis that helps 
in increasing the number of images during training. In the testing phase, 
majority voting is done to map decisions on multiple slices of a subject to 
ascertain the class label. In some recent studies, three-dimensional (3D) 
CT data is utilized with 3D segmentation models and 3D-CNN 
architectures. 

Deep learning is a data-driven approach where classification de-
cisions are made based on the features learned by a model during the 
training process. During test time, the model assumes that the input has 
some features similar to the features learned from the training dataset 
that could be used for decision making. However, if patterns are dis-
similar, the model will not be able to classify them accurately, which 
reduces its generalization ability. Data augmentation is a technique used 
to overcome this limitation. However, since artificial images generated 
through data augmentation are from the same training dataset, its scope 
to improve the diversity or abundance of the features is limited. In such 
scenarios, a more effective approach towards improving the perfor-
mance is the augmentation of the actual training dataset through mul-
tiple modalities. For detection of COVID-19, a model can achieve 
superior performance when a multimodal dataset is utilized compared 
to the single-modal analysis. For example, the performance of the 
COVID-19 detection modal based on only CXR or CT scan images can be 
further improved by incorporating both kinds of images into the model. 
Various models are used on CXR imaging, CT imaging, and combining 
both as described next. These studies can be categorized based on the DL 
architectures used. Tables 4 and 5 list the most relevant state-of-the-art 
CT and multimodal based studies respectively. 

4.1. Transfer learning work 

4.1.1. AlexNet 
It is one of the first convolutional networks that performed a large- 

scale image classification task and revolutionized the application of 
deep learning. It was the winner of the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) in 2012. It consists of 5 convolutional 
layers and three dense layers. It is similar to the famous LeNet archi-
tecture but incorporates improved techniques of Rectified Linear Unit 
(ReLU) activation function, dropout, data augmentation, and multiple 
GPUs. Though several improved neural network architectures have been 
introduced to date, most are based on or inspired by the AlexNet 
network. 

It has been used in many studies of COVID-19 detection [89,131] 
which mainly differs in feature selection and training of multiple clas-
sifiers in Ref. [131] and image generation using Generative Adversarial 
Network (GAN) in Ref. [89]. The use of GAN is to tackle the lack of a 
sufficient dataset for COVID-19 cases, which is one of the most impor-
tant contributions of this work. Authors in Ref. [89] also compared 
AlexNet performance with two other deep transfer learning models, 
GoogleNet and ResNet18. More in-depth details of both these references 
are presented in Table 3. 

4.1.2. VGGNet 
VGG stands for Visual Geometry Group of Oxford University. It was 

the winner of the ILSVRC challenge 2014. This model is simple in ar-
chitecture but is still very effective in performance. VGG16 and VGG19 
architectures consist of 16 and 19 convolutional layers, respectively. 
VGGNet has a cascade of five convolutional blocks using the fixed kernel 
sizes of 3X3, where the first two blocks consist of two convolutional 

operations in each, and the last three blocks consist of three convolu-
tional operations in each. It is pertinent to mention that a new convo-
lution block along with process improvement techniques (batch 
normalization and dropout) can be easily added to the standard model 
that enables the learning of finer features and is more suitable for the 
newer tasks and improved learning speed/stability. 

Few initial studies utilized the VGGNet pre-trained model by adding 
or fine-tuning few layers for COVID-19 classification using CXR (two- 
class [64,78] and three-class classification [88,90]), CT [123] and 
multimodal images [82,109]. Improvements were made by tweaking the 
pipeline. For example, Abbas et al. (2021) [70] proposed a decompose, 
transfer and compose method for the classification of CXR images into 
normal, COVID-19 and SARS classes. First, deep local features are 
extracted using a pre-trained CNN model, principal component analysis 
(PCA) is used to reduce the dimensionality of the obtained feature set. 
The class decomposition layer is then used on the feature matrix to form 
sub-classes within each class, and each subclass is treated as an inde-
pendent class. The final classification layer of the pre-trained VGG19 
model is adapted to these sub-classes. The parameters of the adopted 
model are fine-tuned, and finally, the sub-classes are combined to give 
the predicted label. The final classification is refined using 
error-correction criteria. This method significantly improved results 
over the conventional VGG19 pre-trained model. Results were also 
compared against four different pre-trained models for the three-class 
classification problem. 

Another work by Heidari et al. (2020) [75] combined the original 
CXR image with two pre-processed images to form a pseudocolor image 
which is then fed as three input channels for VGG16 pre-training. In 
Ref. [132], features of the convolutional layers of VGG16 were com-
bined with the attention module (spatial attention module and channel 
attention module), followed by fully connected layers and softmax layer 
for COVID-19 classification based on CXR images. Brunese et al. (2020) 
[84] trained two models using VGG16. The first model discriminates 
healthy CXR images, and the second model detects COVID-19 from other 
generic pulmonary diseases. 

4.1.3. ResNet 
ResNet is the most famous pre-trained model that has been used 

widely for COVID-19 classification. Generally, it is assumed that the 
training performance of the model can be increased by adding more 
convolutional blocks. However, in practice, it has been observed that the 
performance of the deeper layer models starts decreasing and often 
returns diminishing results compared to the less deep models. This 
happens due to the problem of vanishing gradients. ResNet model 
overcomes this limitation by incorporating skip connections. ResNet 
consists of a cascade of several residual blocks, wherein the output of 
each convolutional block is added to the output of the convolution 
blocks of the deeper stages. ResNet has been used by several authors for 
the detection of COVID-19 using CXR images [23,27,83,85,91], and CT 
images [30,32,117,133]. Further, details of these references are given in 
their respective tables. 

Further improvements were made by a few studies, such as the uti-
lization of feature pyramid network along with ResNet for COVID-19 
classification using CXR images in Ref. [28], a two-step classification 
algorithm implementation using CXR images in Ref. [76], wherein first, 
ResNet50 was used to classify CXR images into healthy and others. 
Further, ResNet101 was used to separate COVID-19 from the other viral 
pneumonia class. Authors in Ref. [103] combined multiple image-level 
ResNet50 predictions to diagnose COVID-19 on a 3D CT volume level. 
The performance of the proposed method was shown to be better than a 
single 3D-ResNet model. Authors in Ref. [33] proposed a local attention 
classification model using ResNet18 as backbone architecture. Ismael 
and Sengur [63] used SVM with the linear, quadratic, cubic, and 
Gaussian kernels as a classifier on ResNet50 features for COVID-19 
classification using CXR images. 

ResNet50 was also used in Ref. [107] along with detecting and 
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Table 3 
Summary of state-of-art DL techniques used for the COVID-19 classification using CXR Abbreviations: Acc.- Accuracy, BP-Bacterial Pneumonia, C-COVID-19, 
CAM- Class Activation Maps, CAP- Community Acquired Pneumonia, CN- COVID-19 negative, FPN- Feature Pyramid Network, HU- Hounsfield Units, Influ.- Influenza, 
LT- Lung Tumor, N-Normal, NF- No Findings, P- Pneumonia, Rad.- Radiologist, SARS- Severe Acute Respiratory Syndrome, Seg.- Segmentation, VP- Viral Pneumonia, 
Sen.- Sensitivity, Spe.- Specificity.  

Ref. Dataset Pre-processing Architecture Code Data K- 
Fold 

Performance reported Critical Observations 

Acc. Sen. Spe. 

Abbas et al. 
[70] 

Classes:3C/N/SARS 
105/88/11 

Augmentation, 
contrast 
enhancement 

VGG19 with class 
decomposition and 
composition 

✓ ✓ × 97.4 98.2 96.3 handled the class-imbalance 
problem using the proposed 
architecture 

Abraham and 
Nair [72] 

Classes:2C/CN 
453/497 

Resized to different 
dimensions 

Features extracted from 
multi-CNNs (Squeezenet, 
Darknet-53, 
MobilenetV2, Xception, 
Shufflenet); feature 

× ✓ × 91.2 98.5 – Correlation-based feature 
selection; bilinear 
interpolation for resizing; 
three RGB channels 
processing with single 
grayscale image being 
replicated to all the three 
channels 

Classes2: C/CN 71/ 
7  

selection and Bayesnet 
classifier    

97.4 98.6 –  

Afshar et al. 
[67] 

Classes:2C/CN (The 
number of images 
are not mentioned) 

Resized to 224 ×
224 

Custom CNN ✓ ✓ × 98.3 80.0 98.6 4 convolutional layers and 3 
Capsule layers; modified the 
loss function to handle the 
class-imbalance problem 

Agrawal and 
Choudhary 
[65] 

Classes:2C/N 1143/ 
1 345 

Augmentation; 
resized to 224 ×
224; normalization 

Custom CNN × ✓ ✓ 99.2 99.2 99.2 FocusNet [144] inspired CNN 
architecture having 
combination of multiple 
convolutional, 3 residual, and 
2 squeeze-excitation blocks in 
between; evaluation by 
weighted 

Classes:3C/N/P 
1143/1 345/1345      

95.2 95.2 95.6 F1-score; handled the class- 
imbalance problem by 
oversampling technique such 
as SMOTE; validation done on 
two separate datasets 

Al-Bawi et al. 
[88] 

Classes:3C/N/VP 
310/654/864 

None VGG16 ✓ ✓ × 95.3 98.5 98.9 Replaced last fully connected 
layer with 3 new 
convolutional layers 

Apostol et al. 
[90] 

Classes:3C/N/BP 
224/504/700 

Resized to 200 ×
266, black 
background of 

VGG19 × ✓ × 93.5 92.8 98.7 Fixed feature extractor with 
modification only in the last 
layer 

Classes:3C/N/P 
224/504/714 

1:1.5 ratio was 
added to avoid 
distortion     

96.8 98.7 96.5  

Brunese et al. 
[84] 

Classes:3C/ 
Pulmonary disease/ 
N 250/2 753/3 520 

Resized to 224 ×
224 

VGG16, Grad CAM × ✓ × 97.0 91.0 96.0 Fixed feature extractor with 
fine tuning of only last layers; 
added few layers like average 
pooling, flatten, dense, and 
dropout layers; two binary 
classifiers- training one for 
healthy and pulmonary, and 
the other for COVID and rest 

Chowdhury 
et al. [5] 

Classes:3C/N/VP 
423/423/423 

Augmentation; 
resized to 224 ×
224; normalization 

DenseNet201, activation 
mapping 

× ✓ × 97.9 97.9 98.8 Investigation of features of 
deep layers 

Das et al. [57] Classes:2C/CN 
538/468 

Resized to 224 ×
224, Normalization 

Weighted averaging: 
DenseNet201 
Resnet50V2 Inceptionv3 

✓ ✓ ✓ 91.6 95.1 91.7 Development of a Graphical 
User Interface (GUI)-based 
application for public use 

DeGrave et al. 
[53] 

Classes:2C/CN 
408/30 805 

Augmentation; 
resized to 224 × 224 

DenseNet121, 
interpretation by 
expected gradient & 
CycleGAN 

✓ ✓ × – – – Classifier training on 15 
classes; comparison of results 
using AUC 

Dhiman et al. 
[85] 

Classes:2C/N 50/50 Resized to 280 ×
280 

ResNet101 × ✓ ✓ 100 100 98.9 Analysis of segmented chest 
area; computational time 
analysis of multiple 
architectures; use of J48 
decision tree classifier; fine- 
tuning using a multi-objective 
spotted hyena optimizer 

Ezzat et al. [73] Classes:2C/N 99/ 
207 

Augmentation; 
resized to 180 ×
180; normalization 

DenseNet121; Grad-CAM × ✓ × 98.38 98.5 98.5 Hyper-parameters 
optimization using 
gravitational search 
algorithm 

Gupta et al. 
[74] 

Classes:3C/N/P 
361/365/362 

Augmentation, fuzzy 
color image 
enhancement and 

Integrated stacked 
multiple CNNs 
(ResNet101, Xception, 

× ✓ × 99.1 – – Both image enhancement and 
denoising 

(continued on next page) 
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Table 3 (continued ) 

Ref. Dataset Pre-processing Architecture Code Data K- 
Fold 

Performance reported Critical Observations 

Acc. Sen. Spe. 

stacking it with 
original 

InceptionV3, MobileNet, 
and 

Classes:2C/NC 
361/727 

Resized 224 × 224 
× 3 

NASNet), Grad-CAM    99.5 – –  

Hammoudi 
et al. [145] 

Classes:4C/N/VP/ 
BP 1493/1 493/ 
1493/1 493 

Resized to 310 ×
310 

DenseNet169 × ✓ × 99.1 – – Measures were presented to 
associate survival chance 
with COVID-19 using risk 
factors like comorbidity, age, 
and infection rate indicator; 
Predicted patients’ health 
status. 

Heidari et al. 
[75] 

Classes:3C/N/P 
415/2 880/5 179 

Augmentation, 
histogram 
equalization, 
bilateral low-pass 
filtering, pseudo- 
color image 
generation 

VGG16 × ✓ × 94.5 98.4 98.0 handled class-imbalance 
problem by class weighting; 
removal of diaphragm 
regions; three channel 
processing; addition of 3 fully 
connected layers in the end 

Hemdan et al. 
[78] 

Classes:2C/N 25/25 Resized to 224 ×
224 

VGG19 × ✓ × 90.0 – – One hot encoding on the 
labels of the dataset i.e. ‘1’ for 
COVID-19 and ‘0’ for all other 
images in the dataset 

Ismael and 
Sengur [63] 

Classes:2C/N 180/ 
200 

Augmentation; 
resized to 224 ×
224, grayscale image 
copied three times to 
form RGB image 

ResNet50 with SVM × ✓ × 94.7 91.0 98.9 No fine-tuning of ResNet50; 
analysis of eight well-known 
local texture descriptors of 
images 

Islam et al. [60] Classes:3C/N/P 
1525/1 525/1 525 

Augmentation; 
resized to 224 × 224 

Custom CNN with LSTM, 
heatmaps 

× ✓ ✓ 99.4 99.1 98.9 12 convolutional layers with 
1 fully connected layer and 1 
LSTM layer 

Jain et al. [76] Classes:2C/CN 
440/1 392 

Augmentation, 
resized to 640 ×
640, normalization 

ResNet50, ResNet101, 
Grad-CAM 

× ✓ ✓ 97.2 – – Training of 2 two-class 
classification networks 

Karthik et al. 
[26] 

Classes:4C/N/BP/ 
VP 558/10 434/ 
2780/1 493 

Augmentation; 
resized to 256 × 256 

U-Net; custom CNN; 
interpretation analysis by 
class saliency maps, 
guided backpropagation, 
& Grad-CAM 

× ✓ ✓ 97.9 99.8 – Channel-shuffled dual- 
branched CNN comprising of 
three types of convolutions: 
(1) depth-wise separable 
convolution, (2) grouped 
convolution and (3) shuffled 
grouped convolution; 
augmentation done with 
distinctive filters learning 
paradigm 

Keles et al. [98] Classes:3C/N/VP 
210/350/350 

Augmentation; 
resized to 224 × 224 

Custom CNN × ✓ × 97.6 98.7 98.7 One input convolutional layer 
followed by 2 residual type 
blocks and 3 fully connected 
layers 

Khan et al. [87] Classes:4C/N/BP/ 
VP 284/310/330/ 
327 

Resized to 224 ×
224, resolution of 72 
dpi 

XceptionNet ✓ ✓ ✓ 89.6 90.0 96.4 handled the class-imbalance 
problem by undersampling 

Classes:3C/N/P 
284/310/657      

95.0 95.0 97.5  

Classes:2C/N 284/ 
310      

99.0 98.3 98.6  

Classes:3C/N/P 
157/500/500      

90.2 – –  

Loey et al. [89] Classes:4C/N/BP/ 
VP 69/79/79/79 

Augmentation; 
resized to 512 ×
512; normalization 

GoogleNet × ✓ × 80.6 80.6 – Image generation using 
Generative Adversarial 
Network (GAN) 

Classes:3C/N/BP 
69/79/79  

AlexNet    85.2 85.2 –  

Classes: 2C/N 69/ 
79  

AlexNet    100 100 –  

Luz et al. [112] Classes:3C/N/P 
189/8 066/5 521 

Augmentation; 
normalization 

EfficientNet; activation 
mapping 

✓ ✓ × 93.9 96.8 – Hierarchical classification; 
use of swish activation; 
computational cost analysis 
by multiply-accumulate 
(MAC) operations 

Mahmud et al. 
[99] 

Classes:2C/N 305/ 
305 

Resized to 256 ×
256, 128 × 128, 64 
× 64, and 32 × 32; 
normalization 

Stacked Custom CNN, 
Grad-CAM 

✓ ✓ ✓ 97.4 96.3 94.7 Multiple residual and shifter 
units comprising of both 
depthwise dilated 
convolutions along with 
pointwise convolutions; 
training on multiple resized 

(continued on next page) 
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Table 3 (continued ) 

Ref. Dataset Pre-processing Architecture Code Data K- 
Fold 

Performance reported Critical Observations 

Acc. Sen. Spe. 

input images followed by 
predictions combining using 
meta learner 

Classes:2C/VP 305/ 
305      

87.3 88.1 85.5  

Classes:2C/BP 305/ 
305      

94.7 93.5 93.3  

Classes:3C/VP/BP 
305/305/305      

89.6 88.5 87.6  

Classes:4C/N/VP/ 
BP 305/305/305/ 
305      

90.2 90.8 89.1  

Madaan et al. 
[77] 

Classes:2C/N 196/ 
196 

Augmentation; 
resized to 224 × 224 

Custom CNN × ✓ × 98.4 98.5 – 5 convolutional layers along 
with a rectified linear unit as 
an activation function 

Narayanan 
et al. [23] 

Classes:2C/CN 
2504/6 807 

Thresholding; 
grayscale, resized to 
256 × 256; local 
contrast 
enhancement 

U-Net; ResNet50; CAM × ✓ ✓ 99.3 91.0 99.0 handled the class-imbalance 
problem by novel transfer-to- 
transfer learning; replaced 
last FC layer with two more 
fully connected layers 

Nayak et al. 
[83] 

Classes:2C/N 203/ 
203 

Augmentation, 
normalization 

ResNet34 × ✓ × 98.3 – – Fine tuning of all the layers 

Oh et al. [27] 
(VP and C 
were 
considered as 
one class) 

Classes:4 N/BP/TB/ 
VP 191/54/57/200 

Data type casting to 
float 32; histogram 
equalization; gamma 
correction; resized to 
256 × 256 

FC-DenseNet103 for 
segmentation; patch- 
based CNN based on 
ResNet18; use of Grad- 
CAM 

× ✓ × 88.9 83.4 96.4 Morphological analysis of 
lung area; evaluation of 
segmentation performance; 
peculiar pre-processing steps 
to remove heterogeneity 
across then dataset 

Ozturk et al. 
[66] 

Classes:2C/N 127/ 
500 

Resized to 256 ×
256 

Modified Darknet-19 ✓ ✓ ✓ 98.1 95.1 95.3 Multiple Darknet layers 
having one convolutional 
layer followed 

Classes:3C/N/P 
127/500/500      

87.0 85.4 92.2 by batch normalization and 
leaky ReLU operations 

Panwar et al. 
[64] 

Classes:2C/N 142/ 
142 

Augmentation; 
resized to 224 × 224 

VGG16 × ✓ × 88.1 97.6 78.6 Utilized first 18 Imagenet pre- 
trained VGG16 layers and 
added 5 new different layers 
(average pooling, flatten, 
dense, dropout and dense) on 
the top 

Pereira et al. 
[79] 

Classes:7 N/C/ 
SARS/MERS/ 
Pnemocystic/ 
Streptococcus/ 
Varicella 1000/90/ 
11/10/11/12/10 

None Fusion of texture-based 
features and InceptionV3 
features; classification 
using late fusion of 
multiple standard 
classifiers 

✓ ✓ × 95.3 – – handled the class-imbalance 
problem by re-sampling; 
multiclass and hierarchical 
classification 

Pham et al. 
[61] 

Classes:2C/N 403/ 
721 

Resized to 227 ×
227 

SqueezeNet ✓ ✓ × 99.8 100 99.8 Features visualization of 
different layers 

Classes:2C/N 438/ 
438      

99.7 99.5 99.8  

Rahimzadeh 
and Attar 
[80] 

Classes:3C/N/P 
180/8 851/6 054 

Resized to 300 ×
300, augmentation 

XceptionNet 
concatenated with 
ResNet50V2 

✓ ✓ ✓ 91.4 87.3 93.9 handled the class-imbalance 
problem by training multiple 
times on resampled data 

Sakib et al. [71] Classes:3C/N/P 
209/27 228/5794 

Augmentation using 
GANs 

Custom CNN × ✓ × 93.9 – – Analysis of different 
optimization algorithms; 5 
convolutional layers along 
with exponential linear unit 
as an activation function 

Sitaula et al. 
[132] 

Classes:5C/N/BP/ 
VP/NF (exact 
segregation is not 
given) 

Resized to 150 ×
150 

VGG16 ✓ ✓ × 79.6 89.0 92.0 Leveraged both attention and 
convolution modules in the 
4th pooling layer of VGG-16 
for identifying deteriorating 
lung regions in both local and 
global levels of CXR images 

Tabik et al. 
[91] 

Classes:2 N/C 426/ 
426 

Class-inherent 
transformation 
method using GANs 

U-Net, ResNet50, Grad- 
CAM 

× ✓ ✓ 76.2 72.6 79.8 Quantified COVID-19 in 
terms of severity levels so to 
build triage systems; 
Replaced last layer; fine- 
tuned all the layers; use of 
class-inherent transformation 
network to increase 
discrimination capacity; 
fusion of twin CNNs 

Togacar et al. 
[51] 

Classes:3C/N/P 
295/65/98 

Resized to 224 ×
224; Data 

Feature extraction using 
MobileNetV2 and 

✓ ✓ ✓ 98.2 97.0 99.2 Image quality improvement 
using fuzzy technique 

(continued on next page) 
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removing noise from images using the top-2 smooth loss function. In 
Ref. [35], authors considered an ensemble classifier using two 3D 
ResNet-34 architectures for CT-scan images. The prediction scores ob-
tained from the two ResNets were linearly combined, where the weights 
were decided according to the ratios of the pneumonia infection regions 
and the lung. CT-scan images of CAP and COVID-19 patients were 
collected from 8 hospitals, and the images were segmented to obtain the 
lung regions using the VB-Net [134] with a refined attention module 
that provided interpretability and explainability to the model. VB-Net 
was designed by adding bottleneck layers to a V-Net to integrate 
feature map channels. The role of the attention module was twofold. 
First, it learned all important features for classification, and second, it 
gave the 3D class activation mapping. The images were normalized 
voxel-wise, and the window/level scaling was performed to enhance the 
contrast of images. The ResNet architecture was trained using dual 
sampling to compensate for the unbalanced dataset. 

Li et al. [31] utilized a 3D ResNet50 model to differentiate COVID-19 
from CAP. Before fine-tuning this model, the lung was segmented from 
3D CT images using a U-Net-based segmentation method. Also, the 
framework could extract both two-dimensional local and 3D global 
representative features. Wu et al. [135] used a joint classification and 
segmentation approach termed JCS using 1,44,167 chest CT scans, 
which is one of the largest CT-scan datasets used in the literature. The 
dataset includes scans from 400 COVID-19 patients and 350 non-COVID 
subjects. Of these, 3855 chest CT images of 200 patients have been 
annotated with fine-grained pixel-level labels of opacifications, lesion 
counts, opacification areas, and locations, thus benefiting various 
diagnosis aspects. A Res2Net was used in this work for classification, and 
image mixing was used to avoid over-fitting. Segmentation was per-
formed using an encoder-decoder module, and an Enhanced Feature 
Module (EFM) was used with VGG-16 in the encoder. Feature maps 
acquired from different stages were fused to predict the side-output of 
each stage. An attention mechanism was used to filter relevant features. 
The output from the last stage, which gave the final prediction value, 
had the same resolution as the input CT image. 

4.1.4. Inception or GoogleNet 
The idea of inception network [41] is to use several filter sizes 

instead of choosing a particular filter size. The feature maps are 
concatenated at the output so that the network learns about the com-
bination of required filter sizes. It cascades several inception modules, 
where each module consists of a concatenation of outputs from 1x1 
convolution, 3x3 convolution, 5x5 convolution, and pooling operation. 
It has additional side branches also. Inception network has three more 
versions with improved performance. InceptionV2 and InceptionV3 
have been proposed in the same paper [136] and InceptionV4 is 
explained in Ref. [43]. InceptionV2 replaces the 5x5 convolution oper-
ation with two 3x3 convolution operations to avoid information loss and 
uses factorization methods to achieve performance improvement. 
InceptionV3 contains all the features of InceptionV2 in addition to 
RMSprop optimizer, batch normalization, regularization, and 7x7 fac-
torized convolution. In Ref. [79], multiple texture-based features were 
extracted from the CXR images, such as local binary pattern, elongated 
quinary pattern, local directional number, locally encoded transform 
feature histogram, binarized statistical image features, local phase 
quantization, and oriented basic image features. These features were 
combined with the features learned by the InceptionV3 network. These 
features were resampled to handle the problem of the unbalanced 
dataset. Five popular machine learning classifiers, including K-Nearest 
Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), 
Multilayer Perceptrons (MLP), and Decision Trees (DT), were used to 
predict class labels. The predicted values were combined by considering 
the sum of the prediction probabilities obtained for each label by each 
learner, the product of the prediction probabilities obtained for each 
label by each learner, and also as the majority vote. Wang et al. (2021) 
[137] modified the Inception-V3 pre-trained model in the end and used 
it for the classification of CT images. 

4.1.5. DenseNet 
DenseNet can be understood as the extension of ResNet50 architec-

ture, where each layer receives additional input from all the preceding 
layers rather than a skip connection from a single previous layer. It 
transfers its output to all the subsequent convolutional layers for 
concatenation. Thus, each layer is said to obtain “collective knowledge” 
from all the preceding convolutional layers. DenseNet is being utilized in 
a few studies in the literature and has shown good performance 

Table 3 (continued ) 

Ref. Dataset Pre-processing Architecture Code Data K- 
Fold 

Performance reported Critical Observations 

Acc. Sen. Spe. 

restructured and 
stacked with the 
Fuzzy Color 
technique 

SqueezeNet; processed 
using the social mimic 
optimization method; 
classified using SVM 

Toraman et al. 
[68] 

Classes:3C/N/P 
1050/1050/1050 

Augmentation; 
resized to 128 × 128 

Custom CNN × ✓ ✓ 84.2 84.2 91.8 4 convolutional layers and 1 
primary capsule layer 

Classes:2C/N 1050/ 
1 050      

97.2 97.4 97.0  

Ucar et al. [69] Classes:3C/N/P 66/ 
1 349/3 895 

Augmentation; 
normalization; 
resized to 227 × 227 

Bayes-SqueezeNet; 
activation mapping 

× ✓ × 98.3 – 99.1 Handled the class-imbalance 
problem by multi scale offline 
augmentation; evaluation of 
proposed method using 
multiple metrics such as 
correctness, completeness 
and Matthew correlation 
coefficient; computational 
time analysis 

Wang et al. 
[126] 

Classes:3C/N/P Augmentation; 
image cropping; 
resized to 480 × 480 

Custom CNN; 
interpretation by 
GSInquire [146] 

✓ ✓ × 93.3 91.0 98.9 Multiple projection- 
expansion-projection- 
extension blocks; different 
filter kernel sizes ranging 
from 7 × 7 to 1 × 1 

Wang et al. 
[28] 

Classes:3C/N/CAP 
225/1 334/2 024 

Augmentation; 
resized to 224 × 224 

VGG based 
Segmentation; ResNet 
with feature pyramid 
network 

× ✓ × 93.7 90.9 92.6 Handled the class-imbalance 
with multi-focal loss function; 
residual attention network for 
localizing infected pulmonary 
region  
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Table 4 
Summary of state-of-art DL techniques used for the COVID-19 classification using CT Abbreviations: Acc.- Accuracy, BP-Bacterial Pneumonia, C-COVID-19, CAM- 
Class Activation Maps, CAP- Community Acquired Pneumonia, CN- COVID-19 negative, FP- Fungal Pneumonia, FPN- Feature Pyramid Network, HU- Hounsfield Units, 
Influ.- Influenza, LT- Lung Tumor, MP- Mycoplasma Pneumonia, N-Normal, NF- No Findings, P- Pneumonia, Rad.- Radiologist, SARS- Severe Acute Respiratory 
Syndrome, Seg.- Segmentation, VP- Viral Pneumonia, Sen.- Sensitivity, Spe.- Specificity.  

Ref. Dataset Pre-processing Architecture Code Data K- 
Fold 

Performance 
reported 

Critical Observations 

Acc. Sen. Spe. 

Ardakani 
et al. 
[133] 

Classes:2C/CN 
510/510 

Gray-scale conversion; 
affected region resized 
to 60 × 60, 

ResNet101 × ✓ × 99.6 100 99.3 Kolmogorov-Smirnov test to 
check the normality of all 
quantitative data; evaluation of 
age and gender distributions 
among COVID-19 and non- 
COVID-19 groups by two-tailed 
independent sample t-test and 
chi-square test, respectively. 

Alshazly 
et al. 
[117] 

Classes:2C/CN 
1252/1 230 

Augmentation ResNet101; Grad-CAM × ✓ ✓ 99.4 99.1 99.6 Copying of same image to the 
three RGB channels; padding to 
alter size without resizing; t- 
distributed stochastic neighbor 
embedding visualization of 
feature vectors 

Classes:2C/CN 
349/463  

DenseNet201 × ✓ ✓ 92.9 93.7 92.2  

Arora et al. 
[118] 

Classes:2C/CN 
349/463 

Augmentation; Residual 
dense network to 
improve the resolution 

MobileNet × ✓ × 94.1 96.1 – Image resolution improvement 
by residual dense block 

Classes:2C/CN 
1252/1 230   

× ✓ × 100 100 –  

El-Kenawy 
et al. 
[131] 

Classes:2C/CN 
334/794 

None AlexNet × × × 79.0 81.0 77.3 Feature selection using Guided 
Whale Optimization Algorithm 
(WOA) and voting on multiple 
classifiers output 

Javaheri 
et al. 
[15] 

Classes:3C/N/ 
CAP 111/109/ 
115 

HU-based filtering; min- 
max normalization; 
resized to 128 × 128 

BCDU-Net & 3D-CNN ✓ × × 86.6 90.9 100 resampled along three axes (z, y, 
x) to account for the variety of 
voxel dimensions; 10 convolution 
layers with five max-pooling 
layers along with two fully 
connected layers; filtering of CT 
slices (2D) to remove non-lung 
tissue (e.g.,skin, bone, or scanner 
bed) and denoising of CT slices 

Jin et al. 
[30] 

Classes:4C/N/ 
CAP/I 3084/ 
3 562/2296/ 
83 

Resampling to 1 × 1 × 1 
mm voxel; HU-based 
filtering; normalization; 
resized to 224 × 224 

U-Net; ResNet152; & 
Guided Grad-CAM 

✓ ✓ ✓ – 94.1 95.5 Task-specific fusion block to get a 
3D CT prediction from slice-level 
prediction; t-SNE visualization; 
Attention region identification by 
binarizing the output of Guided 
Grad-CAM and their phenotype 
feature analysis among different 
classes 

Li et al. 
[31] 

Classes:3C/N/ 
CAP 1292/ 
1 325/1735 

None U-Net, 3D-ResNet50 & 
heatmaps 

✓ × × – 90.3 94.7 Statistical analysis of training and 
test cohorts 

Mishra 
et al. 
[110] 

Classes:2C/N 
400/400 

Resized to 224x224 ResNet50 × ✓ ✓ 99.6 99.6 99.6 Modifications in the last layer by 
addition of fully connected; batch 
normalization and dropout layers 

Classes:3C/N/ 
P 400/400/ 
250   

× × ✓ 88.5 88.2 94.7  

Ouyang 
et al. 
[35] 

Classes:2C/ 
CAP 3389/ 
1 593 

Resized to 138 × 256 ×
256; dual sampling; 
contrast enhancement; 
normalization 

VB-Net for segmentation, 
two 3D ResNet34 with 
online attention module 

× × × 87.5 86.9 90.1 Handled the class-imbalance 
problem by dual sampling 
training; refined the attention of 
training network using attention 
module 

Pathak 
et al. 
[107] 

Classes:2C/N 
413/439 

None ResNet50 × ✓ ✓ 93.1 – – Handled the class-imbalance and 
noisy data problem using top-2 
smooth loss 

Polsinelli 
et al. 
[121] 

Classes:2C/CN 
449/386 

Augmentation Custom CNN × ✓ ✓ 85.1 87.6 81.9 SqueezeNet inspired architecture 

Serte et al. 
[103] 

Classes:2C/N 
90/49 

Resized to 256 × 256 majority voting on multiple 
ResNet50 trained on single 
slice 

× ✓ × 96.0 100 96.0 Majority voting of multiple 
parallel trained CNNs 

Shah et al. 
[123] 

Classes:2C/CN 
349/463 

Resized to 128 × 128 VGG19 ✓ ✓ × 94.5 – – Fine tuning of all the layers; 
changed dimensions of last 2 fully 
connected layers 

✓ × × 93.0 – 93.0 
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compared to the other pre-trained networks. For example, Alshazly et al. 
(2021) [117] tested the efficacy on two datasets [116,120], and ob-
tained good results with the DenseNet201 pre-trained model on one of 
the datasets compared to the other pre-trained models. 

Chowdhury et al. [5] showed the superiority of the DenseNet201 
pre-trained model over the other six pre-trained models for a three-class 
classification problems using CXR images. Comparison of the activation 
maps of different classes obtained from the convolutional layers 

provided insight into the image regions contributing to classification. In 
Ref. [53], DenseNet-121 architecture is used to classify COVID-19 pa-
tients from control. First, a set of 1024 higher-level features are 
extracted using the DenseNet-121 trained on ImageNet, and then a lo-
gistic regression is fitted to these features. Finally, interpretation is done 
using the Expected Gradients [138]. To further identify the features used 
by the ML model to differentiate between COVID-19-positive and 
COVID-19-negative datasets, a GAN is trained to transform 

Table 4 (continued ) 

Ref. Dataset Pre-processing Architecture Code Data K- 
Fold 

Performance 
reported 

Critical Observations 

Acc. Sen. Spe. 

Song et al. 
[143] 

Classes:3C/N/ 
BP 88/86/100 

Lung region 
segmentation through 
OpenCV 

ResNet50 & feature 
pyramid network 

Use of attention module to learn 
the importance part of an image 

Turkoglu 
[122] 

Classes:2C/N 
349/397 

Augmentation; image 
scaling; resized to 224 ×
224 

DenseNet201 with multiple 
kernels extreme learning 
machine classifiers 

× ✓ ✓ 98.4 98.2 98.4 Analysis on multiple different 
activation functions 

Wang et al. 
[32] 

Classes:2C/N 
723/413 

Augmentation; 
thresholding; 
normalization; resized 
to 256 × 256 

3D U-Net++ & ResNet50 ✓ × × – 97.4 92.2 Both slice and intensity level 
normalization; lung and lesion 
segmentation; evaluation of 
segmentation using dice 
coefficient 

Wang et al. 
[139] 

Classes:5C/ 
BP/VP/MP/FP 
924/271/29/ 
31/11 

Normalization; resized 
to 48 × 240 × 360 

DenseNet121-FPN for 
segmentation; DenseNet 
based architecture for 
classification 

✓ × × 81.2 78.9 89.9 Trained on CT-EGFR dataset to 
predict EGFR mutation status 
using the lung-ROI; Built 
multivariate Cox proportional 
hazard (CPH) model to predict 
the hazard of patient needing a 
long hospital-stay time to 
recover; Visualized suspicious 
lung area and feature patterns; 
Evaluated by calibration curves 
and Hosmer-Lemeshow test; 
Prognostic analysis using Meier 
analysis and log-rank test 

Wang et al. 
[137] 

Classes:2C/CN 
325/740 

Resized to 229 × 229 Lung area segmentation; 
InceptionV3 

× × × 89.5 87.0 88.0 Copied of gray scale image three 
times to form RGB image; Fixed 
feature extractor with 
modification in only last FC layer 

Wang et al. 
[142] 

Classes:2C/N 
320/320 

Augmentation; gray 
scale conversion; 
histogram stretching; 
image cropping; resized 
to 256 × 256 

Custom CNN; Grad-CAM × × × 97.1 97.7 96.5 Feature fusion of CNN (with 7 
convolutional layers and 2 fully 
connected layers) and graph 
convolution network. CNN is 
used to extract image-level 
features and graph convolutional 
network (GCN) to extract 
relation-aware features among 
images; Used rank-based average 
pooling 

Wu et al. 
[135] 

Classes:2C/N 
67 505/75 541 

None Explainable joint 
classification and 
segmentation network 
(Res2Net for classification; 
VGG16 for segmentation); 
activation mapping 

✓ ✓ × – 95.0 93.0 Released large scale COVID-CS 
dataset with both patient and 
pixel-level annotations (helped to 
focus more on the decisive lesion 
areas of COVID-19 cases); 
computational time analysis; 
evaluation of segmentation using 
dice coefficient; alleviated 
overfitting by image mixing; 
detailed ablation analysis 

Xu et al. 
[33] 

Classes:3C/N/I 
189/145/194 

Augmentation, HU- 
based filtering 

3D-Segmentation, Attention 
ResNet18 & Noisy-OR 
Bayesian function based 
voting 

× × × 71.8 76.5 68.9 Proposed a local attention 
classification model using 
ResNet18 as backbone 
architecture; used image patch 
vote and noisy-OR Bayesian 
function based vote for voting a 
region and enhancement 

Zheng 
et al. 
[34] 

Classes:2C/N 
313/229 

Augmentation; HU- 
based filtering; resized 
to 224 × 336 

U-Net & 3D-CNN ✓ × × 90.1 84.0 98.2 Residual blocks and 3D CNN 
layers; CT volume and its 3D lung 
mask as an input 

Zhou et al. 
[141] 

Classes:3C/N/ 
LT 2500/ 
2 500/2500 

Normalization, resized 
to 64 × 64 

Ensemble modelling 
(majority voting) with 
AlexNet, GoogleNet, 
ResNet18 

× × ✓ 99.1 99.1 99.6 Training time analysis and 
evaluation by Matthews 
correlation coefficient  

P. Aggarwal et al.                                                                                                                                                                                                                               



Computers in Biology and Medicine 144 (2022) 105350

15

COVID-19-negative radiographs to resemble COVID-19-positive radio-
graphs and vice versa. This technique should capture a broader range of 
features than saliency maps because the GANs are optimized to identify 
all possible features that differentiate the datasets. In Ref. [73], authors 
used DenseNet121 to classify CXR images. A gravitational search algo-
rithm (GSA) was used to find the optimum hyperparameters for the 
network. This was compared with the performance of DenseNet121 and 
Inception-v3 with manual hyperparameter tuning, and the GSA perfor-
mance was shown to be superior. The authors used gradient-weighted 
class activation mapping (Grad-CAM) for explainability. 

Wang et al. (2021) [139] consists of a sequence of three separate 
parts for automatic lung segmentation, non-lung area suppression, and 
COVID-19 diagnostic and prognostic analysis. It proposes 
DenseNet121-FPN for lung segmentation in chest CT image, and 
DenseNet-like structure for COVID-19 diagnostic and prognostic anal-
ysis Turkoglu in Ref. [122] used multiple kernels extreme learning 
machine (ELM) based DenseNet201 to detect COVID-19 cases from CT 
scans. The transfer learning approach was used because the available 
COVID-19 datasets were insufficient to train the CNN models effectively. 
ELM based on majority voting was used to generate the final prediction 
of the CT scan, and results of ReLU-ELM, PReLU-ELM, and Tanh 
ReLU-ELM were compared. 

4.1.6. XceptionNet 
XceptionNet, developed by Google, stands for extreme version of 

Inception. It achieves better performance than InceptionV3 by intro-
ducing depthwise convolution and pointwise convolution. Khan et al. 
[87] used XceptionNet to propose a COVID-19 detection algorithm. The 
performance learning curve for four classes is shown only for fold-4 that 
gives the best accuracy among all folds. However, the curves show 
randomness in the learning and overfitting. The optimization of the 
model towards good fit may reduce the achieved accuracy and other 
metrics levels. 

4.1.7. MobileNet 
It uses depthwise separable convolution from the Xception network 

with the aim to reduce model complexity and parameters that would 
compress the network and improve the speed. It has been developed 
considering mobile and embedded-based DL applications. Arora et al. 
(2020) [118] used MobileNet architecture along with residual dense 
neural network to detect COVID-19 from the CT-scan images. Results 
were compared with multiple other pre-trained architectures and 
MobileNet has shown better performance. 

4.1.8. SqueezeNet 
It has been developed with the aim of smaller networks having fewer 

parameters that can easily fit into the applications with low memory and 
bandwidth requirements. It achieves the goal by decreasing the number 
of input channels and replacing 3 × 3 filters with 1 × 1 filters. Squee-
zeNet is one of the light networks that has been used for COVID-19 
classification in CXR-based studies [69]. In this study, the author pro-
poses a SqueezeNet-based architecture using Bayesian optimization for 
embedded and mobile systems. It is shown that the model size of the 
proposed network is 77.31 times smaller than the AlexNet. Pham [61] 
used AlexNet, GoogleNet, and SqueezeNet to classify CXR images into 
2-classes and 3-classes to detect COVID-19 cases. Six datasets were 
constructed using publicly available images to consider balanced and 
unbalanced binary and multiclass scenarios with normal, COVID-19, 
and pneumonia cases. The algorithm’s efficacy in distinguishing be-
tween COVID and non-COVID cases, COVID, and normal cases are 
illustrated. Also, different cases of train and test data split are consid-
ered. Polsinelli et al. (2020) [121] proposed a light CNN architecture 
based on SqueezeNet to classify CT images into COVID and non-COVID. 
The authors used a publicly available dataset to train the network and 
utilized a separate dataset for testing. The proposed CNN architecture 
outperformed the conventional SqueezeNet. 

Table 5 
Summary of state-of-art DL techniques used for the COVID-19 classification using Multimodality Abbreviations: Acc.- Accuracy, BP-Bacterial Pneumonia, C- 
COVID-19, CAM- Class Activation Maps, CAP- Community Acquired Pneumonia, CN- COVID-19 negative, FP- Fungal Pneumonia, FPN- Feature Pyramid Network, HU- 
Hounsfield Units, Influ.- Influenza, LC- Lung Cancer, LT- Lung Tumor, MP- Mycoplasma Pneumonia, N-Normal, NF- No Findings, P- Pneumonia, Rad.- Radiologist, 
SARS- Severe Acute Respiratory Syndrome, Seg.- Segmentation, VP- Viral Pneumonia, Sen.- Sensitivity, Spe.- Specificity.  

Ref. Dataset Pre-processing Architecture Code Data K- 
Fold 

Performance 
reported  

Acc. Sen. Spe. Critical Observations 

Hilmizen 
et al. [9] 

Classes:2 CT: C/N 
1257/1 243 CXR: C/ 
N 1257/1 243 

Resized to 150 × 150 Ensembling of 
ResNet50 and 
VGG16 

× ✓ × 99.8 99.7 100 Concatenation of CT and X-ray 
features extracted using two separate 
models; only binary classification; 
good reference for multimodal 

Ibrahim et al. 
[109] 

Classes:4 N/C/P/LC 
3500/4 320/5856/ 
20 000 

Augmentation; resized 
to 224 × 224; 
normalization 

VGG19 × ✓ × 98.1 98.4 99.5 Used mixed dataset of CT and X-ray 
images; implemented four different 
architectures; randomness is observed 
in learning curves 

Irfan et al. 
[55] 

Classes:3 CT: C/N/P 
1000/600/700 CXR: 
C/N/P 1200/500/ 
1 000 

Noise removal Custom CNN +
LSTM 

× ✓ ✓ – 95.5 – Used a mixed dataset of CT and CXR; 
performance learning curves are not 
shown 

Kamil MY 
[82] 

Classes:2 CT: C 23 
CXR: C/N 172/805 

None VGG19 × ✓ × 99.0 97.4 99.4 Unbalanced dataset in terms of CT vs 
CXR; Combined training of both type 
of images; randomness in performance 
learning curves 

Mukherjee 
et al. [10] 

Classes:2 CT: C/N 
168/168 CXR: C/N 
168/168 

Resized to 100 × 100 Custom CNN × ✓ ✓ 96.3 97.9 94.6 Balanced dataset; three convolutional 
layers followed by three fully 
connected layers; validation loss curve 
is not shown 

Thakur et al. 
[94] 

Classes:3 CT: C/N/P 
2035/2 119/2 200 
CXR: C/N/P 1200/ 
1 341/2 200 

None Custom CNN × ✓ × 98.3 98.2 – Used a mixed dataset; proposed deep 
learning architecture is missing; 
performance learning curves are 
missing  

Classes:2 CT: C/N 
2035/2 119 CXR: C/ 
N 1200/1 341 

None Custom CNN × ✓ × 99.6 95.6 –   
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4.1.9. EfficientNet 
It is a neural network architecture that uniformly scales the three 

dimensions, viz., depth (number of hidden layers), width (number of 
channels), and resolution (input image resolution) using compound 
coefficient for improved efficiency and accuracy. In one recent work, 
Luz et al. (2021) [112] utilized EfficientNet for three-class classification 
problem and also evaluated results on cross-site datasets. Though the 
original dataset is highly imbalanced, consisting of 7966 Normal images 
and 152 COVID-19 images, it has adopted data augmentation to un-
dertake the analysis on a balanced dataset. It provides a valuable anal-
ysis by proposing a model with relatively 5 to 30 times lesser parameters 
and hence, reduced memory requirements. 

4.1.10. Hybrid model 
The hybrid model consists of an ensemble of the aforementioned 

models. Several works, such as [57,72,74] can be found in this direction. 
[72] has used several pre-trained as feature extractors and 
correlation-based feature selection using CXR images. The proposed 
model has been validated on two separate public dataset and has shown 
promising results. [57] has separately trained three transfer learning 
architectures (DenseNet201, Resnet50V2, and Inceptionv3) and com-
bined them using weighted average ensembling to predict COVID-19. 
[74] has stacked many pre-trained models (ResNet101, Xception, 
InceptionV3, MobileNet, and NASNet), and extracted features are 
concatenated together before feeding them to the dense layer for the 
classification task. However, these methods add complexity experienced 
in pre-training multiple models. To classify CXR images into three 
classes; normal, COVID-19 and pneumonia, authors in Ref. [80] 
concatenated features obtained using XceptionNet and ResNet50V2. The 
concatenation was done to obtain features with both inception-based 
layers and residual-based layers. After concatenation, the feature set 
was passed through a convolutional layer and, further, given to a clas-
sifier. The network was trained with eight different subsets of a balanced 
dataset. The performance of the concatenated network was compared 
with XceptionNet and ResNet50V2 individually, and only marginal 
improvement was observed with the proposed method. Togacar et al. 
(2020) [51] stacked original images with images pre-processed using the 
fuzzy color technique. Features were extracted from these stacked im-
ages using MobileNetV2 and SqueezeNet. Social Mimic optimization 
method [140] was used to process the features, and a support vector 
machine classifier was used for classifying the images into three classes. 

In [141], an ensemble DL model is proposed using three pre-trained 
models: AlexNet, GoogleNet, and ResNet using CT-scan images. 
Ensembling is performed using majority voting. The performance of the 
proposed method was observed to be superior compared to the three 
individual pre-trained networks. Hilmizen et al. [9] fed the CXR images 
to VGG16 and CT scan images to ResNet50 for feature extraction, which 
were concatenated before providing to the dense layers for 
classification. 

4.1.10.1. Custom CNN work. ImageNet pre-trained models are not suf-
ficient for classifying medical images because they are trained using 
natural images. Since medical and natural images are different in many 
aspects, some studies trained new and special deep CNNs from scratch. 
These studies majorly either adopted simpler few stacked convolutional 
layers in Refs. [10,71,77,94] or adopted advanced layers such as re-
sidual blocks in Refs. [98,99]. Furthermore improvements are made by 
utilizing advanced architectures such as residual blocks with 
squeeze-excitation blocks in Ref. [65], channel-shuffled dual-branched 
CNN in Ref. [26], newly lightweight residual 
projection-expansion-projection-extension blocks in Ref. [126], Long 
Short Term Memory (LSTM) with CNN in Refs. [55,60], 3D CNN in 
Ref. [15], 3D CNN with residual blocks in Ref. [34], capsule network 
inspired architecture in Refs. [67,68], and Graphs Convolution Network 
(GCN) with CNN in Ref. [142]. More in-depth details of all these 

references are presented in Tables below.Summary: In this paper, we 
have reviewed a total of 71 COVID-19 detection studies, based on the 
imaging modality used, i.e., 23 CT image studies, 42 CXR image studies, 
and six studies using both CT and CXR images. We observed that transfer 
learning had been efficiently used to detect COVID-19 from chest CT and 
CXR images. Of all studies, 57 (80% of the reviewed systems) used 
transfer learning with pre-trained weights, and only 14 used custom 
CNN. Fig. 7b shows the number of published papers using various DL 
architectures. ResNet is the most popular architecture used by 28% of 
the reviewed articles, followed by custom CNN and VGGNet. 

Since the transfer learning approach offers several advantages, it is a 
preferred choice in many studies. In general, training a model from 
scratch requires high computational power and larger datasets. The 
primary issue in training deeper models from scratch is learning a large 
number of parameters using a limited number of (available) training 
samples that lead to overfitting. Also, it is quite time-consuming to 
decide parameters and architectures from scratch. A pre-trained model 
with transfer learning facilitates faster convergence with network 
generalization. Thus, we observe that many studies on DL-based COVID- 
19 detection models using CXR, CT, and multimodal have used the 
transfer learning approach. 

5. Unique challenges in COVID-19 image analysis 

In the last section, we discussed several works on COVID-19 image 
analysis. Although the performance of the proposed algorithms seems 
promising, there are certain shortcomings that must be addressed. We 
now present a discussion on some of the challenges and gaps in this area. 

5.1. Reproducibility and code availability 

Reproducibility of DL-based models has emerged as one of the major 
challenges in the literature. Results can be ascertained if only the dataset 
and the details of the model architecture and training hyperparameters 
are made available. Also, the open-source availability of code helps in 
reproducing the results and in devising further improvements. Some of 
the works based on CXR and CT-scan image classification have provided 
their codes [15,30–32,34,51,57,66,67,70,80,87,99,112,132,135,139, 
143]. However, none of the papers using multimodal architecture have 
provided codes in the open-source domain. Almost all the papers that 
derived the dataset from multiple sources have provided details of in-
dividual sources. However, most of them have not provided the link of 
their consolidated dataset except a few studies such as [30,32,67,79,91]. 
It is important to note that many authors who have provided their codes 
have also not provided their dataset in the public domain. A study by the 
authors in Ref. [94] have not provided details of their architecture, 
although it is based on a custom CNN. 

5.2. Unbalanced dataset 

It is noted that most of the dataset used for binary class or multiclass 
classification for COVID-19 diagnosis is highly unbalanced. The skew-
ness in the dataset can introduce bias in the performance of a trained 
model. These unbalanced datasets pose a major challenge to the AI re-
searchers because the collection of a sufficient number of quality im-
ages, especially at the initial stage of the pandemic, was indeed difficult. 

For example, as listed in Table. 5, the author in Ref. [82] has used 
only 23 CT and 172 CXR images as compared to 805 normal images. The 
author in Ref. [109] has used 20,000 lung cancer images as compared to 
3500 normal images. In order to handle class imbalance with small 
COVID-19 data, larger penalties were associated with the 
mis-classification error in COVID-19 cases in Ref. [67]. In Refs. [74,87], 
random sampling was used to select a balanced multiclass dataset from 
an unbalanced larger dataset. However, this method reduced the size of 
the dataset. Pereira et al. [79] investigated the effect of different 
re-sampling methods such as ADASYN, SMOTE, SMOTE-B1, SMOTE-B2, 
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AllKNN, ENN, RENN, Tomek Links (TL), and SMOTE + TL on the per-
formance of the proposed classification algorithm. In Ref. [26], data 
augmentation, weighted-class batch sampling, as well as stratified data 
sampling were used to obtain an equal number of samples for each class 
in every training batch. In Ref. [131], dataset balancing was carried out 
using the SMOTE algorithm. Authors in Ref. [23] addressed the 
class-imbalance problem owing to the limited set of COVID-19 CXR 
images by proposing a novel transfer-to-transfer learning approach, 
where a highly imbalanced training dataset was broken into a group of 
balanced minisets, followed by transferring the learned (ResNet50) 
weights from one set to another for fine-tuning. 

5.3. Data augmentation 

Data Augmentation is employed to increase the size of the training 
dataset by transforming the images of the original dataset in multiple 
ways. This enables the learning of diverse features during the training 
process and reduces the overfitting of the model. Two important tech-
niques of data augmentation have been observed in the reviewed liter-
ature. First, several variations such as flip, rotate, skew, translation, 
random clipping, tilting, and scaling have been introduced to the orig-
inal dataset, increasing the number of training samples. Second, inbuilt 
software libraries (e.g., Keras ImageDataGenerator function) have been 
utilized that introduce random variations in the training dataset during 
each iteration without increasing the number of samples. The range of 
random variations is a hyperparameter that needs to be fine-tuned for a 
given problem. Authors in Refs. [28,32,63–65,68,70,75–77,83,98,109, 
112,118,122,142] have used the first method, while the authors in Refs. 
[9,26,26,33,34,74,82,110,121] have used the second technique of data 
augmentation. 

There is a third method of data augmentation by generating synthetic 
images using a Generative adversarial network (GAN). For example, 
authors in Ref. [71] have used GAN and generic data augmentation 
techniques to increase the dataset size. Authors in Refs. [69,117] have 
added Gaussian noise and used brightness variations to augment the 
images. One study also used Gamma correction to augment images 
[142]. Authors in Refs. [30,103,107,141,143] have not incorporated 
data augmentation that could have definitely improved performance of 
the proposed model. 

5.4. Quality of images 

Medical images are generally low contrast images. Hence, efforts are 
made to increase the contrast of these images so that the images are 
better transformed to the feature space while they traverse through a DL 
model. Moreover, broad heterogeneity in the quality of images captured 
at different sites using different imaging devices causes potential bias in 
image analysis. This challenge emphasizes the need for improving image 
quality as a pre-processing step. Contrast enhancement techniques are 
generally used in the literature for enhancing the quality of images and 
making them visually more appealing. A few studies carried out histo-
gram modification of images for contrast enhancement [27,70,75,142]. 
Authors in Ref. [23] utilized local contrast enhancement on thresholded 
grayscale CXR images for enhancement and also for removing any text 
from the image. Authors in Ref. [75] removed the diaphragm region 
from the CXR images and applied bilateral lowpass filtering to the 
original images. Others normalized their images before feeding to a 
neural network [15, 32, 57, 65, 83, 112]. Authors in [15, 33] applied 
HU-based filtering on raw CT images for removing the redundant parts. 
Some used gamma correction to control the brightness of images used 
[27]. Authors in Ref. [118] used residual dense network (RDNN) to 
enhance the quality of CT-Scan images through super-resolution. The 
performance of the model deteriorated for low-quality images in 
Ref. [66]. A large number of non-infected regions or background have 
been separated in [31, 33–35] using 3D CNN segmentation model based 
on U-Net [22]. 

5.5. Transfer learning architecture 

Transfer learning has been used either as a fixed feature extractor 
(where the weights of the convolutional layers of the pre-trained ar-
chitectures are used without alteration) or weights of the few or all 
convolutional layers of the model are fine-tuned or retrained. The choice 
of an approach depends upon the size and similarity of the training 
dataset of the given problem to the dataset used in the training of the 
original transfer learning model. Since weights of most of the standard 
DL models (used for transfer learning) are learned over 1000 classes of 
the ImageNet dataset consisting of natural images, these DL models may 
not be completely relevant for the classification of CT or CXR images. 
Hence, it is recommended to employ transfer learning by retraining the 

Fig. 7. (7a) shows the number of publications using most popular datasets for validating COVID-19 detection models, and (7b) shows the number of published papers 
using various deep learning architectures. 
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weights of a few convolutional layers. Several studies in papers [23, 
30–32,35,63,69,72,75,79,83–85,87,103,107,112,117,122,123,131, 
137,139,141,143] have used transfer learning models as fixed feature 
extractor only. Also, it is important to note that very few studies such as 
class decomposition with VGGNet [70], attention with VGGNet [132], 
feature pyramid network with ResNet [28] have proposed architectural 
changes in the proposed model that is very much required not only to 
achieve better classification capability but also to have faster and stable 
learning. 

In [67], authors used a publicly available CXR dataset for common 
thorax diseases to pre-train their Capsule network, unlike other works 
where natural images from the ImageNet dataset have been used. They 
also demonstrated the superiority of their method as compared to the 
latter. In Ref. [87], a pre-trained XceptionNet was retrained end-to-end, 
while authors in Ref. [99] fine-tuned a custom CNN stacked architecture 
pre-trained on CXR images of normal and pneumonia cases. In Ref. [66], 
a 19 layer CNN has been developed using DarkNet as the classifier for 
YOLO real-time objective detection system. 

5.6. Performance learning curves 

Training and validation curves of accuracy and loss function provide 
a visual assessment of the three aspects of the training/trained model. 
First, it indicates how rapidly the model learns the objective function in 
terms of the number of iterations. Second, it informs how well the 
problem has been learned in terms of underfit/overfit/good fit of the 
model. Underfitting is shown by the low training accuracy, while 
overfitting of the model is indicated by a substantial gap between the 
training and validation curves. The good fit of the model is represented 
by higher training accuracy and convergence between training and 
validation curves. Third, there could be random fluctuations or noisy 
behavior in the training/validation loss curves. This could be due to a 
number of reasons, including the small size of the dataset compared to 
the model capacity, need of regularization, feature normalization, etc. 
Hence, depiction of learning curves is important in research studies as 
has been done in Refs. [10,15,26,27,51,55,60,63–66,68,69,75,76,78, 
82–84,87,98,110,112,118,132,137]. 

5.7. Stratified K-fold cross-validation 

When the dataset is small, as is the case in the medical imaging 
domain, cross-validation is an important technique to assess the 
robustness of a model. Here, every sample of the dataset is used once as 
the test sample. The complete dataset is divided into k number of folds. 
In the literature study, very few studies have been undertaken to 
incorporate K-fold cross-validation. Authors in Refs. [35,55,57,60,65, 
66,117,141] have used 5-fold and authors in Refs. [10,23,121,122] have 
used 10-fold cross-validation. It is important to note that although the 
authors in Refs. [10,35,122] implemented K-fold cross-validation, de-
tails about the outcome of each fold has not been discussed. For a small 
dataset, this is a highly recommended training strategy. 

5.8. Distinction from other viral diseases 

During the COVID-19 pandemic, it has been observed that people 
were being infected symptomatically as well as asymptomatically, 
where the latter is less contagious. A CXR or CT scan is taken at a later 
stage to determine the degree of infection so that proper medication can 
be advised to a patient. In such scenarios, it becomes imperative to 
differentiate not only between COVID-19 versus healthy but also be-
tween COVID-19 and the other viral diseases such as pneumonia that 
affect human organs in a similar manner. The development of an effi-
cient and optimal AI-based solution to specifically and exclusively detect 
COVID-19 is still a prime challenge. 

In one study [110], detection of COVID-19 from CT scans achieved 
accuracy of more than 99% while classifying from normal images. 

However, the performance of the same model degrades considerably 
when the multiclass classification was undertaken, including pneumonia 
images. The same was observed in another study [66] with an accuracy 
drop of 11% after adding pneumonia samples. In Ref. [76], an accuracy 
of 97.2% was obtained for detecting COVID-19 cases from non-COVID 
cases, including healthy, bacterial pneumonia, and non-COVID viral 
pneumonia using a two-step detection algorithm using ResNet 
pre-trained architectures. The authors also investigated the performance 
of ResNet101 in detecting COVID-19 in the presence of other pulmonary 
diseases such as edema, cardiomegaly, atelectasis, consolidation, and 
effusion. In this case, the performance of ResNet101 was found to be 
inferior to the rest of the networks for the COVID-19 class. SARS patient 
samples along with healthy ones are also considered in one study for 
three-class classification using CXR images [70]. Authors in Ref. [27] 
developed an algorithm to detect healthy cases, bacterial pneumonia, 
viral pneumonia, and tuberculosis. Here, the COVID-19 cases were 
included in the viral pneumonia class that could be further detected 
using RT-PCR or CT-scan. Pediatric cases were excluded from this study 
to prevent the network from learning age-related data. Authors in 
Ref. [79] considered seven classes, including COVID-19, SARS, pneu-
mocystis, streptococcus, varicella, MERS, and normal cases. In another 
work by Wang et al. [139], COVID cases are classified against several 
versions of pneumonia such as bacterial pneumonia, viral pneumonia, 
mycoplasma pneumonia, and viral pneumonia. Authors in Refs. [141, 
143] have undertaken three-class classification by adding lung tumor 
and bacterial pneumonia. 

In a few studies such as [23,57,67,117], CXR images are classified 
into COVID and non-COVID, where the latter included normal, bacterial 
pneumonia cases, non-COVID viral pneumonia cases, and other pul-
monary syndromes. 

5.9. Generalization 

Generalization is the ability of a DL model to perform well on an 
unseen dataset. A model to classify dog and cat trained using black cats 
only may not perform well when tested on white-colored cats. This re-
quires the training of the model on a diverse dataset. Apart from the 
dataset, generalization ability can also be ascertained through the choice 
of hyperparameters of a network that cater to the high variance (over-
fitting) and high bias (underfitting) issues. Regularization, dropout, 
batch normalization, early stopping are some techniques that can be 
incorporated to achieve better generalization abilities. 

To demonstrate the generalization ability of the proposed network, a 
few works like [57,72,75,117] have demonstrated the performance of 
their proposed model on more than one dataset. Wang et al. (2021) 
[137] utilized Inception-V3 pre-trained model for transfer learning. 
Performance was evaluated on CT datasets from two different sites. 
Results on the same site test dataset achieved a total accuracy of 89.5% 
with a specificity of 0.88 and sensitivity of 0.87. Results on the test 
dataset from different sites (trained and tested on different site data) 
showed an accuracy of 79.3% with a specificity of 0.83 and sensitivity of 
0.67. 

5.10. Use of explainable AI 

Convolutional neural network-based architecture possesses auto-
matic feature extraction capability leading to the representation of DL 
models as a black box. To achieve wider acceptability of the automated 
solutions, it becomes imperative to have an interpretability and 
behavioral understanding of the model. The transparency and explain-
ability of AI solutions are very critical in the medical domain, especially 
when used for life-threatening COVID-19 diseases. In the reviewed 
literature, some studies have utilized various interpretation methods 
with the most used one being Grad-CAM [26–28,30,31,74,76,84,91,99, 
117,142] and CAM [23,69,121]. As illustrated, GRAD-CAM and CAM 
methods work in a similar manner, using heat maps as being used in a 
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few studies [35,60,66], while the other methods work differently and 
highlight the affected area in a different manner. For example, Karthik 
et al. (2021) [26] visualized the infected areas detected by the proposed 
work using saliency maps, guided backpropagation, and Grad-CAM. 
Authors in Ref. [117] also used t-distributed Stochastic Neighbor 
Embedding (t-SNE) plot to visualize the clustering of COVID and 
non-COVID cases. In Ref. [139], visualization of the suspicious lung area 
along with the visualization of feature patterns extracted by convolu-
tional layers of the proposed architecture is done to understand the 
inference of a DL system. 

5.11. Lack of comparison 

Literature lacks the comparison among methods on the same data 
[98]. Instead of considering different datasets while evaluating and 
training any new model, methods should be trained on the same data for 
comparison. Again, this poses the need to create larger and more het-
erogeneous datasets that can be used to train both large and small neural 
networks. 

It is pertinent to mention that a few authors, such as in Refs. [15,26, 
28,57,60,65–69,72,74,75,77,83,84,98,99,112] have compared the per-
formance of various state-of-the-art algorithms using different datasets, 
which is not very informative as the performance metrics obtained in 
each case may be data-dependent. Some works such as [27,63,87,117, 
132,142] used the codes available for the existing publications or the 
same dataset to present a comparison. However, the benchmarking is 
still very limited. For example, in Refs. [27,63,87], authors compared 
the results obtained using their proposed algorithm with only one 
existing methodology on the same data. 

5.12. Multimodal architecture 

Multimodal studies undertaken using both CXR and CT have shown 
great potential in learning various features and improved performance. 
Further, it has been observed that most of the studies used a single 
sequential architecture that is trained on a mix of CXR and CT datasets. It 
is expected that the model would perform better by employing two 
parallel feature extractors, one each for CT and CXR, respectively. These 
separately extracted features can be combined before feeding to the 
classification (Dense) layer. In this regard, [9] uses two separate transfer 
learning models to extract features from CT and CXR images and ach-
ieves improved performance than any individual model alone. 

6. Opportunities and scope for future work 

Based on the literature review presented above, we provide some 
suggestions for future researchers. Some of these suggestions are 
apparent from the above discussion, while some entail the existing 
scenarios in the COVID era. 

6.1. Availability of structured and authentic dataset 

During the study of literature, it is observed that a one-to-one per-
formance comparison between two reference papers cannot be under-
taken due to lack of uniformity in the datasets and the performance 
metrics used. It is worth noting that the current public datasets have a 
limited number of images for the training and testing of AI algorithms. 
This necessitates the creation of one or more big, authentic, publicly 
available quality datasets that can be used, compared, or evaluated 
against by future researchers. For ease of research, we are presenting the 
most popularly used datasets in Fig. 7a. Table 2 includes details of 35 
COVID-19 datasets, and we have selected the most-cited datasets for 
making this figure. 

6.2. Generalization of a detection model 

From the literature, it has been learned that the datasets used by 
researchers are highly unbalanced. It raises concerns about the gener-
alizability of the trained models on the prospective patients’ data. Some 
studies utilized a few methods for combating unbalancing problems, 
such as dual sampling in Ref. [35] and SMOTE in Ref. [131]. However, a 
vast majority of work has suffered from the challenge of unbalanced 
data. Secondly, any model developed for detecting COVID-19 should 
perform the same with the claimed accuracy on the unseen/prospective 
subjects’ data or data of a different hospital. Thus, we believe that a 
cross-dataset study is of paramount importance to ascertain the gener-
alizability of the model with respect to variation in images across sites. 
To the best of our knowledge, cross-data evaluation is conducted in only 
a few studies [53,112]. For the successful classification of a new test 
image, it is assumed that this new test image will consist of features 
similar to those learned during the training of the classification model. It 
necessitates the creation of a global training dataset that inclu-
des/captures major features. Furthermore, a proper benchmarking of 
different methods (or cross-method analysis) on the same dataset should 
be carried out to ascertain the efficacy of the proposed methods. 

6.3. Multimodality scope 

A viral infection affects different parts of a body with different 
severity that leads to multiple symptoms. The accuracy of detection or 
diagnosis of a disease depends on the effectiveness of identifying and 
measuring the symptoms or patterns. Different diagnostic tools are used 
to identify these symptoms, measured at varying degrees and levels. 
Accumulation of patterns from various modalities can provide diverse 
features compared to the individual variables that can be utilized to 
learn a DL model better. For the detection of COVID-19, besides CXR and 
CT scan images, cough and thermal images can be used to augment the 
detection capabilities of the model. Any model can have practical 
application if it has a high degree of generalization ability, and multi-
modal data analysis provides a better approach towards its achievement. 

6.4. Explainable AI 

An explanation of how a DL model has reached a certain conclusion 
is crucial for ensuring trust and transparency, especially when one deals 
with identifying life-threatening COVID-19 disease. In order to be sure 
of the decision, doctors would like to know how AI decides whether 
someone is suffering from a disease by analyzing CXR and CT scan im-
ages. In this paper, we survey some existing techniques used for 
explaining the interpretability of DL models trained for COVID-19 
classification. There is a need to explore more methods of Explainable 
AI for COVID-19 diagnosis as used in other applications [147,148]. 

6.5. Semi-supervised and reinforcement learning 

Annotation of medical images is one of the laborious works due to 
the shortage of radiologists and technicians who can label the images. 
Deep learning has a great power to extract features from images, but its 
performance depends heavily on the size of labeled training data. 
However, one can still train deep networks by utilizing semi-supervised 
and reinforcement learning methods that consider a mixture of unla-
belled and limited labeled data for training deep models. This can 
address the problem of highly imbalanced data, one of the major chal-
lenges in COVID-19 image analysis, if arising of the difficulties in la-
beling/annotations. 

6.6. Severity of disease 

It is important to not only predict COVID-19 but also the degree of its 
severity in a patient for deciding appropriate treatment. Tabik et al. [91] 
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classified COVID-19 positive CXR images into severe, moderate, and 
mild classes based on the severity level of the disease. A more compre-
hensive understanding of the severity of the disease can aid doctors in 
curing this disease carefully. In all, future improvements would require 
the collection of hundreds or thousands of labeled image data of severe 
COVID-19 and other pneumonia data. The dataset should be collected 
considering geographic diversity in mind, which will help to increase its 
applicability worldwide. In addition, future work should also be 
considered in the direction of identifying the infected pulmonary region 
as belonging to the left lung, right lung, or bi-pulmonary region. One 
study has already been done in this direction by employing a residual 
attention network as a basic block [139]. 

6.7. Generic suggestions on COVID research 

Besides the above suggestions based on the AI/ML work in COVID, a 
few more suggestions are in order, as discussed below. 

6.7.1. Study on regional variation 
It has been noted that the COVID-19 virus is highly mutant, and 

several variants have evolved over the course of time. Hence, a scaling- 
up of diagnostic capabilities of AI-based automated solutions quickly 
and widely will be critical for diagnosing new variants of COVID-19, in 
decision making, and in choosing the way ahead. Regional variations in 
the impact of the virus on human organs may be studied. This can assist 
in a better understanding of the identification of a robust global/local 
solution. 

6.7.2. Regulation and transparency 
Global solution needs global participation. As this pandemic has 

affected every corner of humanity, any strategy or measure to handle the 
crisis relies on a wider public acceptance. In order to have a better public 
trust, it is required that the decisions and information be transparent and 
available openly, especially when things are related to people’s health. 
Any vaccine or medicine development program needs a high degree of 
acceptance of public confidence and should be in the common interest. 
At the same time, international legislation and regulatory bodies will 
play a crucial role in ensuring the needs of individuals, preserving in-
tellectual rights, and resolving disputes. It is also required to ensure 
accessibility, availability, and affordability to everyone. 

7. Conclusion 

This study presents a comprehensive review of the work regarding 
COVID-19 diagnosis based on CXR and CT image analysis using deep 
learning. The state-of-the-art DL techniques for the CXR, CT, and multi- 
modal data diagnosis are presented in Tables 3–5, respectively. Publicly 
available datasets used in these reviewed studies are summarized in 
Table 2. We discussed challenges associated with the current DL ap-
proaches for the COVID-19 diagnosis. It is important to note that each 
study in the literature has shown potential in automated detection of 
COVID-19 and at the same time faced challenges or lacked in analysis 
and evaluation of the proposed solutions from several points of view. We 
are of a considered opinion that consolidation of the important obser-
vations can act as a benchmark and assistance to the researchers while 
developing DL-based automated and efficient COVID-19 detection so-
lutions. Some of the important findings from this study are as follows. 
This review indicates significant utilization of DL methods for the 
automatic identification of COVID-19 cases from other pulmonary dis-
eases and normal groups. Despite so many studies being undertaken, the 
majority of the research has been carried out on either CXR or CT image 
analysis. Further, most studies utilized smaller datasets and also lacked 
comparative analysis with the existing research. It is further noted that 
codes and data are not available for many studies, posing challenges in 
ascertaining the utility of the methods in clinical settings. Although ef-
forts are now being made to show the interpretability of the DL model 

via visual saliency on the CXR or CT images, these methods are still in 
the early stages. 

In order to assist the clinicians in hospitals with respect to COVID-19 
diagnosis and cure, the upcoming trends in this area require cross-data 
evaluation (i.e., testing on the unseen dataset of a different hospital) 
and comparison of cross-methods or benchmarking of the most recent 
methods. Availability of codes and data in the public space should be 
required with any research paper so that future researchers/clinicians 
can deploy and test the methods in actual hospital settings. Efforts 
should be made to consolidate some bigger public, comprehensive, and 
diverse datasets having multi-modality data of COVID-19 collected from 
multiple sites. This would allow the researchers to develop more reliable 
methods and also enable benchmarking of methods. Interpretability of 
AI methods should be demonstrated and validated with the help of 
expert radiologists. It is highly recommended that clinicians, radiolo-
gists, and AI engineers work together to evolve interpretable and reli-
able DL solutions that can also be deployed with ease in the hospitals. 
Otherwise, despite umpteen number of global efforts, it will take time to 
utilize these technologies in hospitals to assist mankind. 
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