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Universal protein misfolding intermediates can
bypass the proteostasis network and remain
soluble and less functional
Daniel A. Nissley1,6, Yang Jiang 1,6, Fabio Trovato 1, Ian Sitarik1, Karthik B. Narayan 1, Philip To2,

Yingzi Xia2, Stephen D. Fried 2,3 & Edward P. O’Brien 1,4,5✉

Some misfolded protein conformations can bypass proteostasis machinery and remain

soluble in vivo. This is an unexpected observation, as cellular quality control mechanisms

should remove misfolded proteins. Three questions, then, are: how do long-lived, soluble,

misfolded proteins bypass proteostasis? How widespread are such misfolded states? And

how long do they persist? We address these questions using coarse-grain molecular

dynamics simulations of the synthesis, termination, and post-translational dynamics of a

representative set of cytosolic E. coli proteins. We predict that half of proteins exhibit mis-

folded subpopulations that bypass molecular chaperones, avoid aggregation, and will not be

rapidly degraded, with some misfolded states persisting for months or longer. The surface

properties of these misfolded states are native-like, suggesting they will remain soluble, while

self-entanglements make them long-lived kinetic traps. In terms of function, we predict that

one-third of proteins can misfold into soluble less-functional states. For the heavily entangled

protein glycerol-3-phosphate dehydrogenase, limited-proteolysis mass spectrometry

experiments interrogating misfolded conformations of the protein are consistent with the

structural changes predicted by our simulations. These results therefore provide an expla-

nation for how proteins can misfold into soluble conformations with reduced functionality

that can bypass proteostasis, and indicate, unexpectedly, this may be a wide-spread

phenomenon.
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How soluble, misfolded protein populations with reduced
functionality1–3 bypass cellular quality control
mechanisms4 for long time periods is poorly understood.

Further, how common this phenomenon is across proteomes has
not been assessed. These are important gaps in our knowledge to
fill as the answers will offer a more complete picture of protein
structure5 and function in cells, may lead to refinement of the
protein homeostasis model6 of proteome maintenance, are likely
to be relevant to how synonymous mutations have long-term
impacts on protein structure and function7, and could reveal
long-term misfolding on a scale greater than previously thought.

Protein homeostasis (“proteostasis”) refers to the maintenance
of proteins at their correct concentrations and in their correct
conformational states through the action of a cohort of chaper-
ones, degradation machineries, and protein quality control
pathways6,8. It is typically posited that under normal (i.e., not
stressed) cellular growth conditions globular proteins in vivo
attain one of three states: folded/functional, misfolded/aggregated,
or degraded. Various molecules work together to maintain pro-
teostasis by catalyzing the interconversion of proteins between
these states9–11. For example, some chaperones in E. coli, such as
GroEL/GroES9 and DnaK10, can promote the folding of mis-
folded or unfolded proteins. Others, such as the set of enzymes
associated with the ubiquitin-proteasome system in eukaryotes,
covalently tag misfolded proteins for degradation12. Yet others,
such as E. coli’s ClpXP, have the potential to break apart aggre-
gates, allowing released monomeric proteins to be degraded13.
Many caveats and nuances exist in the proteostasis model. For
example, some insoluble protein aggregates, such as carboxy-
somes, are biologically beneficial by spatially concentrating pro-
tein function14. Some non-native protein oligomers are soluble15,
and recently discovered biomolecular condensates16 represent a
form of aggregation in which proteins within a condensate
remain liquid-like but preferentially interact with each other over
other cellular components. In addition, soluble proteins are not
always functional because some require co- or post-translational
modifications17,18.

The timescales involved with many proteostasis processes are
often quite short. Co-translationally acting chaperones bind
ribosome nascent chain complexes on timescales of tens of ms19,
the ubiquitin-degradation machinery tags up to 30% of eukaryotic
nascent chains for immediate degradation after synthesis20,21, and
post-translationally acting chaperones can generally refold mis-
folded proteins in seconds or minutes22. Indeed, the FoldEco
kinetic model of E. coli proteostasis indicates that conversions
between various states within the network occur with rate con-
stants typically on the order of seconds23. Thus, according to the
proteostasis model, misfolded proteins should either be converted
in a matter of seconds or minutes into their folded state, be
degraded, or form aggregates provided cells are not stressed and
the proteostasis machinery is not overwhelmed24.

Synonymous mutations change the triplet of nucleotides
among degenerate mRNA codons encoding the same amino acid,
leading to an altered mRNA sequence that encodes the same
protein primary structure. Such mutations can alter the
translation-elongation rate of ribosomes and have been found to
alter the structure and function of proteins over long timescales7.
For example, translation of a synonymous variant of the frq gene
in the fungus Neurospora resulted in the synthesis of FRQ protein
with altered conformations that bound 50% less to a partner
protein, resulting in a significantly altered circadian rhythm that
persisted for multiple days2. Many other proteins have been
reported to exhibit altered structure or function upon the intro-
duction of synonymous mutations25–27. The fact that these
functional changes occur in the soluble fraction of the proteome
indicates it is not insoluble aggregation driving this phenomenon.

And importantly, such observations are inconsistent with aspects
of the proteostasis model, which predicts that any protein with a
misfolded (and less functional) structure should either refold,
aggregate, or be degraded on faster timescales.

One hypothesis that could resolve this discrepancy is that
proteins can populate an additional state. In this state, proteins
are kinetically trapped over long timescales in misfolded con-
formations with reduced functionality, but they do not have a
propensity to aggregate or interact with proteostasis machinery in
excess of that of folded proteins. If correct, this hypothesis raises a
number of questions, including: (i) what type of structures are
adopted in this state? (ii) how do those conformations simulta-
neously avoid folding, aggregation, and degradation in excess of
that observed for the native ensemble? (iii) how long do they
persist? And (iv) what fraction of the proteome exhibits this
behavior?

Answering these questions requires a computational method
that can access the second to minute timescale of protein
synthesis and maturation while providing sufficient structural
resolution to identify misfolded conformations and their prop-
erties. We use a topology-based coarse-grain model that repre-
sents proteins with one interaction site per residue placed at the
coordinates of the Cα atom. This model folds proteins 4-million
times faster, on average, than in real systems28, and was pre-
viously used to accurately reproduce the co-translational folding
time course of HemK N-terminal domain29. Coarse-grain simu-
lations of a zinc-finger protein folding in the ribosome exit tunnel
were also found to agree with experimental cryo-EM structures30,
indicating this method can reproduce realistic scenarios of folding
on the ribosome. In addition, excellent agreement has been found
between such topology-based models and experimental assays
monitoring force generation due to the folding of titin I27
domain on and off the ribosome31. These examples highlight the
utility of such coarse-grain models to protein misfolding on and
off the ribosome.

Here, we apply such coarse-grain methods to simulate protein
synthesis, co-translational and post-translational folding, and
estimate the fraction of molecules that fold, misfold, interact with
chaperones, aggregate, are degraded, or attain a functional con-
formation. After first confirming that our model can reproduce
post-translational misfolding in Luciferase, we simulate a repre-
sentative subset of the cytosolic E. coli proteome, finding that a
substantial proportion of newly synthesized proteins can adopt
misfolded conformations that are near-native in structure and
thus likely to interact with co- and post-translational chaperones
in a manner similar to that of their native states. These misfolded
conformations expose a similar amount of aggregation-prone
surface area as the native ensemble, and therefore do not have an
increased propensity to aggregate. For some proteins, misfolding
is localized near their functional sites, indicating their function-
ality is reduced. We estimate that many of these near-native
misfolded states are kinetically trapped, exhibiting lifetimes on
the order of days to months. Our simulations predict that there is
a universal structural feature associated with these soluble mis-
folded states proteome-wide.

Results
A coarse-grain model reproduces experimentally observed
misfolding of Firefly Luciferase. The model we use for protein
synthesis, folding, and function has been shown to accurately
predict experimentally measured changes in enzyme specific
activities32, indicating it reasonably describes protein structure-
function relationships. As an additional test, here we examine if the
model is able to identify if a protein will exhibit misfolded sub-
populations. Firefly Luciferase, a 550-residue protein with four
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domains, folds co-translationally33. Specific activity experiments25

have found that some soluble, nascent Luciferase molecules misfold
when translation speed is increased. Even when synthesized from
its wild-type mRNA in E. coli some Luciferase molecules still fail to
fold correctly25. We therefore selected Luciferase as a test system,
judging that if it partitions into long-lived misfolded states in our
simulations when translated from its wild-type mRNA that our
model is able to capture realistic scenarios of misfolding.

We simulated Luciferase’s synthesis, ejection from the ribosome
exit tunnel, and post-translational dynamics using a coarse-grain
representation of the protein and ribosome (Fig. 1a–c, Supplemen-
tary Table 1, “Methods”, and Eqs. (1) and (2)). Fifty statistically
independent trajectories were run. To characterize Luciferase’s native
conformational ensemble we also simulated ten trajectories initiated
from Luciferase’s crystal structure, which we refer to as “native-state
simulations”. To assess whether or not a given Luciferase trajectory is
misfolded we utilize the time-dependent mode of the fraction of
native contacts (Qmode) and the probability that a non-native
entanglement (P Gk

� �
) has formed. We categorize a trajectory as

misfolded if it has (i) a mean Qmode, over the final 100 ns of the post-
translational phase of the simulation, that is less than the average
from the native-state simulations, or (ii) a mean P Gk

� �
for the

different possible changes in non-covalent lasso threading denoted
k ¼ f0; 1; 2; 3; 4g of 0.1 or greater over the final 100 ns of the
trajectory, or (iii) both (i) and (ii) occur (see “Methods”). Conditions

(i) and (ii) correspond to perturbations of structure relative to the
native state as defined by the fraction of native contacts and
entanglement, respectively. Based on this definition, 46% (95%
Confidence Interval [32%, 60%], calculated from bootstrapping 106

times) of nascent Luciferase molecules misfold (Fig. 1d, e,
“Methods”). We observe that when Luciferase misfolds, it misfolds
100% of the time in the second domain (based on hQmodei), which is
composed of residues 13–52 and 212–355. These misfolded
Luciferase structures are near-native, with a 5.5% decrease in the
overall fraction of native contacts (hQoveralli ¼ 0:86, computed over
the final 100 ns of misfolded trajectories) compared to the native
ensemble (hQoveralli ¼ 0:91). Thus, a large proportion of nascent
Luciferase misfolds into near-native conformations that typically
involve misfolding of the second domain.

The motivating experiments on Luciferase were carried out in
the presence of the endogenous E. coli proteostasis machinery25.
To predict whether the Luciferase misfolded states produced by
our model are likely to display reduced specific activity in vivo we
therefore need to determine four things. They must (i) evade
chaperones to remain misfolded, (ii) not aggregate, (iii) not get
degraded, and (iv) the residues involved in function must be
structurally perturbed. The chaperone trigger factor (TF) binds
nascent proteins co-translationally, DnaK interacts both co- and
post-translationally, while GroEL/GroES is primarily a post-
translational chaperone. Interactions with TF34 or GroEL/GroES9
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Fig. 1 Luciferase exhibits subpopulations that misfold into soluble but less-functional conformations. a Simulations of translation elongation and ejection
of nascent Luciferase were performed with a coarse-grain ribosome representation (ribosomal proteins and RNA are displayed in red and gray,
respectively). Domains 1, 2, 3, and 4 of Luciferase are displayed in silver, light green, magenta, and light purple, respectively. After ejection, the ribosome is
removed and post-release dynamics simulated for 30 CPU days. b Primary structure diagram of Luciferase colored as described in (a); positions involved in
the catalytic function of Luciferase as described in “Methods” are colored blue. c Cartoon diagram of Luciferase native state colored as described in (a) with
the 5′-O-[N-(dehydroluciferyl)-sulfamoyl]-adenosine ligand colored dark blue. d Qmode (see “Methods”) versus time for Domain 2 of a trajectory of
Luciferase that folded correctly. Plot sections colored green, yellow, and blue correspond to synthesis, ejection, and post-translation simulation phases.
Note that the short duration of ejection for this protein renders it invisible at this resolution. The red line corresponds to QNS

mode

� �
minus three standard

deviations and represents the threshold for defining this domain as folded (see “Methods”). e Same as (d) but for a trajectory that misfolds. Inset shows
the final microsecond of the Qmode time series. f Distributions of χfunc (Eq. (13)) over the final 100 ns of the folded (magenta) and misfolded (orange)
trajectories displayed in panels (d) and (e). The misfolded and folded distributions are different based on the Kolmogorov–Smirnov test with test statistic
0.33 and p-value of 1 × 10−66. The misfolded distribution shows greater structural distortion (i.e., values of χfunc > 0) of the binding pocket. g Back-mapped
all-atom structure from the final frame of the folded simulation shown in (d) aligned based on the residues implicated in function to the native state.
h Same as (g) except for the final structure from the misfolded trajectory in (e), showing a strand misfolding in the ligand-binding pocket (indicated by
black arrow). Steric conflict between where the substrate binds and the surrounding binding pocket of the misfolded structures indicates this misfolded
state will have reduced function.
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are thought to occur by the non-specific recognition of exposed
hydrophobic patches on client proteins co- and post-translation-
ally, respectively. DnaK, however, is hypothesized to interact with
specific binding sites within a protein’s sequence35.

To estimate whether misfolded Luciferase is likely to interact
with TF we computed the average relative difference between the
hydrophobic solvent accessible surface area (SASA) of each
misfolded trajectory to the folded population (denoted
hζco�t

hydrophobici, Eq. (9), and “Methods”) during synthesis. The value

of hζco�t
hydrophobici is ≤10% for 16 of 23 misfolded trajectories, meaning

that they display less than a 10% increase in hydrophobic SASA
during synthesis relative to the folded population of trajectories.
This indicates that a majority of misfolded Luciferase molecules
will not interact with TF much more than a properly folded
Luciferase molecule (see “Methods”). Though TF accelerates
protein folding under force36, under normal conditions it is also
thought to act as a holdase34. Thus, we conclude that our co-
translational Luciferase misfolded states can misfold into con-
formations that do not interact with TF in a manner that
accelerates folding, allowing these misfolded states to persist post-
translationally.

Next, to determine whether misfolded conformations of
Luciferase are likely to interact with GroEL/GroES post-
translationally, we computed the average relative difference
between the hydrophobic SASA of each misfolded conformation
in the final 100 ns and its value in the native-state simulations
(hζhydrophobici, Eq. (10), “Methods”). The value of hζhydrophobici for
Luciferase is ≤10% for 9 of 23 misfolded trajectories, indicating
that these misfolded states expose only a small excess of
hydrophobic SASA relative to the native ensemble, and are
therefore not likely to be engaged by GroEL/GroES.

Finally, to estimate whether misfolded Luciferase structures are
more likely to interact with DnaK than the native state, we
computed hζDnaKi (Eq. (11)), the average relative difference in
SASA of residues predicted to be DnaK binding sites by the
Limbo algorithm35 in the final 100 ns for all misfolded
trajectories. We find that 22 out of 23 misfolded trajectories
have hζDnaKi≤ 10%, indicating that DnaK is unlikely to
preferentially bind to these misfolded states any more than it is
to the native state. Thus, some of Luciferase’s misfolded states are
unlikely to interact with TF, GroEL/GroES, or DnaK, and thus
bypass the E. coli chaperone network (Supplementary Fig. 1a).

The next key question is whether or not these misfolded
Luciferase structures, having bypassed chaperone quality controls,
are likely to remain soluble or to aggregate or be degraded. In the
original experiments by Barral and co-workers, centrifugation
was used to remove aggregates from the soluble fraction. To
estimate whether the misfolded Luciferase structures from our
simulations will aggregate we used the AMYLPRED237 webserver
to identify residues in the Luciferase amino acid sequence that
lead to aggregation when exposed to solvent. We then computed
hζaggi (Eq. (12)), the average relative difference in SASA between
these aggregation-prone residues in the final 100 ns of each
misfolded trajectory in comparison to the same residues in the
native-state simulations. We find that 12 of 23 misfolded
trajectories have hζaggi≤ 10%, indicating that these misfolded
conformations display only a minor increase in aggregation
propensity and are likely to remain soluble.

Finally, we considered the likelihood that misfolded Luciferase
will be targeted for degradation. Degradation in E. coli is carried
out primarily by proteases coupled to AAA+ATPase motor
proteins38, including ClpXP and Lon, that recognize and degrade
misfolded or aggregated proteins. Misfolded protein structure
contributes to degradation39, and therefore, like our GroEL/ES

assessments, we use hζhydrophobici to quantify how similar
misfolded Luciferase conformations are to the native state. For
9 of 23 misfolded Luciferase trajectories hζhydrophobici is ≤ 10%,
indicating they are unlikely to be degraded more quickly than
native Luciferase.

Having determined that some misfolded conformations of
Luciferase can evade chaperones, aggregation, and degradation,
the final question is whether their function is decreased relative to
native Luciferase. To answer this question, we identified the
residues that take part in Luciferase’s bioluminescence, defined as
those resides within 4.5 Å of the 5′-O-[N-(dehydroluciferyl)-
sulfamoyl]-adenosine ligand in PDB structure 4G36, in addition
to all residues identified in the UniProt database40 to have a role
in its catalytic mechanism. To quantify the difference in structure
of residues involved in Luciferase’s catalytic mechanism, we
compute the average relative difference between the structures
sampled in the final 100 ns of each misfolded trajectory and
native Luciferase in terms of the structural overlap function
(hχfunci) over residues implicated in its function (see Eqs. 13–15
and Fig. 1b, c, f, g, and h). Positive values of χfunc indicate
perturbed structure relative to the native state simulations. We
find that 15 of 23 misfolded Luciferase trajectories have
hχfunci ≥ 10%, indicating that they have significantly perturbed
structure at functionally important sites relative to the native state
(Fig. 1f). For example, Fig. 1g, h shows the binding pocket at the
final frames of folded and misfolded, soluble, but non-functional
Luciferase trajectories. The binding pocket structure is perturbed
such that it impinges on the substrate location. Since structure
equals function, this result indicates that the efficiency of the
enzymatic reaction carried out by misfolded Luciferase will be less
efficient than in its native fold.

Cross-referencing the lists of misfolded trajectories that are
likely to avoid chaperones, aggregation, degradation, and exhibit
reduced function, we find that one trajectory displays all of these
characteristics and likely remains soluble but less functional than
native Luciferase (Supplementary Fig. 1b). Our simulation results
are thus qualitatively consistent with the experimental observa-
tion that some nascent Luciferase molecules misfold when
translated from its wild-type mRNA. While a misfolded state
that is only populated by 2% of protein molecules is unlikely to
strongly influence the cell, perturbations to Luciferase translation-
elongation kinetics by synonymous mutations might increase this
population beyond 2%. In general, these results indicate that our
coarse-grain simulation protocol for nascent protein synthesis,
ejection, and post-translational dynamics is able to recapitulate
nascent protein misfolding.

Simulating a representative subset of the E. coli cytosolic
proteome. It is not computationally feasible to simulate all 2600
cytosolic E. coli proteins. Therefore, to investigate the extent of
nascent protein misfolding within the E. coli proteome we con-
structed models for a representative subset of 122 proteins. This set
of proteins has the same distributions of protein length and
structural class, and a similar ratio of multi- to single-domain
proteins as the entire E. coli proteome41 (Supplementary Table 2).
The details of the parameterization of these models are described in
ref. 41. Each protein was synthesized on the same coarse-grain
ribosome representation as Luciferase and their post-translational
dynamics simulated for 30 CPU days per trajectory. Larger proteins
take longer to simulate. Therefore, this fixed post-translational
simulation run time resulted in trajectories of different durations
due to different protein sizes. The simulation time in the post-
translational phase ranged between 2.7 and 154.1 μs per trajectory.
Because our coarse-grain model exhibits an approximately four-

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30548-5

4 NATURE COMMUNICATIONS |         (2022) 13:3081 | https://doi.org/10.1038/s41467-022-30548-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


million-fold acceleration of folding dynamics28, due to decreased
solvent viscosity42 and a smoother free-energy landscape43, these
post-translational simulation times correspond approximately to
experimental times of 11.0 to 611 s, respectively. As with Luciferase,
ten trajectories were also initiated from the crystal structure of each
protein and simulated for 30 CPU days to serve as reference
simulations representing the native-state structural ensemble.

Two-thirds of nascent E. coli proteins populate misfolded
states. A fundamental question our simulation data set can
address is how common nascent protein misfolding is across E.
coli’s cytosolic proteome. As with Luciferase, we use the fraction
of native contacts and entanglement as measures of misfolding.
We find that 66% of proteins (80 out of 122) remain misfolded in
at least one trajectory, 40% of proteins are misfolded in at least
20% of trajectories (49 out of 122), and 7% are misfolded in 100%
of trajectories (9 out of 122). The proteins in these various
categories are summarized in Supplementary Table 3; Fig. 2a
displays a histogram of the probability of misfolding over the 122
different E. coli proteins simulated. In total, 27% of the simulation
trajectories (1631 out of 6100) of the E. coli cytosolic proteome
remain in misfolded conformations after 30 CPU days of post-
translational dynamics.

Many misfolded states are similar to the native state. Misfolded
conformations that are very different from the native state will
likely interact with the proteostasis machinery. To characterize
the closeness of misfolded states to the native state across our set
of misfolded conformations we calculated the absolute percent
change in the mean overall fraction of native contacts hQoveralli (in
this case, computed over all residues in secondary structures
within each protein, rather than for individual domains or
interfaces) between each protein’s native state simulations and the
mean Q in the final 100 ns of each misfolded trajectory (Fig. 2b).
We observe that 76% of misfolded trajectories (1242 out of 1631)
have ≤20% change in mean Q in comparison to the native state,
while 58% of trajectories (939 out of 1631) misfold and have a
≤10% change in Q. Nine percent of trajectories (144 out of 1631)
have a ≤1% change in Q. These calculations indicate that a large
proportion of trajectories that misfold populate states that are
native-like. Therefore, many E. coli proteins can populate kine-
tically trapped near-native conformations that are structurally
similar to the native state.

Misfolded states can persist for days or longer after release
from the ribosome. Misfolded conformations that persist for just
a few minutes before properly folding are unlikely to have
downstream consequences in a cell. To estimate the range of

 Does not 
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Fig. 2 One in three proteins exhibit subpopulations that misfold into soluble but less-functional conformations that evade proteostasis machinery.
a Histogram of the mean probability of misfolding being detected in the final 100 ns of the simulation, computed as the number of misfolded trajectories
divided by 50, for each of the 122 proteins in the cytosolic E. coli proteome set. b Histogram of the percent change, computed as jhQoveralli�hQNS

overallij
hQNS

overalli
� 100%, in

fraction of native contacts within the final 100 ns of each of the 1631 misfolded trajectories (hQoveralli) in the E. coli proteome data set relative to the average
value from each protein’s native state simulations (hQNS

overalli). The majority of misfolded proteins are within 10% of the native value. c Histogram of
extrapolated folding times for the slow-folding kinetic phase from survival probability curves for the 73 proteins in the cytosolic E. coli data set with a
reliable estimate (see “Methods”). d Cumulative distribution function (CDF) of hζhydrophobici computed over the values of hζhydrophobici (Eq. (10)) for 1631
misfolded (orange) and 4469 folded (magenta) trajectories. The blue shaded region indicates the set of hζhydrophobici values considered to have no
significant increase in hydrophobic solvent-accessible surface area relative to the native-state ensemble. e Same as (d) but CDFs are computed over values
of hχfunci for trajectories in the misfolded and folded populations. Blue shaded region indicates the set of values considered to result in perturbed function.
f Venn diagram indicating the number of the 1631 misfolded trajectories that evade chaperones (TF, DnaK, and GroEL/GroES), do not aggregate, are not
degraded, and are non-functional. The 203 trajectories at the center of this diagram are misfolded states that are expected to evade the proteostasis
machinery, remaining soluble but non-functional. All error bars are 95% confidence intervals computed from bootstrapping 106 times; the height of the
CDF plots in (d) and (e) indicates the 95% confidence intervals.
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folding times for misfolded conformations we computed the
survival probability of the unfolded state, SU tð Þ, for each protein
domain and interface and extracted their characteristic folding
timescales using a three-state folding model, which reports fold-
ing timescales for the fast- and slow-folding phases (see “Meth-
ods”). For a protein to be considered folded all its component
domains and interfaces must be folded. Furthermore, since
folding pathways that pass through misfolded states take longer
to reach the native state, the slow-folding phase reflects the time
scale of these pathways. Therefore, for a given protein, we
interpret the longest, slow-folding phase time as the time scale of
the misfolded state reaching the native state. In total, we are able
to reliably determine folding times for 73 out of 122 proteins,
with fit equations for other domains having small Pearson R2

values indicative of low-quality estimates. These extrapolated
folding times for the slow phase were then mapped onto
experimental times using the acceleration factor associated with
the coarse-grained model28 (see “Methods”). The 25th, 50th, 75th,
and 95th percentile mean folding times for the slow phase are
1.41 s, 50.9 s, 1.19 × 107 d, and 3.83 × 1016 d, respectively, and the
full range of times extend from 0.04 s to 1.08 × 1022 d (Fig. 2c,
Supplementary Table 4). While values at very long times have
larger uncertainties, as small differences in the fit parameters will
lead to large variation in the extrapolated folding times, these
results clearly indicate that many of these misfolded states can
persist for many days or longer after synthesis.

Half of the proteome misfolds and bypasses the chaperone
machinery. Misfolded proteins are engaged by various chaper-
ones both co- and post-translationally that help direct their
correct folding. So, we next determined how many of the tra-
jectories that exhibit misfolding in our simulations are likely to
evade chaperone-dependent quality control mechanisms. As was
done for Luciferase, we considered the interactions of each of our
1631 misfolded trajectories with TF, GroEL/GroES, and DnaK
based on the relative difference between the SASA of specific
subsets of residues in the misfolded ensemble versus the native
state ensemble (see “Methods”, Eqs. (9), (10), and (11)). We find
that 1053 misfolded trajectories, representing 70 unique proteins,
are not likely to interact with TF, as they display
hζco�t

hydrophobici≤ 10% or are too short to engage with it co-
translationally (see “Methods”, Supplementary Table 5, and
Supplementary Fig. 2). A total of 1411 of misfolded trajectories
representing 80 unique proteins are either not known GroEL/
GroES44–46 clients or have hζhydrophobici≤ 10%, and are therefore
not likely to interact excessively with GroEL/GroES (Supple-
mentary Table 5, Fig. 2d). Finally, we find that 1337 misfolded
trajectories representing 77 unique proteins are either not con-
firmed DnaK clients11 or have hζDnaKi≤ 10% and are therefore
unlikely to interact with DnaK excessively (Supplementary Fig. 3).
A total of 848 trajectories representing 68 different proteins are
misfolded and unlikely to interact with any of TF, GroEL/GroES,
and DnaK (Supplementary Table 5, Supplementary Fig. 4). These
results indicate that 56% of proteins in our representative sample
(68 out of 122 unique proteins) exhibit misfolded subpopulations
that can bypass chaperones.

Half of the proteome misfolds and remains soluble. We next
assessed how many of the 1631 trajectories in which the protein
misfolds represent conformational states that are likely to remain
soluble. For each protein we computed hζaggi, the average relative
difference in SASA of residues predicted to be aggregation prone
computed over the final 100 ns for each misfolded trajectory, to
quantify the difference in aggregation propensity for the mis-
folded population relative to the native state simulations (see

“Methods”, Eq. (12)). Of the 1631 misfolded trajectories, 814 have
hζaggi≤ 10%, indicating they are not likely to aggregate in excess
of what is observed for the native state (Supplementary Table 6,
Supplementary Fig. 5). We conclude that these trajectories,
representing 56% of the proteins in the sample (68 out of 122),
are unlikely to aggregate.

Half of the proteome misfolds and does not exhibit excess
degradation. Next, we examined how many misfolded proteins
are likely to avoid rapid degradation. We did this by computing
hζhydrophobici, which characterizes the percent difference between
the total hydrophobic SASA of misfolded trajectories in com-
parison to the set of native-state simulations (Eq. (10)). The
values of hζhydrophobici for 896 misfolded trajectories are ≤10%,
indicating they are unlikely to be targeted for degradation. These
896 misfolded trajectories predicted to bypass degradation
represent 57% (70 out of 122) unique proteins (Supplementary
Table 6, Fig. 2d). Thus, a majority of proteins can populate, to
varying degrees, misfolded states that are not expected to be
degraded at rates much faster than their native fold.

Half of the proteome misfolds into conformations that bypass
all aspects of the proteostasis machinery in E. coli. Misfolded
conformations that do not engage chaperones, do not aggregate,
and are not degraded in excess of the native state will remain
soluble within the cell for a similar time scale as the native state.
We cross-referenced our lists of misfolded trajectories that fall
into each of these categories, finding that 9% of all trajectories
simulated (550 out of 6100) misfold into such soluble con-
formations, and 48% of proteins (58 out of 122) have at least one
such trajectory (Supplementary Table 7). Thus, nearly half of
proteins in our sample have subpopulations of misfolded states
that will bypass all aspects of protein homeostasis and stay mis-
folded for biologically long time periods.

Half of the proteome misfolds and will exhibit altered function.
Next, we examined what percentage of the proteome misfolds and
is likely to exhibit reduced function. To answer this question, we
constructed a database identifying residues that take part in the
function of each of the 122 proteins in our data set based on
information available in PDB and UniProt database entries. These
functional residues were identified based on whether they were in
contact with substrates (such as other biomolecules, small-
molecule compounds, or ions) in their PDB structures, as well as
based on UniProt’s identification of functional residues (see
“Methods”). We then computed the mean relative difference in the
structural overlap function of these functional residues in the final
100 ns of misfolded trajectories relative to the native state reference
simulations (hχfunci, see “Methods”). We find that 62% of misfolded
trajectories (1019 out of 1631) have hχfunc; i≥ 10%, indicating that
structure at their functional sites are significantly perturbed, and by
extension, likely their function. These trajectories represent mis-
folded conformations of 69 unique proteins, indicating that 57% of
the proteome can populate misfolded conformations likely to
exhibit reduced function (Supplementary Table 7, Fig. 2e).

One-third of proteins exhibit soluble, misfolded, native-like
states with reduced functionality. We next determined which of
our 122 proteins misfold, evade chaperones, aggregation, degra-
dation, and display reduced function. We find that 34% of pro-
teins (41 out of 122) and 3% of all trajectories (203 out of 6100)
can bypass proteostasis machinery and display decreased function
(Supplementary Table 7, Fig. 2f). The extrapolated folding times
of these 41 soluble but non-functional proteins range from 2.13 s
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to 1.08 × 1022 days with a median predicted folding time of
1.05 × 1012 days, indicating that their function is likely to be
perturbed for long timescales.

Intra-molecular entanglement drives long-lived, soluble mis-
folded conformations. To determine what topological char-
acteristics, if any, the misfolded conformations of different
proteins have in common, we used the Gauss linking number
calculated from linking between a closed loop formed by a native
contact between residues i and j and the pseudo-closed loops
formed by the flanking termini, g(i,j)47. This quantity provides a
useful measure of whether subsections of the protein chain are
entangled with each other48. Misfolding, or changes in the linkage
between the two closed loops, can then be identified by changes in
the Gauss linking number of specific native contacts between a
reference structure and a target structure (Fig. 3a, b).

To determine whether or not misfolded states tend to be entangled,
we generated a 2-by-2 contingency table (Fig. 3c) tabulating the co-
occurrence of misfolding based on hQmodei and the presence of an
entanglement. We find an odds ratio of 48.1 (p < 10�100, Fisher’s
Exact test), indicating that entanglement andmisfolding frequently co-
occur, with 82% of misfolded states containing an entanglement.
Thus, misfolding is predominantly driven by entanglement of
segments of the nascent protein with each other.

We hypothesized that due to the large energetic barrier needed
to disentangle entanglements, the most long-lived misfolded
states in the E. coli proteome would tend to be entangled. To test

this hypothesis, we generated a second 2-by-2 contingency table
and counted how frequently slow- and fast-folding proteins tend
to be entangled (Fig. 3d). Proteins with an extrapolated folding
time for the slow phase greater than the median were considered
to be slow folding; and a protein’s misfolded state is considered
entangled if ≥50% of its misfolded trajectories display an
entanglement. We find an odds ratio of 15.0 (p ¼ 5:0 ´ 10�7,
Fisher’s Exact test) indicating that the presence of entangled
misfolded structures are 15 times more likely to be associated
with slow folding. Thus, entanglement is the primary cause of
long-lived misfolded states.

Finally, we further hypothesized that, because entangled
conformations can represent local minima with only small
structural perturbations relative to the native state, the set of
203 trajectories predicted to bypass proteostasis machinery to
remain soluble but non-functional for long timescales should be
enriched in entangled structures. We find that 93% of these
trajectories are entangled (189 out of 203), and that there is a
strong association between escaping proteostasis machinery and
the presence of an entanglement (odds ratio 55.8, p ¼ 3:3 ´ 10�110,
Fisher’s Exact test; Fig. 4).

Taken together, these results demonstrate that the formation of
entangled misfolded states lead to long-lived kinetic traps that can
bypass the proteostasis machinery.

An in-depth case study. To illustrate our key findings, it is useful
to consider the structural basis of misfolding for one protein

d

a

Native, g(i,j) = 0 Entangled, g(i,j) = -1

b
c

Fig. 3 Detecting non-native entanglements in a monomeric protein structure. a Schematic of how self-entanglements can be detected by examining the
change in the Gauss linking number g(i,j) (Eq. (5)) between a closed loop (pink) formed by the backbone segment between residues i and j that form a
native contact (gold dashed line) and another pseudo-closed loop formed by the C-terminal backbone segment (blue) and a pseudo-vector (dashed green
line) connecting the C-terminal residue and the start of the C-terminal segment, which begins at residue j+1. Threading of the N-terminal segment
(composed of residues 1 through i−1) is determined in a similar manner. Examples of different Gauss linking numbers and their corresponding structures
are shown in this hypothetical illustration. The magnitude of g(i,j) is proportional to the number of threading events of the blue segment through the pink
loop, while its sign is a function of the relative positioning of primary structure vectors at crossing points between the pink and blue segments. The
structure with g(i,j)= 0 exhibits no entanglement. b An example of a gain in entanglement of the protein YjgH (PDB: 1PF5), where the C-termini (cyan)
threads a loop (pink) formed by the native contact between residues D72 & Y104 (gold). The black arrow indicates the location of the crossing point of the
two entangled loops. c Contingency table indicating the number of trajectories that are misfolded/folded across our 122 proteins based on Qmode analysis
and entangled/not entangled. Indicated p-values and odds ratios were computed in SciPy using the Fisher Exact Test. d Same as (c) except contingency
table displays the number of proteins that are entangled/not entangled and predicted to be slow folding/fast folding. For the purposes of this analysis, a
protein is considered slow- or fast-folding if its computed folding time is above or below the median folding time from the set of 73 proteins with reliable
estimates, respectively. A protein is considered entangled if ≥50% of its misfolded trajectories are entangled. All error bars are 95% confidence intervals
computed from bootstrapping 106 times.
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in-depth. We focus on glycerol-3-phosphate dehydrogenase,
which has the largest proportion of misfolded trajectories that are
predicted to bypass the proteostasis machinery (see Fig. 4). It
consists of two domains composed of residues 1–387 and
388–501 (Fig. 5a). As part of its biological function, glycerol-3-
phosophate dehydrogenase uses a flavin adenine dinucleotide
cofactor (Fig. 5a, dark blue). In our post-translational simulations
74% (=37/50) of trajectories misfold, yet they only exhibit a 4.7%
decrease in the fraction of native contacts relative to the native-
state simulations (Fig. 5b, c). Thus, these misfolded states
resemble the native ensemble. This protein also folds extremely
slowly, with Domain 1, Domain 2, and the interface between
Domains 1 and 2 estimated to require, respectively, on the order
of 1016, 1015, and 1021 s to fold (Fig. 5d). These misfolded states

are, however, expected to evade chaperones, aggregation, and
degradation to remain soluble based on the similarity of their
surface properties to that of the native ensemble (Fig. 5e).
Twenty-five misfolded trajectories (50%) also exhibit notably
reduced structure at functional sites, including around the
cofactor, despite being well-folded overall (Fig. 5f–h). In 92%
(=34/37) of these misfolded trajectories a non-native entangle-
ment is present. These results exemplify how entangled misfolded
states can perturb portions of a protein critical for function in
ways that are structurally subtle compared to gross deformations
typically associated with misfolded proteins (Fig. 5d, h).

An experimental test for structural changes associated with
entanglement. To test these predictions for glycerol-3-phosphate
dehydrogenase we carried out limited proteolysis mass spectro-
metry (LiP-MS, see “Methods”) in which whole extracts from
cells were globally unfolded by incubation in 6M guanidinium
chloride, and refolded by rapid dilution. The structures of the
refolding proteins were then interrogated with pulse proteolysis
with proteinase K (PK), which specifically cuts at exposed or
unstructured sites. The resulting fragments were identified and
quantified with mass spectrometry and compared to those from
native lysates that were never unfolded. Protease digestion was
carried out at 1-min, 5-min, and 120-min timepoints after
refolding conditions were established, and glycerol-3-phosphate
dehydrogenase’s digestion pattern is observed to change over
these time points (see “Methods” and Supplementary Data 1). We
consider in our analysis only those peptides that show a greater
than 3.5-fold difference in abundance in the refolded sample
versus native sample ( log2

R
N

� ��� ��> 1.8, Column W in Supple-
mentary Data 1 sheet labeled “GlpD”) and whose difference is
statistically significant (p < 0:01;�log10 p

� �
> 2; Column Y in

same sheet, see “Methods”49). A total of ten unique peptides meet
these criteria at one or more experimental time points. At 1 min
residue V203 and residues [333–354] are significantly more
exposed in the refolded sample than in the native sample. At
5 min L293, F351, Q487, and P387 are more exposed in the
refolded than native sample, while V203 and [333–354] are no
longer found to be different between refolded and native. After
120 min, seven exposed peptides are found: [333–354], F351, and
L293 once again appear more exposed in refolded than native,
while Y313, [284–302], D437, and G422 emerge as more exposed
in the refolded sample. No one peptide is found to be more
exposed in the refolded than native samples at all three time
points, though L293, F351, and [333–354] are more exposed at
two time points. These experimental data indicate that some
glycerol-3-phosphate dehydrogenase molecules that fail to arrive
at the native structure rapidly populate misfolded structures.

To test if the entanglements we observe in simulations of
glycerol-3-phosphate dehydrogenase can explain these digestion
patterns, we structurally clustered the coarse-grain conformations
from the final 100 ns of our simulations (based on their G and
Qoverall) into eight metastable states denoted {S1, S2, …, S8}. We
focus on segment [333–354] and residues F351 and L293 because
these peptides persist in the experiments, being present at either
the 1- or 5-min timepoints and the 120-min timepoint. In seven
out of eight states an entanglement is present, with states S5, S7,
and S8 the most native like (Supplementary Table 8). The
entangled loop or threading segments in these states overlap with
one or more peptide fragments in five out of eight states.
Structure near cleavage sites is still perturbed even when the
entangled region does not overlap with them. For example, the
threading of residues 218–237 through the loop formed by
residues 271–288 in S2 does not contain residues L293, F351, or
segment [333–354]. However, this entanglement increases the

Fig. 4 The vast majority of trajectories predicted to bypass cellular
quality controls and exhibit reduced function are entangled. The percent
of trajectories out of 50 for each of the 41 proteins that bypass quality
controls and are predicted to have reduced function that are entangled
(blue) or not entangled (red). A total of 189 out of 203 trajectories are
entangled. Protein names were taken from UNIPROT; see Supplementary
Table 2 for the structures used and their corresponding gene names. Inset
contingency table indicates the number of trajectories that are misfolded
and escape proteostasis machinery while remaining non-functional and
entangled/not entangled. Indicated p-value and odds ratio were computed
in SciPy using the Fisher Exact Test. All error bars are 95% confidence
intervals from bootstrapping 106 times.
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solvent accessible surface area of these segments (Fig. 5i). This is
most clearly seen for F351, which in the native state forms part of
a β-sheet buried beneath the threading segment residues (Fig. 5i,
middle panel, “Folded” structure). When this set of residues
becomes entangled by threading through the loop (“Misfolded”
structure in Fig. 5i), the thread is kinetically trapped in a position
that exposes F351 much more than in the native fold. Calculating
the solvent accessible surface area change (Eq. (16)) of these
fragments in each metastable state we find broad agreement with
the experimental data (Supplementary Table 8). Each of the seven
entangled metastable states displays increased solvent accessibility
at each of the three locations.

Discussion
Previous work has established that soluble, long-lived, non-
functional protein misfolded states can arise from alteration of
translation-elongation kinetics. Here, we estimate the extent of

this phenomenon across the nascent proteome of an organism
and examine the structural and kinetic properties of these kine-
tically trapped states. We predict that a majority of cytosolic E.
coli proteins exhibit subpopulations of misfolded, kinetically
trapped states, and that many of these misfolded states are similar
enough to the native state to evade the proteostasis machinery in
E. coli. We estimate that one-third of cytosolic E. coli proteins
have subpopulations that misfold into near-native conformations
that have reduced function and bypass the proteostasis network
to remain soluble and non-functional for days or longer.

To appreciate these results, it is useful to understand the types
of misfolding that can and cannot occur in our simulation model.
The coarse-grain forcefield is parameterized for each protein
based on its crystal structure, with this native-state conformation
encoded as the potential energy minimum in the form of a Gō-
based energy function (Eq. (1)). This means that the native state
is the global free energy minimum at our simulation tempera-
tures; any other state is metastable. Another consequence of this

i
Folded Misfolded Folded Misfolded Folded Misfolded

180⁰

gf

50%. The percentage of 
glycerol-3-phosphate dehy-
drogenase trajectories that misfold 
into soluble but less-functional 
conformations.

e

Domain 2

Domain 1
Interface

d

Misfolded

Folded

h

Folded

Misfolded

cba

glycerol-3-phosphate 
    dehydrogenase

Fig. 5 The two-domain glycerol-3-phosphate dehydrogenase protein displays widespread misfolding into soluble but less-functional conformations.
a Ribbon structure of glycerol-3-phosphate dehydrogenase (PDB ID: 2QCU). Domains 1 and 2 are composed of residues 1–387 and 388–501 and are
colored cyan and green, respectively. The FAD cofactor is shown in a dark blue representation. b Number of folded (N ¼ 13) and misfolded (N ¼ 37)
trajectories for this protein from 50 independent simulations. c Qmode versus time for Domain 1 for the subpopulations of folded (magenta) and misfolded
(orange) trajectories. Each line represents one independent trajectory. d Survival probability of the unfolded state versus time computed for Domain 1
(cyan), Domain 2 (green), and the Domain 1|2 interface as described in “Methods”. Dotted black lines are double-exponential fits. e Key parameters for the
folded and misfolded populations. f 50% [36%, 64%] of glycerol-3-phosphate dehydrogenase trajectories are predicted to remain soluble but non-
functional. g Representative misfolded structure colored as in (a) aligned to the native-state reference structure. Despite a high χfunc value indicative of a
less-functional conformation, the protein is largely native. h Representative folded and misfolded structures back-mapped to all-atom resolution and then
aligned to the native state based on the FAD-binding pocket residues. Steric conflict (indicated by black arrow) can be seen between the substrate-binding
location and the misfolded binding pocket, indicating reduced function of this conformation. i Three pairs of structures corresponding to the native state
(left) and the first representative structure of metastable state S2 (right) with locations of [333–354], F351, and L293 indicated in magenta. The loop
(residues 271–288) and threading (residues 218–237) segments of the entanglement present in S2 are shown in red and blue, respectively. The same
regions are colored yellow and light purple in the native state for reference, though no entanglement is present. The CA atoms of residues 271 and 288 that
form the contact closing the loop segment are represented by orange spheres. Values of hζpeptidei were calculated with Eq. (16); error bars are available in
Supplementary Table 8. All error bars are 95% confidence intervals computed from bootstrapping 106 times.
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type of model is that misfolding involving non-native tertiary
structure formation is not possible. Thus, the misfolded states our
model can populate are topologically frustrated states that are
kinetic traps50. A kinetic trap is a local minimum separated from
other conformations in the ensemble by energy barriers much
larger than thermal energy, making the attainment of the native
state a slow process for some protein subpopulations. In our
model, intra-molecular entanglements can occur. These entan-
glements consist of two parts: a contiguous segment of the protein
that forms a ‘closed’ loop, where the loop closure is geometrically
defined as a backbone segment that has a native contact between
two residues at its ends, and another segment of the protein that
threads through this loop (Fig. 3).

Proteins can misfold by a variety of mechanisms. For example,
Bitran and co-workers51 suggest that non-native contacts appear
to play an important role in kinetic trapping of some proteins.
Misfolding has also been observed via domain swapping52, in
which highly similar portions of proteins swap with one another.
Our results are not mutually exclusive with these other types of
misfolding; indeed, one can imagine situations in which domain
swapping involves the introduction of an entanglement, or in
which non-native contacts form entanglements. Understanding
the overlap and interplay of these various types of misfolding in
real systems is an interesting open question.

It was previously hypothesized53 that like protein topological
knots54 (which persist when pulling on both termini), this type
of entanglement, which we refer to as a non-covalent lasso
entanglement55, would generate topological frustration and be a
kinetic trap. Simulations of proteins with topological knots in
their native state50 observed that the wrong knot could form
and that many of these states were long-lived kinetic traps as
they required ‘backtracking’56 (i.e., unfolding) to fix the knot.
While only 3 of the 122 proteins (genes rlmB, metK, and rsmE)
in our study contain topological knots in the native state, the
non-covalent lasso entanglement intermediates we observe are
non-native pseudoknots54 (which unravel when pulling on both
termini), and require either reptation of the threaded protein
segment out of the closed loop (Fig. 3) or local unfolding of the
loop surrounding the threaded segment to disentangle. Thus,
the results of this study bridge the rich field of polymer
topology with biologically important consequences for in vivo
protein structure and function.

A potential criticism of this work is that the non-native
entanglements we observe may be an artifact of our coarse-
grained modeling of proteins. Several lines of evidence indicate
this criticism is unfounded. A sufficiently long linear polymer
performing a random walk will always sample knotted structures.
Thus, it is a fundamental polymer property that knots and
entanglements have the potential to form57. In a recent study,
four entangled structures produced from our coarse-grained
model were back-mapped and simulated using classical, all-atom
molecular dynamics32. The entanglements, and native-like
structure of these states persisted for the entire 1 μs simulation
time. In another study, one-third of the protein crystal structures
in the CATH database were found to contain in the native state
the same types of entanglements we observe as intermediates58.
Taken together, these results indicate that the entanglements we
observe are realistic non-native intermediates that have the
potential to be populated by many proteins.

Two differences between our simulations and the limited-
proteolysis experiments lie in the preparation of the proteins and
limits of detection. In the experiment, proteins are prepared in a
chemically denatured state and then allowed to refold, compared
to folding concomitant with or after translation. Protein’s that are
prone to misfolding during translation are likely to be prone to

misfolding during bulk refolding. Thus, while it is not necessary
that the same misfolded states be populated under these two dif-
ferent situations, the consistency between the misfolded entangled
states of glycerol-3-phosphate dehydrogenase and the persistent
and significant protease fragments from the experiment indicates
similar misfolded states do occur. Secondly, our computational
workflow can detect proteins that misfold as little as 2% of the time
(1 misfolded trajectory out of 50); on the other hand, to filter signal
from noise, protein regions are only considered more (or less)
exposed in the refolded form relative to native if the corresponding
PK-fragment is >2-fold (i.e., log2

R
N

� ����� > 1 with p < 0.01) more (or
less) abundant in the proteolysis reaction49,59. Thus, the sensitivity
of this approach to misfolded states with low populations is lower,
and needs to be considered when comparing to the simulations
results.

The majority of proteins simulated in this study misfold in
some capacity. And 41 unique proteins, or about one-third of the
proteins we simulated, have one or more trajectories that remain
soluble and non-functional due to misfolding. Projecting this
proportion across the entire set of 2600 proteins that make up the
cytosolic E. coli proteome, we estimate that approximately 874
proteins may exhibit misfolding into soluble states. Given that a
reduction in the function of a protein has the potential to influ-
ence multiple cellular processes, this result suggests that these
misfolded states could exert wide-spread influences on cell
behavior and phenotype. We also note that it is not only proteins
that bypass all aspects of proteostasis and remain non-functional
that can negatively impact cells. For example, protein con-
formations that avoid chaperones and degradation but then go on
to aggregate may lead to the accumulation of amyloid fibrils.

Changes to the speed of translation, such as those that may be
introduced by synonymous mutations in a protein’s mRNA
template, can strongly influence the ability of proteins to fold7.
The simulation results described here were generated using the
wild-type translation rate profile for each protein (see “Meth-
ods”). Experiments have shown that changing translation speed
can alter the subpopulation of soluble, less functional states sev-
eral fold. Thus, the population of proteins that misfold have the
potential to be significantly altered in our computer simulations
what translation-elongation rates are altered. These complexities
make exploration of the influence of translation kinetics on the
propensity of the E. coli proteome to misfold an interesting
direction for future research.

One of the most fundamental timescales of a protein is its half-
life, which gives a measure of the lifetime of a typical copy of a
protein between its synthesis and degradation. If misfolded states
persist on the same timescale as the protein half-life then protein
function will be perturbed for most of that protein’s existence.
Unfortunately, we are unaware of any proteome-wide studies of
protein half-lives in E. coli. However, based on studies of protein
lifetimes in budding yeast60 and human cells61, which found
median half-lives of 43 min (range 2 min to 81 days) and 36 h
(range: 8 h to 153 days), respectively, we estimate that typical
half-lives in E. coli range from minutes to hours. Many of our
extrapolated folding times from our simulations are on the same
order of magnitude as these values or greater, indicating that
misfolded states with reduced function can persist for the entire
lifetime of a protein. This is consistent with the experimental
observation that misfolding can influence folding and function
for extended periods1,2,62.

If the half-life is a fundamental time scale of a protein, then the
cell-division time is a fundamental time scale of a bacterium. In E.
coli, doubling times during exponential growth phase range from
tens of minutes to hours depending on the growth medium63. A
total of 31 of our 122 proteins have extrapolated folding times for
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the slow phase longer than 40 min. And, of the 41 proteins that
misfold into soluble but less-functional states, 15 have extra-
polated folding times longer than 40 min. Since these folding
times are on a similar time scale as the doubling time, soluble
misfolded conformations will be split between the daughter cells.
This suggests that the memory of those events can be encoded in
these kinetically trapped states and transferred to the daughter
cells. It will be an interesting area of future study to determine
whether inheritance of soluble, misfolded proteins with poten-
tially altered function can act as a mechanism for epigenetic
inheritance and influence daughter cell behavior.

A key question potentially addressed by our simulations is
what allows these misfolded states to remain misfolded in non-
functional states for such long timescales? Entanglements allow
these misfolded states to persist for long timescales, and their
largely native topologies mean they are not excessively acted upon
by the proteostasis machinery. In many instances, large-scale
unfolding would need to take place in order for the entangled
protein to disentangle50 to a state from which the native fold is
more readily accessible. One interesting avenue for future
research is comparison of our results concerning misfolding after
ribosomal synthesis with simulations of refolding from denatured
chains. Such work would provide a clearer comparison to LiP-MS
experiments and enable us to test the hypothesis of whether
protein synthesis reduces protein misfolding.

In summary, we have found that the majority of E. coli proteins
misfold in our simulations, and that some proteins misfold into
states that likely bypass cellular proteostasis machinery to remain
soluble but with reduced function. We find that these misfolded
conformations are able to remain soluble because they are,
overall, very similar to the native state, but with certain entan-
glements that lead to perturbed structure and function. Given that
self-entanglement is a fundamental polymer property, the
entanglements we have observed represent a universal type of
misfolding that has the potential to impact a range of proteins
and functions. Specifically, our simulation results suggest the
hypothesis that entangled states may be the source of reduced
dimerization2, enzymatic function64, and small-molecular
transport27 upon changes in translation kinetics induced by
synonymous mutations. Future theoretical and experimental
efforts should focus on the structural characterization of non-
native entangled states and their influence on protein function.

Methods
Selection of proteins and parameterization of their coarse-grain models. A
data set of 50 multi- and 72 single-domain proteins was selected at random from a
previously developed database of E. coli proteins with solved X-ray diffraction or
NMR structures41,65. This data set contains proteins with realistic distributions of
protein size and structural class (see Supplementary Fig. 1 and Supplementary
Table 1, respectively, of ref. 41). Small sections of missing residues (<10) were
rebuilt and minimized in CHARMM, while large missing sections for some multi-
domain proteins were rebuilt based on homologous protein structures (see
Table S4 of ref. 41). Each of the rebuilt all-atom models was then converted to a Cα

coarse-grain representation. The potential energy forcefield of this coarse-grain
model is given by the equation
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These forcefield terms represent, from left to right, the contributions from

Cα–Cα bonds, torsion angles, bond angles, electrostatic interactions, Lennard-
Jones-like native interactions, and repulsive non-native interactions to the total

potential energy. Full details of the model parameters can be found in ref. 41. The
value of ϵNCij , which determines the global energy minimum for a native contact, is
calculated as

ϵNCij ¼ nijϵHB þ ηϵij: ð2Þ

In Eq. (2), ϵHB and ϵij represent energetic contributions from the hydrogen
bonds and van der Waals interactions between residues i and j found within the all-
atom structure of the protein, respectively. nij is the integer number of hydrogen
bonds between residues i and j and ϵHB ¼ 0:75 kcal=mol. The value of ϵij is initially
set based on the Betancourt-Thirumalai potential66 and the value of η for each
individual domain and interface set based on a previously published training set28.
The values of η used for all production simulations are listed in ref. 41 and
Supplementary Tables 2 and 3 alongside all protein names and the chain identifiers
used during model building. For simplicity, all proteins are referred to using the
PDB ID of the entry from which they were primarily derived. The parameters for
the coarse-grain model of firefly luciferase (PDB ID: 4G36) have not previously
been reported and are therefore provided in Supplementary Table 1.

Simulations of nascent protein synthesis, ejection, and post-translational
dynamics. All simulations were performed using CHARMM and the coarse-grain
forcefield described in Eq. (1) with an integration timestep of 0.015 ps and a
Langevin integrator with friction coefficient of 0.050 ps−1 at a temperature of
310 K. The synthesis and ejection of each protein was simulated using a previously
published protocol and a coarse-grain cutout of the ribosome exit tunnel and
surface (for complete simulation details see ref. 41). In this model, ribosomal RNA
is represented by one interaction site each for each ribose sugar, phosphate group,
and pyrimidine base and two interaction sites for each purine bases. Ribosomal
proteins are represented at the Cα level. Post-translational dynamics simulations
were initiated from the final protein structure obtained after ejection with the
ribosome deleted. Fifty statistically independent trajectories were run for each of
the 122 proteins in the E. coli cytosolic proteome data set and for Luciferase. Post-
translational dynamics was run for 30 CPU days for each trajectory. Ten trajec-
tories were also initiated from the native-state coordinates for all proteins and run
for 30 CPU days each to provide a realistic reference ensemble for each protein’s
folded state.

Identification of misfolded trajectories. Two order parameters, Qmode and
P GkjPDB; traj
� �

, were used to determine whether or a not a given trajectory folds.
Detailed definitions of these order parameters are given in the following two
“Methods” sections. A given trajectory is considered to be misfolded if either its
Qmode or f c GkjPDB; traj

� �
values (or both, as described below) indicate that the

trajectory is significantly different from the native state reference simulations.

Calculation of Qmode and its use as an order parameter for protein folding. The
fraction of native contacts, Q, was calculated for each domain and interface of all
122 proteins during their synthesis, ejection, and post-translational dynamics. Only
contacts between pairs of residues both within secondary structural elements as
identified by STRIDE67 based on the final rebuilt all-atom structures were con-
sidered. To determine when a given domain or interface within a protein folded,
the mode of the Q values over a 15-ns sliding window (Qmode) was compared to the
representative value of the native state computed as the average Qmode over all
windows of the ten native-state simulations denoted (hQNS

modei). A given trajectory is
defined as misfolded if its average Qmode over the final 100 ns of the post-
translational dynamics portion of the simulation, denoted hQNS

modei, is less than
hQNS

modei � 3σ, where σ is the standard deviation of hQNS
modei.

Generation of entanglement metric distributions and use as an order para-
meter for protein folding. To detect non-covalent lasso entanglements we use
linking numbers68. A link is defined as the entanglement of two closed curves; here,
we use (1) the closed curve composed of the backbone trace connecting residues i
and j that form a native contact and (2) the open curves formed by the terminal
tails. The native contact between i and j in (1) is considered to close this loop, even
though there is no covalent bond between these two residues. Outside this loop is
an N-terminal segment, composed of residues 1 through i� 1, and a C-terminal
segment, composed of residues jþ 1 through N , whose entanglement through the
closed loop we characterize with partial linking numbers denoted gN and gC

47. For
a given structure of an N-length protein, with a native contact present at residues
ði; jÞ, the coordinates Rl and the gradient dRl of the point l on the curves were
calculated as

Rl ¼ 1
2 rl þ rlþ1

� �
dRl ¼ rlþ1 � rl

(
; ð3Þ

where rl is the coordinates of the Cα atom in residue l. The linking numbers
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gN i; j
� �

and gC i; j
� �

were calculated as

gN i; j
� � ¼ 1

4π∑
i�5
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j�1
n¼i

Rm�Rn

Rm�Rnj j3 � dRm ´ dRn

� �
gC i; j
� � ¼ 1

4π∑
j�1
m¼i∑

N�6
n¼jþ4

Rm�Rn

Rm�Rnj j3 � dRm ´ dRn

� �
8<
: , ð4Þ

where we excluded the first 5 residues on the N-terminal curve, last 5 residues on
the C-terminal curve and 4 residues before and after the native contact for the
purpose of eliminating the error introduced by both the high flexibility and con-
tiguity of the termini and trivial entanglements in local structure. The above
summations yield two non-integer values, and the total linking number for a native
contact ði; jÞ was therefore estimated as

g i; j
� � ¼ round gN i; j

� �� �þ round gC i; j
� �� �

, ð5Þ
Comparing the absolute value of the total linking number for a native contact

ði; jÞ to that of a reference state allows us to ascertain a gain or loss of linking
between the backbone trace loop and the terminal open curves as well as any
switches in chirality. Therefore, there are 6 change in linking cases we should
consider (Supplementary Table 9) when using this approach to quantify
entanglement.

To examine the distribution of change in linking (entanglement) detected for a
given protein model and statistically independent post-translational trajectory we
can generate a discrete probability distribution of the 6 cases in Supplementary
Table 9 as

P GkjPDB; traj
� � ¼ Nk

NE
ð6Þ

Where Gk for k 2 0; 1; 2; 3; 4; 5f g is the change in entanglement case of interest
from Supplementary Table 9, NE is the total number of changes in entanglement
instances detected in the trajectory, and Nk is the total number of changes in
entanglement in the trajectory of type k. As the change in entanglement is held
relative to the static crystal structure, it is necessary to correct the post-translational
distribution to remove transient changes in entanglement present in the reference
state dynamics. This was done by subtraction of the reference distribution from the
post-translational distribution considering nontrivial changes in linkage:

f c GkjPDB; traj
� � ¼ Ppt GkjPDB; traj

� �
-Pref GkjPDB

� ���� ���, k 2 0; 1; 2; 3; 4f g. ð7Þ
For a given case of entanglement change k the magnitude of f c GkjPDB; traj

� �
increases as the probability of that mode of entanglement change deviates from the
reference simulations. We define a given trajectory as misfolded if the average of
any of its corrected entanglement values from Eq. (7) over the final 100 ns of the
trajectory are ≥0.1.

This trajectory-level analysis is useful for classifying statistically independent
sample sets by the level and types of changes in entanglement they exhibit, but a
time series metric which conveys the same information was desired to allow for
folding time extrapolations. G is a time-dependent order parameter that reflects the
extent of the topological entanglement changes in a given structure compared to
the native structure and is calculated as

G tð Þ ¼ 1
N
∑ i;jð ÞΘ i; j

� � 2 nc \ g i; j; t
� �

≠ gnative i; j
� �� �

; ð8Þ

where (i, j) is one of the native contacts in the native crystal structure; nc is the set
of native contacts formed in the current structure at time t; g i; j; t

� �
and

gnative i; j
� �

are, respectively, the total entanglement number of the native contact
(i, j) at time t, and native structures estimated using Eq. (5); N is the total number
of native contacts within the native structure and the selection function Θ equals 1
when the condition is true and equals 0 when it is false. The larger G is, the greater
the number of native contact residues that have changed their entanglement status
relative to the native state. The utility of entanglement for detecting structural
perturbations not apparent by fraction of native contacts or root mean square
deviation is visually described in Supplementary Fig. 6.

Calculation and extrapolation of folding times. Folding times were determined
for each domain and interface from their post-translational Qmode and G time
series. The folding time for a domain or interface is taken as the first t at which
Qmode is greater than or equal to hQNS

modei � 3σ and with G≤Gxs. The survival
probability of the unfolded state was then computed based on these folding times
and fit to the double-exponential function SU tð Þ ¼ f 1exp k1 � t

� �þ f 2exp k2 � t
� �

with f 1 þ f 2 � 1: This double-exponential fit equation represents a kinetic scheme
in which the unfolded and misfolded states each proceed irreversibly to the folded
state by parallel folding pathways and there is no inter-transitions between
unfolded and misfolded states. Folding times for each kinetic phase were computed
as τF;1 ¼ 1

k1
and τF;2 ¼ 1

k2
, with the overall folding time of the domain or interface

taken as the longer of the two folding times. The folding time reported for each
protein is the longest folding time from any of its constituent domains or inter-
faces. The assumption of double-exponential folding kinetics is not a good
assumption for all 122 proteins simulated. We therefore only consider domains and
interfaces whose SU tð Þ time series are fit with a Pearson R2 > 0:90. We are also
unable to compute folding times for the nine proteins for which no trajectories

folded. In total, we found reliable folding times for 73 of our 122 proteins.
Simulated folding times were extrapolated to experimental timescales using the
equation τexp ¼ τsim � α, where τsim is a given protein’s simulated folding time and
α= 3,967,486 is the mean acceleration of folding in our coarse-grain simulations
relative to real timescales28.

Identifying misfolded proteins unlikely to interact with trigger factor. To
determine whether or not a given protein in our data set is likely to interact with
trigger factor (TF) during synthesis we computed the relative difference in the
hydrophobic SASA between misfolded trajectories and folded trajectories on the
ribosome using the equation

ζco�t
hydrophobic t; lð Þ ¼ Ahydrophobic t; lð Þ

Ahydrophobic t; lð Þ
D E

F

� 1

0
B@

1
CA � 100%: ð9Þ

In Eq. (9), Ahydrophobic t; lð Þ is the total hydrophobic SASA of residues in the
nascent protein at time t and nascent chain length l exposed outside of the
ribosome exit tunnel (defined as having an x-coordinate ≥100 Å in the internal
CHARMM coordinate system; see ref. 41 for details). The term hAhydrophobic t; lð Þi

F
is

the mean total hydrophobic SASA of residues at time t and length l outside of the
exit tunnel calculated over all frames of synthesis trajectories identified to be folded
by Qmode and G analysis. Note well, the reference states for Eqs. (10), (11), and (12)
are the native-state reference simulations initiated in bulk solution, but due to the
co-translational nature of TF interactions we use the folded subpopulation of
synthesis trajectories as the reference state in Eq. (9). As TF is thought to only
interact with nascent proteins of 100 residues or longer69, we compute Eq. (9) for
l ¼ f100; 101; ¼ ;Ng for each protein and trajectory, where N is the total number
of residues in the full-length protein. Proteins shorter than 100 amino acids are
considered not to interact with TF. To quantify the overall propensity of a
misfolded trajectory of a given protein to interact with TF we compute hζco�t

hydrophobici
as the mean of ζco�t

hydrophobic t; lð Þ for all t and allowed values of l. Based on

examination of ζco�t
hydrophobic t; lð Þ time series, we determined that a value of

hζ co�t
hydrophobici≤ 10% corresponds to proteins that are unlikely to engage TF

significantly more than folded conformations on the ribosome. For the purposes of
this calculation and all others in this work that consider sets of hydrophobic
residues, coarse-grain interactions sites representing {Ile, Val, Leu, Phe, Cys, Met,
Ala, Gly, Trp} are considered to be hydrophobic.

Identifying misfolded proteins unlikely to interact with GroEL/GroES. Our
data set of 122 E. coli proteins was first cross-referenced with the list of 276
confirmed GroEL/GroES substrates44–46. The 103 proteins that do not appear in
this list of confirmed clients are considered to not be GroEL/GroES client proteins.
GroEL/GroES is thought to identify and bind regions of exposed hydrophobic
surface area on nascent proteins. To determine whether the misfolded conforma-
tions of proteins that can interact with GroEL/GroES are likely to do so, we
compared the total hydrophobic SASA of misfolded conformations with the native-
state ensemble using the equation

ζhydrophobic tð Þ ¼
Ahydrophobic tð Þ
Ahydrophobic tð Þ
D E

NS

� 1

0
B@

1
CA � 100%: ð10Þ

This equation provides the quantity ζhydrophobicðtÞ, which measures the relative
difference between the SASA of hydrophobic residues within a misfolded
conformation at time t (Ahydrophobic tð Þ) in comparison to the mean hydrophobic
SASA calculated over all frames of the native-state reference simulations
ðhAhydrophobic tð ÞiNSÞ. As GroEL/GroES interacts with proteins post-translationally,
Eq. (10) was applied to the post-translational simulation data for all misfolded
conformations of a given protein and the average over the final 100 ns computed
for each trajectory ðhζhydrophobiciÞ. The full set of proteins with misfolded
conformations that we predict will not interact with GroEL/GroES is taken as the
union of the sets of all trajectories for proteins not in the list of experimentally
confirmed clients and the list of trajectories with hζhydrophobici≤ 10%.

Identifying misfolded proteins unlikely to interact with DnaK. We first cross-
referenced our list of 122 simulated proteins with a list of 674 DnaK client
proteins11. The 84 proteins in our data set that do not appear on this list are
considered to not interact with DnaK. To determine whether misfolded con-
formations of proteins that can interact with DnaK are likely to do so, we predicted
DnaK binding sites using the Limbo webserver35 and then compared the total
SASA of residues in predicted binding sites between misfolded conformations and
the native state using the equation

ζDnaK tð Þ ¼ ADnaK tð Þ
ADnaK tð Þ� �

NS

� 1

 !
� 100%: ð11Þ

In this equation, ADnaK tð Þ is the total SASA of residues in DnaK binding sites as
a function of time t and hADnaK tð ÞiNS is the mean total SASA of residues in DnaK
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binding sites averaged over all frames of the native-state reference simulations.
Equation (11) was applied to the post-translational simulation data of all misfolded
conformations for each misfolded trajectory and the average over the final 100 ns of
each trajectory computed hζDnaKi

� �
. The full set of trajectories with misfolded

conformations that we predict will not interact with DnaK is taken as the union of
the sets of trajectories for proteins not in the list of experimentally confirmed
clients and the list of trajectories with hζDnaKi≤ 10%.

Identifying misfolded proteins unlikely to aggregate. We used the
AMYLPRED2 webserver37 to predict the sets of aggregation-prone residues within
the primary sequences of our 122 proteins. Whether or not a given trajectory for a
protein is likely to aggregate was determined by comparing the SASA of
aggregation-prone regions within the misfolded trajectory to the mean SASA of
aggregation-protein regions in the native-state reference ensemble using the
equation

ζagg tð Þ ¼ Aagg tð Þ
Aagg tð Þ
D E

NS

� 1

0
B@

1
CA � 100%: ð12Þ

In this equation, Aagg tð Þ is the total SASA of residues in aggregation-prone
regions as a function of time, t, and hAagg tð Þi

NS
is the mean total SASA of residues

in aggregation-prone regions averaged over all frames of the native-state reference
simulations. Equation (12) was applied to the post-translational simulation data for
all misfolded trajectories of a given protein and the average over the final 100 ns for
each trajectory ðhζaggiÞ. Trajectories with hζaggi≤ 10% are considered to be unlikely
to aggregate. Note that our methods do not account for the presence of forms of
aggregates other than amyloid, as our calculation is based on the AMYLPRED2
algorithm.

Identifying misfolded proteins unlikely to be degraded. Whether or not a
protein’s misfolded conformations are likely to be targeted for degradation was
determined on the basis of ζhydrophobic (Eq. (10)). Proteins with hζhydrophobici≤ 10%
are considered to be unlikely to be degraded.

Creating a database of functional residues for E. coli proteins. Information
from UniProt and RCSB was unified and parsed to create a database of residues
implicated in function for each of our 122 proteins. Residues involved in inter-
actions with small molecules were identified as those residues with heavy atoms
within 4.5 Å of any heteroatom (identified by the HETATM keyword in PDB
records) other than water and non-native amino acids such as selenidomethionine
(i.e., MSE residues). Many proteins must form multimeric complexes in order to
exercise their function. To consider these interactions, we also identified residues
with heavy atoms within 4.5 Å of heavy atoms in a different chain ID within the
same PDB structure.

Our 122 coarse-grain models were built from single PDB structures or, in the
case of some multi-domain protein models, the merging of multiple structures.
These structures used for model building often lack ligands or protein binding
partners that may be required for function due to differences in crystallographic
conditions and/or the intention of the original crystallographers. To provide a
broader view of functional residues we therefore also considered all PDB structures
identified by UniProt to represent the same gene product. Functional residues were
identified in these alternative structures as described above for the initial structures.
PDB entries representing the same protein often have different residue numbering
schemes and a small number of mutations. We therefore used amino acid
alignments in BLAST to determine the mapping from alternative numbering
schemes to the numbering scheme within the structure used for model building.
Only those domains with at least 97% sequence identity were considered for this
analysis to allow for small mutational changes while excluding significantly
different proteins. A summary of each of the terms in the database and their
meanings is provided in Supplementary Table 10.

Determining which misfolded conformations are likely non-functional. The
relative difference in function between misfolded trajectories and native-state
reference trajectories was determined by calculating the relative difference of the
structural overlap of residues identified to be involved in protein function using the
equation

χfunc ¼ 1� χ tð Þ
χ tð Þ� �

NS

 !
� 100%: ð13Þ

In this equation, χ tð Þ is the structural overlap between residues implicated in
function at time t in a misfolded trajectory with the native-state reference structure
and hχ tð ÞiNS is the mean of this same value computed over all simulation frames of
the native-state reference simulations. The value of χ tð Þ is calculated as

χðtÞ ¼ 1
N
∑i2fFuncg∑j≥ iþ2;j2fFuncgθ½ϵ� jrijðtÞ � r0ijj� ð14Þ

and gives the fraction of pairwise distances that are at native-like values at time t.
The set Funcf g contains all residues implicated in protein function. The indices i

and j correspond to residues in Funcf g for the protein being analyzed. N is the total
number of pairwise contacts between residues i and j both in Funcf g that also
satisfy the condition j ≥ iþ 2: The parameters rij tð Þ and r0ij are the distances
between residues i and j at time t and between i and j in the native state reference
structure, respectively. θ(x) is the step function given by

θðxÞ ¼ 1; x ≥ 0

0; x < 0

�
: ð15Þ

The value of ϵ is taken as 0:2�rcα where rcα ¼ 3:81Å is the virtual bond length
between coarse-grain interaction sites in the coarse-grain simulation model. A

particular pair of residues i and j contribute 1 to χ tð Þ if rij tð Þ � r0ij

��� ��� is less than ϵ,

such that ϵ� rij tð Þ � r0ij

��� ���≥ 0, and in all other situations contribute 0 to χ tð Þ.
Similar forms of this equation have been used previously to observe structural
transitions in simulations of proteins70. The value of χfunc was averaged over the
final 100 ns for given protein trajectory to give hχfunci, the mean relative difference
in structure of functional residues for the misfolded conformation in comparison to
the native state. Trajectories with hχfunci≥ 10% are considered to be less functional
than the native state.

Selection of 10% threshold for classifying misfolded trajectories as native-
like. We selected a threshold of 10% for ζhydrophobicðtÞ, ζDnaK tð Þ, ζagg tð Þ, and χfunc
(see Eqs. (10–13)) based on an analysis of how frequently our native state reference
trajectories for each protein explore conformations with 10% or greater difference
from their native state mean (Supplementary Table 11). Virtually all proteins
explore conformations with ≥10% for each metric in their native state, indicating
that 10% is a parsimonious threshold for determining if misfolded conformations
are native like. In the case of ζco�t

hydrophobic t; lð Þ, similar calculations as those per-
formed for the other metrics would require running prohibitively expensive
arrested-ribosome-nascent chain complex simulations for each of our 122 proteins.
We therefore use a threshold of 10% for ζ co�t

hydrophobic t; lð Þ for the sake of consistency
with our other thresholds.

Preparation of K12 cell pellets. E. coli K12 cells (NEB) were grown in 2 sets of
3 × 50 mL (biological triplicates) of in-house prepared MOPS EZ rich media(-
Arginine/-Lysine) from saturated overnight cultures with a starting OD600 of 0.05.
Similar to reported elsewhere59, one set was supplemented with 0.5 mM [13C6]L-
Arginine and 0.4 mM [13C6]L-Lysine and the other with 0.5 mM L-Arginine and
0.4 mM L-Lysine. Cells were cultured at 37 °C with agitation (220 rpm) to a final
OD600 of 0.8. Each heavy/light pair was pooled together and then transferred to
2 × 50 mL falcon tubes and collected by centrifugation at 4000 × g for 15 min at
4 °C. The supernatants were removed, and cell pellets were stored at −20 °C until
further use.

Frozen cell pellets were resuspended in a lysis buffer consisting of 900 µL of Tris
pH 8.2 (20 mM Tris pH 8.2, 100 mM NaCl, 2 mM MgCl2 and supplemented with
DNase I to a final concentration (f.c.) of 0.1 mg mL−1). Resuspended cells were
flash frozen by slow drip over liquid nitrogen and cryogenically pulverized with a
freezer mill (SPEX Sample Prep) over 8 cycles consisting of 1 min of grinding
(9 Hz), and 1 min of cooling. Pulverized lysates were transferred to 50 mL
centrifuge tubes and thawed at room temperature for 20 min. Lysates were then
transferred to fresh 1.5 mL microfuge tubes and clarified at 16,000 × g for 15 min at
4 °C to remove insoluble cell debris. To deplete ribosome particles, clarified lysates
were transferred to 3 mL konical tubes and ultracentrifuged at 33,300 rpm at 4 °C
for 90 min without sucrose cushions using a SW55 Ti rotor. Protein concentrations
of clarified lysates were determined using the bicinchoninic acid assay (Rapid Gold
BCA Assay, Pierce) in a microtiter format with a plate reader (Molecular Devices
iD3) using BSA as a calibration standard. Protein concentrations were diluted to a
standard concentration of 3.3 mg mL−1 using Tris lysis buffer. This generates the
normalized lysates for all downstream workflows.

Preparation of native and refolded lysates for limited proteolysis mass
spectrometry. To prepare half-isotopically-labeled native samples, 3.5 µL of nor-
malized lysates derived from pellets in which half of the cells were grown with
[13C6]L-Arginine and [13C6]L-Lysine during cell culture and half of the cells were
grown with natural abundance L-Arginine and L-Lysine during cell culture, were
diluted with 96.5 µL of Tris native dilution buffer (20 mM Tris pH 8.2, 100 mM
NaCl, 10.288 mM MgCl2, 10.36 mM KCl, 2.07 mM ATP, 1.04 mM DTT, 62 mM
GdmCl) to a final protein concentration of 0.115 mgmL−1. Following dilution, the
final concentrations are 20 mM Tris pH 8.2, 100 mM NaCl, 10 mM MgCl2, 10 mM
KCl, 2 mM ATP, 1 mM DTT, and 60 mM GdmCl. Native samples were then
equilibrated by incubating for 90 min at room temperature prior to limited
proteolysis.

The refolding samples were prepared as described previously49. Briefly: 600 μL
of normalized lysates, 100 mg of solid GdmCl, and 2.4 μL of a freshly prepared
700 mM DTT stock solution were added to a fresh 1.5 mL microfuge tube, and
solvent was removed using a vacufuge plus to a final volume of 170 μL, such that
the final concentrations of all components were 11.6 mg mL−1 protein, 6 M
GdmCl, 70 mM Tris pH 8.2, 350 mM NaCl, 7 mM MgCl2, and 10 mM DTT.
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Unfolded lysates were incubated overnight at room temperature to complete
unfolding prior to refolding.

To prepare refolding samples, 99 µL of refolding dilution buffer (19.5 mM Tris
pH 8.2, 97.5 mM NaCl, 10.03 mM MgCl2, 10.1 mM KCl, 2.02 mM ATP, and
0.909 mM DTT) were added to a fresh 1.5 mL microfuge tube. 1 µL of unfolded
extract was then added to the tube containing the refolding dilution buffer and
quickly mixed by rapid vortexing, diluting the sample by 100x, followed by flash
centrifugation to collect liquids to the bottom of the tube. The final concentrations
were 20 mM Tris pH 8.2, 100 mM NaCl, 10 mM MgCl2, 10 mM KCl, 2 mM ATP,
1 mM DTT and 60 mM GdmCl. Refolded samples were then incubated at room
temperature for 1 min, 5 min, or 2 h to allow for proteins to refold prior to limited
proteolysis.

To perform limited proteolysis, 2 µL of a PK stock (prepared as a 0.067mgmL−1 PK
in a 1:1 mixture of Tris lysis buffer and 20% glycerol, stored at −20 °C and thawed at
most only once) were added to a fresh 1.5mL microfuge tube. After refolded proteins
were allowed to refold for the specified amount of time (1min, 5min, or 2 h), or native
proteins were allowed their 90min equilibration, 100 µL of the native/refolded lysates
were added to the PK-containing microfuge tube and quickly mixed by rapid vortexing
(enzyme:substrate ratio is a 1:100 w/w ratio71), followed by flash centrifugation to collect
liquids to the bottom of the tube. Samples were incubated for exactly 1min at room
temperature before transferring them to a mineral oil bath preequilibrated at 110 °C for
5min to quench PK activity. Boiled samples were then flash centrifuged (to collect
condensation on the sides of the tube), and transferred to fresh 1.5mL microfuge tube
containing 76mg urea such that the final urea concentration was 8M and the final
volume was 158 µL. They are then vortexed to dissolve the urea to unfold all proteins
and quench any further enzyme activity indefinitely, and flash centrifuged to collect
liquids to the bottom of the tubes.

All protein samples were prepared for mass spectrometry as follows: 2.25 μL of
a freshly prepared 700 mM stock of DTT were added to each sample-containing
microfuge tube to a final concentration of 10 mM. Samples were incubated at 37 °C
for 30 min at 700 rpm on a thermomixer to reduce cysteine residues. 9 μL of a
freshly prepared 700 mM stock of iodoacetamide (IAA) were then added to a final
concentration of 40 mM, and samples were incubated at room temperature in the
dark for 45 min to alkylate reduced cysteine residues. 1 μL of a 0.1 µg µL−1 stock of
LysC (NEB) was added to the samples (to a final enzyme:substrate ratio of 1:100 w/
w) and incubated for 2 h at 37 °C at 700 rpm. 471 μL of 100 mM ammonium
bicarbonate (pH 8) were added to the samples to dilute the urea to a final
concentration of 2M. 2 μL of a 0.1 µg µL−1 stock of Trypsin (NEB) were added to
the samples (to a final enzyme:substrate ratio of 1:50 w/w) and incubated overnight
(15–16 h) at 25 °C at 700 rpm (not 37 °C, so as to minimize decomposition of urea
and carbamylation of lysines).

Desalting of mass spectrometry samples. Peptides were desalted with Sep-Pak
C18 1 cc Vac Cartridges (Waters) over a vacuum manifold. Tryptic digests were first
acidified by addition of 16.6 μL trifluoroacetic acid (TFA, Acros) to a final con-
centration of 1% (vol/vol). Cartridges were first conditioned (1mL 80% ACN, 0.5%
TFA) and equilibrated (4 × 1mL 0.5% TFA) before loading the sample slowly under a
diminished vacuum (ca. 1 mL/min). The columns were then washed (4 × 1mL 0.5%
TFA), and peptides were eluted by addition of 1 mL elution buffer (80% ACN, 0.5%
TFA). During elution, vacuum cartridges were suspended above 15mL conical tubes,
placed in a swing-bucket rotor (Eppendorf 5910 R), and spun for 3 min at 350 × g.
Eluted peptides were transferred from Falcon tubes back into microfuge tubes and
dried using a vacuum centrifuge (Eppendorf Vacufuge). Dried peptides were stored at
−80 °C until analysis. For analysis, samples were vigorously resuspended in 0.1% FA
in Optima water (ThermoFisher) to a final concentration of 0.5mgmL−1.

LC-MS/MS acquisition. Chromatographic separation of digests were carried out
on a Thermo UltiMate3000 UHPLC system with an Acclaim Pepmap RSLC, C18,
75 μm× 25 cm, 2 μm, 100 Å column. Approximately, 1 μg of protein was injected
onto the column. The column temperature was maintained at 40 °C, and the flow
rate was set to 0.300 μL min−1 for the duration of the run. Solvent A (0.1% FA) and
Solvent B (0.1% FA in ACN) were used as the chromatography solvents. The
samples were run through the UHPLC System as follows: peptides were allowed to
accumulate onto the trap column (Acclaim PepMap 100, C18, 75 μm× 2 cm, 3 μm,
100 Å column) for 10 min (during which the column was held at 2% Solvent B).
The peptides were resolved by switching the trap column to be in-line with the
separating column, quickly increasing the gradient to 5% B over 5 min and then
applying a 95 min linear gradient from 5% B to 25% B. Subsequently, the gradient
was increased from 35% B to 40% B over 25 min and then increased again from
40% B to 90% B over 5 min. The column was then cleaned with a sawtooth gradient
to purge residual peptides between runs in a sequence.

A Thermo Q-Exactive HF-X Orbitrap mass spectrometer was used to analyze
protein digests. A full MS scan in positive ion mode was followed by 20 data-
dependent MS scans. The full MS scan was collected using a resolution of 120,000
(@ m/z 200), an AGC target of 3E6, a maximum injection time of 64 ms, and a scan
range from 350 to 1500m/z. The data-dependent scans were collected with a
resolution of 15,000 (@ m/z 200), an AGC target of 1E5, a minimum AGC target of
8E3, a maximum injection time of 55 ms, and an isolation window of 1.4m/z units.
To dissociate precursors prior to their reanalysis by MS2, peptides were subjected
to an HCD of 28% normalized collision energies. Fragments with charges of 1, 6, 7,

or higher and unassigned were excluded from analysis, and a dynamic exclusion
window of 30.0 s was used for the data-dependent scans. Mass tags were enabled
with Δm of 2.00671 Th, 3.01007 Th, 4.01342 Th, and 6.02013 Th.

LC-MS/MS data analysis. Proteome Discoverer (PD) Software Suite (v2.4,
Thermo Fisher) and the Minora Algorithm were used to analyze mass spectra and
perform Label Free Quantification (LFQ) of detected peptides. Default settings for
all analysis nodes were used except where specified. The data were searched against
Escherichia coli (UP000000625, Uniprot) reference proteome database. For peptide
identification, the PD MSFragger node was used, using a semi-tryptic search
allowing up to 2 missed cleavages72. A precursor mass tolerance of 10 ppm was
used for the MS1 level, and a fragment ion tolerance was set to 0.02 Da at the MS2
level. Peptide lengths between 7 and 50 amino acid residues was allowed with a
peptide mass between 500 and 5000 Da. In addition, a maximum charge state for
theoretical fragments was set at 2. Oxidation of methionine and acetylation of the
N-terminus were allowed as dynamic modifications while carbamidomethylation
on cysteines was set as a static modification. Heavy isotope labeling (13C6) of
Arginine and Lysine were allowed as dynamic modifications. The Philosopher PD
node was used for FDR validation. Raw normalized extracted ion intensity data for
the identified peptides were exported from the .pdResult file using a three-level
hierarchy (protein > peptide group > consensus feature). These data were further
processed utilizing custom Python analyzer scripts (available on GitHub, and
described in depth previously49,59). Briefly, normalized ion counts were collected
across the refolded replicates and the native replicates for each successfully iden-
tified peptide group. Effect sizes are the ratio of averages (reported in log2) and P-
values (reported as –log10) were assessed using t tests with Welch’s correction for
unequal population variances. Missing data are treated in a special manner. If a
feature is not detected in all three native (or refolded) injections and is detected in
all three refolded (or native) injections, we use those data, and fill the missing
values with 1000 (the ion limit of detection for this mass analyzer); this peptide
becomes classified as an all-or-nothing peptide. If a feature is not detected in one
out of six injections, the missing value is dropped. Any other permutation of
missing data (e.g., missing in two injections) results in the quantification getting
discarded. In many situations, our data provide multiple independent sets of
quantifications for the same peptide group. This happens most frequently because
the peptide is detected in multiple charge states or as a heavy isotopomer. In this
case, we calculate effect size and P-value for all features that map to the same
peptide group. If the features all agree with each other in sign, they are combined:
the quantification associated with the median amongst available features is used
and the P-values are combined with Fisher’s method. If the features disagree with
each other in sign, the P-value is set to 1. Coefficients of variation (CV) for the
peptide abundance in the three replicate refolded samples are also calculated.
Analyzer returns a file listing all the peptides that can be confidently quantified,
and provides their effect-size, P-value, refolded CV, proteinase K site (if half-
tryptic), and associated protein metadata.

Clustering long-lived misfolded states of glycerol-3-phosphate dehy-
drogenase. The structural distribution from the last 100 ns of the post-translational
simulations of glycerol-3-phosphate dehydrogenase was assessed as the pseudo free
energy �lnðPÞ, where P is the probability density, along the order parameters G and
Qoverall . To further analyze the post-translational structures, 400 clusters (micro-states)
were grouped from the last 100 ns trajectories using the k-means algorithm73,74. A
Markov state model (MSM) was built and the clusters were coarse-grained into a small
number of metastable states using the PCCA+ algorithm75. The number of metastable
states was chosen based on the existence of a gap in the eigenvalue spectrum of the
transition probability matrix76. Five representative structures of each metastable state
were randomly sampled from all microstates according to the probability distribution of
the microstates within the given metastable state. All the clustering and MSM building
were performed by using the PyEmma package77.

Determining which coarse-grain structures have increased exposure of pep-
tides. The relative change in solvent accessible surface area of experimentally
identified peptides for glycerol-3-phosphate dehydrogenase was calculated as

ζpeptide tð Þ ¼
Apeptide tð Þ
Apeptide tð Þ
D E

NS

� 1

0
B@

1
CA � 100%: ð16Þ

In this equation, Apeptide tð Þ is the total SASA of the residues within the peptide
under consideration at time t and hApeptide tð ÞiNS is the mean value of Apeptide tð Þ
computed over all frames of the native-state reference simulations. Equation (16)
was applied to all frames in the final 100 ns of each glycerol-3-phosphate
dehydrogenase trajectory and then averaged separately for each of its eight
misfolded metastable states. Values of hζ 333�354½ �i, hζ F351½ �i, hζ L293½ �i are summarized
in Supplementary Table 8 for metastable states {S1, S2, …, S8}.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data generated in this study have been deposited to
the ProteomeXchange Consortium via the PRIDE partner repository with the data set
identifier PXD031425. Summary data for these experiments are also provided in
Supplementary Data 1, 2, 3, and 4. We cannot feasibly provide all ~30 TB of molecular
dynamics trajectory data, but we do provide sample trajectory files and use them to
demonstrate our analysis methods at https://github.com/obrien-lab-psu/. Protein
structures were obtained from rcsb.org. Partial functional information was obtained from
uniprot.org.

Code availability
CHARMM v35 input files, Python (including the SciPy and PyEmma packages) scripts,
and Visual Molecular Dynamics v1.9.1 analysis codes, sample commands, and example
outputs are available on GitHub at https://github.com/obrien-lab-psu/. A CHARMM
license is required to run the molecular dynamics simulation programs. Software used in
experimental data analysis is available at https://github.com/FriedLabJHU/Refoldability-
Tools.
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