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Abstract: Sensing techniques are important for solving problems of uncertainty inherent to intelligent
grasping tasks. The main goal here is to present a visual sensing system based on range imaging
technology for robot manipulation of non-rigid objects. Our proposal provides a suitable visual
perception system of complex grasping tasks to support a robot controller when other sensor systems,
such as tactile and force, are not able to obtain useful data relevant to the grasping manipulation task.
In particular, a new visual approach based on RGBD data was implemented to help a robot controller
carry out intelligent manipulation tasks with flexible objects. The proposed method supervises the
interaction between the grasped object and the robot hand in order to avoid poor contact between the
fingertips and an object when there is neither force nor pressure data. This new approach is also used
to measure changes to the shape of an object’s surfaces and so allows us to find deformations caused
by inappropriate pressure being applied by the hand’s fingers. Test was carried out for grasping
tasks involving several flexible household objects with a multi-fingered robot hand working in real
time. Our approach generates pulses from the deformation detection method and sends an event
message to the robot controller when surface deformation is detected. In comparison with other
methods, the obtained results reveal that our visual pipeline does not use deformations models of
objects and materials, as well as the approach works well both planar and 3D household objects
in real time. In addition, our method does not depend on the pose of the robot hand because the
location of the reference system is computed from a recognition process of a pattern located place at
the robot forearm. The presented experiments demonstrate that the proposed method accomplishes
a good monitoring of grasping task with several objects and different grasping configurations in
indoor environments.

Keywords: visual perception; vision algorithms for grasping; 3D-object recognition; sensing for
robot manipulation

1. Introduction

Robot grasping and intelligent manipulation in unstructured environments require the planning
of movement according to objects’ properties and robot kinematics, as is discussed in [1] and a suitable
perception of environment using sensing systems such as visual, tactile, force or combinations of
them. In addition, working with the knowledge of the model’s uncertainties can be useful when the
objects and/or their properties are unknown [2]. In the past, most of the work in robot grasping was
focused on providing movements and points to grasp. However, current methods are concerned with
adapting the gripper or robot hand to objects and the environment [3]. Bohg et al. [4] give an overview
of the methodologies and existing problems relating to object-grasp representation (local or global),
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prior-object knowledge (known and unknown) and its features (2D, 3D or multimodal information)
and the type of hand used (gripper and multi-fingered). In other works, tactile sensors were used
to provide information about an object’s properties through physical contact. Thus, Chitta et al. [5]
presented a tactile approach to classify soft and hard objects such as bottles, with or without liquids,
according to texture measurements, as well as the hardness and flexibility properties of objects.
Furthermore, Yousef et al. [6] provided a review of tactile sensing solutions based on resistive
techniques, the predominant choice for grasping objects.

Although the detection of problems such as slippage and grip force can be controlled using hand
kinematics and tactile sensors, the coordinated control among robot-hand joints and tactile sensors is
not good enough to perform grasping complex tasks for deformable objects [7]. It is recommended
to integrate other sensors that imitate human dexterity, that is, systems based on real-time visual
inspection of the task. Therefore, this research involved the implementation of a new visual sensing
system based on range imaging technology so as to increase the available sensing data and facilitate
the completion of complex manipulation tasks using visual feedback. This work is motivated by the
necessity of using other different sensors that tactile sensors for controlling the grasping process of
elastic objects. In fact, empirical experiments prove as tactile sensors often supply pressure values
close to zero in the contact points of elastic object surface when the object is being deformaded during
a task grasping. In this case, the pressure is not adequate to control the grasping process. In general,
the kinematics of robot systems and tactile feedback obtained directly from tactile sensors are both
used to perform intelligent, dexterous manipulation but it is rare to find practical work in which
visual sensors are used to check grasping tasks using robots. Nevertheless, a suitable sensing system,
such as in [8], that combines tactile, force and visual sensors, allow us to adapt the grasping task in
order to detect errors that can cause grasping failure . Furthermore, it evaluates the effectiveness
of the manipulation process by improving the grasp of deformable objects. Similarly, Li et al. [9]
proposed a controller based on visual and tactile feedback to perform robust manipulation, even in
the presence of finger slippage, although flexible objects are not considered, only rigid ones. In our
method, the physical model of the skeleton of multi-finger hand for the grasping process is estimated
from the kinematics and spatial location of the forearm. Our method does not depend on the pose
of the multi-finger hand because the location of the reference system is computed from a recognition
process of a pattern located place at the robot forearm. The presented experiments demonstrate that
the proposed method accomplishes a good monitoring of grasping tasks with several objects and
different grasping configurations in indoor environments. Additionally, the features of the objects are
changing in shape, size, surface reflectance and elasticity of the material of which they were made.
Our research focuses on checking robot-grasping tasks using 3D visual data from a RGBD camera.
Therefore, the approach presented here provides a new visual sensing system in which the grasped
non-rigid object surface is supervised to prevent problems like slippage and lack of contact among the
fingers, caused by irregular deformations of the object. The main goal of our work is to implement
a visual perception system to achieve a robust robotic manipulation system by means of object surface
analysis throughout the grasping process. Specific aspects relating to how the robot controller uses the
data generated by our visual system and how those are combined with tactile or another information
will be addressed in other works. The proposed method of 3D visual inspection for the manipulation of
flexible objects has been tested in real experiments where flexible household objects are manipulated by
a robot hand. These objects are made of different materials and have different size, shape and texture.
Our method uses colour and geometrical information to detect an object in an environment and track
its grasping, even if the object has unknown elasticity and flexibility properties. In comparison with
other approaches, our method does not use deformations models of both objects and materials and,
it also works well with both planar and 3d household objects in real time.

The paper is organized as follows: Section 2 is focused on the analysis of several related works
with visual perception for attending to robotic grasping processes. Section 3 describes the proposed
visual system for the surveillance of grasping tasks; details on the equipment and facilities used are
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presented here. Section 4 presents the specification, design and implementation of the recognition
method for detection of an object and its surface, and also presents the theoretical principles and
fundamentals for modelling grasping tasks, using the kinematics of the robot hand and the detected
object which is being manipulated. Sections 5 and 6 present the novel method for measuring the
deformation caused by pressure that occur during the grasping of flexible objects. Finally, Sections 7
and 8 describe the tests, outlines our approach and discuss the results of real grasping tasks using
three objects with different physical properties, such as size, shape, material, texture and colour as
well as reflectance properties due to the material of manufacturing. Additionally, an statistical analysis
of experiments is realised to show the behaviour of our method.

2. Related Works

In the past, visual systems were used quite successfully for the manipulation of rigid objects,
both for recognition [10] and for the location of an object [11]. This developments and applications
of intelligent robot manipulation involve methods and approaches aimed at achieving an object
classification and recognition goal. Nevertheless, 3D visual systems are combined with others
to measure objects’ shapes and the elasticity of deformable objects. We consider elasticity to be
the ability of an object to recover its normal shape after being compressed. In [12] is shown an
example of an embedded multisensor based on a CCD camera and a tactile membrane, which was
designed to determine the contact area and forces’ distribution in order to classify materials and their
deformation properties.

Furthermore, other works are focused on detecting and tracking the deformation from the fusion
of 2D images with force data [13,14]. Later, Khalil et al. [15] used stereoscopic vision to build a 3D
surface mesh from contours and colour in order to discover the deformation of non-rigid objects, and
Leeper et al. [16] used a low-cost stereo sensor mounted on the gripper to estimate grasp poses and
to choose the best one according to a cost function based on points cloud features. More recently,
Boonvisut et al. [17] proposed an algorithm for the identification of the boundaries of deformable tissues,
and to use it for both offline and online planning in robot-manipulation tasks. Moreover, Calli et al. [18]
presented a dataset to test method for manipulation tasks.

Continuing in the same line, Jia et al. [19] presented a grasping strategy for non-rigid planar
objects using just two fingers. This research assumes a linear elasticity model of the object surface.
Afterwards Lin, et al. [20] used this same idea applied to grasp and lift 3D objects measuring when
a secure grip is achieved under contact friction. Unlike both works, our proposal does not use
a deformation linear model and the detection of deformations is realised using 3D visual features
over the entire object surface not only the contact regions close to fingers. Moreover, our system
can work with nonplanar objects as 3D objects using more than two fingers; specifically, we use
a multi-finger hand [21,22]. In our work, the secure grip is achieved under a measurement control
to reach an appropriated deformation level. In line with our work, Navarro-Alarcon et al. [23,24]
proposed a vision-based deformation controller for robot manipulators. In those works, the presented
method estimated the deformation of an objects using visual-servoing to measure the Jacobian matrix
of features on the object surface. The authors used a sponge with small marks located on the surface.
In contrast, our proposal is based on the estimation of deformations to control the grasping tasks
without artificial markers and without a previous known deformation model [25]. We also test our
visual perception method with many different household objects, not only a sponge, as it was done
in [24]. Recent research that use visual perception for manipulation tasks with non-rigid are included
in works carried out by Alt et al. [26] and Sun et al. [27], although both the underlying idea and its
applicability are very different to our proposal. Thus, on the one hand, in [26] are simultaneously
combined both haptic and visual sensors for navigation and manipulation tasks. The authors used
a deformable foam road mounted on the gripper to measure visually a 1d stress function when there
was contact with deformation. On the other hand, in [27] a visual perception pipeline based on
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an active stereo robot head was implemented for autonomous flattening garments. It made a topology
analysis of each wrinkle on clothes surface in order to identify deformations.

3. Visual Surveillance System for Robot Grasping Tasks of Objects

Modern approaches based on pressure data obtained from a tactile sensor may fail in complex
grasping tasks (failure of the touch), in which the non-rigid objects change their shapes as their surfaces
are deformed due to the forces applied by the fingers of a robot hand. In this case, the tactile sensors
are often not able to obtain touch data correctly. Figure 1 shows the pressure of tactile sensors on
grasping tasks of two different non-rigid objects. Figure 1a presents the pressure evolution for the
grasping task of a brick. The pressure data retrieved from the tactile sensor are good enough due to
that the pressures are greater than 0 N{cm2 for four fingers and the values are greater than 1.5 N{cm2

for three fingers. In contrast, Figure 1b presents the pressure evolution for the grasping task of a plastic
glass. In this case the acquired pressure is not adequate. That is indicated by the fact the pressure
values are close to zero for all fingers except the thumb (0.5 N{cm2 is measured for thumb, but it is
very low).
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Figure 1. Comparison of different pressure for two real grasping tasks: (a) Pressure data allow to
control the grasping; (b) Pressure is not valid to evaluate the grasping an object.

To overcome this problem, the novelty of our approach lies in that we use a visual sensing
approach to obtain information about the object, such as shape, deformation and the interaction
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between the object and the robot hand. Therefore, our goal is to implement a visual system which
serves as a surveillance module for the grasping control when there is no available tactile data, if,
for example, the sensor is not working or fails due to its inability to measure pressure. In such scenarios,
our visual system would be able validate if there is contact between the robot finger and the object.

Considering the recent advances and availability of depth cameras such as RGBDs and the
advances of the 3D processing tools for point clouds, we have designed a strategy that considers RGBD
images as input data for the visual inspection of grasping tasks. To obtain visual data, a Microsoft
Kinect sensor is used in this work. The Kinect sensor consists of a visual camera (RGB) and a depth
sensor (an infrared projector and a camera). The Kinect sensor operates at 30 Hz and can offer images
of 640 ˆ 480 pixels but it has some weaknesses, such as problems with depth resolution and accuracy.
The depth resolution decreases quadratically with respect to the distance between the sensor and the
scene. Thus, if the camera is the world reference frame, the point spacing in the z-axis (Figure 2a) is as
large as 7 cm at the maximum range of 5 m. In addition, the error of depth measurements (or accuracy)
increases quadratically, reaching 4 cm at the maximum range of 5 m [28]. Moreover, another known
problem is the unmatched edges, which is caused by pixels near to the object’s boundaries. In this
case, wrong depth values are assigned by the Kinect sensor.
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Figure 2. Workplace: (a) Scheme of the robot hand and RGBD sensor configuration; (b) RGB image
and its point cloud associated with the robot hand and an object.

Our work assumes that the camera does not need to change its viewpoint because the robot hand
is solely moved with according to the trajectory planning and grasp quality measure. Here, the sensor
pose is static and is initially estimated according to the initial hand’s pose. It is not the objective of this
research to find the best viewpoint of the camera for grasping tasks using the robot hand. The RGBD
sensor is positioned according to previous works of other authors such as [29] in order to maximize
the visible area of the manipulated object.

The system was set up using ROS. The sensor is connected through a USB port to a computer
which works as visual data server. Therefore, the visual system is ready to communicate with other
systems such as the robot hand and tactile sensors. It should be noted that touch data from tactile
sensors are not used as inputs or feedback of our visual system (Figure 3). It is the visual system
which monitors the grasping tasks in which the tactile sensors can fail. Previously, Figure 1 has shown
an example where the tactile sensor fails.

This work does not discuss how the control system works with the information received from the
visual system, nor the readjustment of the fingers’ position nor the equilibrium during the grasping task,
Although the control system used (yellow block in Figure 3) was presented by Delgado et al. in [30],
this one implements a control system based on the kinematic model of the robot hand but without
using the physical model of the manipulated object. Another approach of implementing a control
system is presented in [8] (Chapter 2), which uses the physical model of the manipulated object.
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On the one hand, the methods for determining contact points in a grasping process depend on
whether the object is known or unknown. In the first case, fingertips contact positions are calculated
as discussed in [31]. Here, Kragic et al. presented a real-time grasping planner to compute grasp
points for known objects. To do this, is also required that the objects are detected and recognized by
comparison of points cloud of object with models. We can use a surface descriptor-based method as is
shown in our previous works [32] in order to describe the points cloud of object and to compare it with
a surface model. In the second case, as is done in this work, the object is unknown then we extract
the points cloud which represents the object located on a planar surface as a worktable by means of
filtering of points cloud of scene and Random Sample Consensus (RANSAC). Thus, the points cloud
of both object and table are separated. Afterwards, the centroid and the principal axis of points cloud
of object are computed to approximate their position and orientation. The object normal vector is built
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using its centroid and the direction of the normal vector of the worktable. This way, the robot hand
can be positioned and orientated for grasping. Later, the contact points for the thumb and middle
fingertips are estimated by calculation of the orthogonal vector which intersects to the plane formed
by the principal axis and the object normal vector.

On the other hand, the readjustment algorithm used in this work was presented in [33,34].
The algorithm receives as an input the finger joint trajectories and adapts them to the real contact
pressure in order to guarantee that undesired slippage or contact-breaking is avoided throughout the
manipulation task.

The contribution of this work is the visual system method and it is represented in the green block
in Figure 3. This block presents a scheme of our method, based on data-driven 3D visual recognition.
In particular, it shows the processing steps for the inspection of the grasping tasks where the robot
hand starts moving forward until deformation is detected by the implemented method. The method is
discussed in Sections 4–6. More specifically, our approach can be understood as a data-driven visual
surveillance method that generates control events when potential grasping problems or anomalies
are detected for the manipulated object—meaning significant deformations, slips or falls of the object
that are caused by improper manipulation. Therefore, while the control system is working with the
robot kinematics and tactile sensor, the visual system is working simultaneously, when it detects
some of those anomalies in the grasping task, it sends an event message to the control system which
determines a grasp quality measure and realizes the fingers movement planning (Figure 3). Figure 1
shows two examples were the visual system sends an event message before the control system finishes
the grasping task.

The method is designed as a tracking loop with two pipelines (chains of processing blocks).
The first one is composed by a processing block named “visual monitoring of grasping”. The second
pipeline has two blocks named “Deformation detection” and “∆-modulation”. The method is completed
when the conditional block named “Grasping evaluation” determines whether there has been a problem
or whether the grasping task is realised. At the end of the method, the tracking loop sends an event
message. This message is encapsulated as a data packet by the processing block named “Event message
generato”. The event message contains data about object deformation level and object-hand intersection
level. These processes are well explained in Sections 4–6. The remaining part of this section is focused
on providing detail on the block named “Object detection & tracking”.

3.1. Object Detection

To carry on a tracking process, it is essential to carry out an initial object detection process.
Let Im pr, g, b, dq denote the input data, the system has a point cloud P px, y, z, r, g, bq by mapping the
RGBD image from a calibration process of the visual sensor. The point cloud is partitioned into a set of
disjointed regions. One of them represents the object to be manipulated, another is the robot hand and
the rest is noise (data which are not considered). The green block of Figure 3 represents a complete
overview of the proposed visual system in which the first time that process the “object detection &
tracking” segments P into these regions. This process uses an object-recognition pipeline based on shape
retrieval and interest region detections. There are several previous works that use these approaches,
a case in point are [32,35], in which 3D objects are recognized and located on a worktable by using
shape descriptors. Others, such as Aldoma et al. in [36], presented a review of current techniques of
object recognition, comparing local and global mesh descriptors. Even though there are several works
which use data sets of object mesh models for benchmarking in shape retrieval. These studies are not
always helpful for manipulation experiments because they do not provide the physical properties
of the objects, such as material stiffness or weight and how objects can change shape while they are
being manipulated in real experiments. For this reason, our visual system (designed specifically for
manipulation) is implemented considering that objects can be deformed over time.
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The object recognition process is divided into the following stages:

1. Initialize the hand workspace
2. Get the object points
3. Select the object parts as super-voxels

The first stage initializes the hand workspace using the input data of two sets of sensors. They are
internal sensors in the joints of the robot S1 pE, tq and RGBD sensor S2 pE, tq. The goal of this stage is
to obtain points in P ptq belonging to a points cloud that could potentially be part of the object P˚ ptq
(Figure 4a,b). Both sensors are dependent on an environment E and time t as:

S1 pE, tq “ S1 pQ ptqq (1)

where Q “ r f1 , .. , fNs is the pose for both the robot’s fingertips and palm, being fi “ pq1 , .., qMq,
which defines the joint parameters for each finger and the palm. In addition, S2 pE, tq is defined as:

S2 pE, tq “ S2 pP ptqq (2)

where P ptq is a retrieved point cloud from the RGBD sensor at time t. From now on, P means P ptq
for simplicity. Likewise, they work cooperatively, combining data to obtain the pose of a grasped
object in the environment, which means that S1 helps to S2 to determine region P˚ from P. To do
this, three sequential sub-processes are used: building the hand area; erasing noise; and sampling
data. Firstly, a crop area placed in the geometric centre of the fingertips and palm kinematics is set;
besides the radius of this area, this is two times the minimum distance between a fingertip and the
palm position. Then, all points outside the crop area are removed. Secondly, the border, shadow and
veil points are erased from the survivors’ points in the previous sub-process. In addition, the points
around the position of the robot-hand links are erased. Thirdly, the resulting set of points is sampled
using a voxelized strategy, with a voxel size of 2% of the minimum distance between a fingertip and
the palm position.
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The second stage obtains object points by means of a voxel cloud-connectivity segmentation
method. This is used to determine better the object boundaries, as in Papon et al. [37]. Voxel Cloud
Connectivity Segmentation (VCCS) is a variation of k-means clustering, with two important constraints:
the seeding of super-voxel clusters is achieved by partitioning the 3D space and the iterative clustering
algorithm enforces the strict spatial connectivity of occupied voxels. In short, VCCS efficiently generates
and filters seeds according to how the neighbouring voxels are calculated. Each super-voxel cluster
is represented with colours in Figure 4b. Finally, an iterative clustering algorithm enforces spatial
connectivity. The statistical similarity test used here is Fisher’s test [38] in contrast with [37].

The third stage details the selection of super-voxels or clusters that belong to the manipulated
object. This stage involves three sub-processes: selecting the seed cluster; iterating them via the
neighbouring cluster; and merging the connected clusters. Firstly, the nearest cluster to the geometrical
centre of the fingertips’ set and palm kinematics is selected as the seed cluster. Secondly, the remaining
clusters are iterated to find newly connected clusters. Each new cluster is then labelled in line with
how it should be merged. Thirdly, the labelled clusters are merged into the seed cluster, recovering the
point cloud PO which represents the object from P˚ (Figure 4d).

Accuracy is increased in the segmentation process PO from P˚ due to the fact that S1 helps S2

to determine the region P˚ from P, instead of determining PO directly from P, as it would be done
without the known kinematics of the robot hand. The reference frame for the robot kinematics is found
using marker boards, as in [39]. This is done because the robot pose is unknown with respect to the
world reference frame located in the RGBD sensor. Thus, once the forearm is located, we are able to
obtain the pose of the robot’s fingertips and its palm as:

CTfi
“ CTMA ˆ

MATFA ˆ
FATfi

(3)

where fi is the frame of a robot’s fingertips or palm, C is the camera frame, MA is the marker board
frame and FA is the forearm frame. If jTi denotes the transformation of the frame i with respect to
the frame j, CTMA is the transformation of the MA w.r.t. the C, MATFA is the the FA transformation
with regards to the MA and the FATfi

is the transformation of a fi with respect to the FA. Thus, the

transformation of each robot’s fingertips or palm frame w.r.t. the camera frame CTfi
is given by the

multiplication of these homogeneous transformations. Each homogeneous transformation represent
rotations and translations.

3.2. Tracking Object Surface

The used tracking process is inspired by Fox’s works [40,41]. The author presents a statistical
approach in order to increase the efficiency of particle filters by adapting the size of sample sets
on-the-fly. The key idea of the author in these works is to bound the approximation error introduced
by the sample-based representation of the particle filter. The measure used to approximate the error
was Kullback-Leibler distance. This approach chooses a small number of samples if the density is
focused on a small part of the state space. In another case, if the state uncertainty is high, it chooses
a large number of samples.

Unfortunately, this approach presents undesirable characteristics to track points of object surface
while this object is being manipulated; our work proposes to use the change in the number of sample
as a tracking driver. This is that the tracked target (the set of points on object surface) is replaced when
the number of samples changes, significantly. The idea is that the particle filter tracker is efficiency
tracking when the number of particles is small. Thereby, the goal is to find when the number of these
particles has dramatically grown up. Consequently, the method perceives that the object surface is
being changed. Thus, the method detects this change on object surface by mean of the statistical
relationship among the number of particles in the sample set over time as:

Γ ptq “ µ ptq ` σ ptq , µ ptq “
řt

i“1 γpiq
t , σ ptq “

b

řt
i“1pγpiq´µptqq2

t
(4)
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where t is the time and γ ptq is the number of particles in the sample set at time t. µ ptq is the mean value
and σ ptq is the standard deviation of the number of particles from t “ 0 until time t ą 0. Thus Γ ptq is
the statistical relationship which determines when the target (the point cloud of surface object) must
be replaced by the point cloud at time t´ 1. This approach sets up PO pt´ 1q as a new target when
Γ pt´ 1q ă γ ptq. The efficiency of this strategy is dependent on how the method determines when the
change on surface is significantly large to replace the tracked target with another point cloud more
recent (at time t´ 1).

4. Visual Monitoring of Grasping

4.1. Modelling the Grasping Task like a Regional Intersection

One way to monitor and supervise the grasping tasks is to measure the interaction between items
in the environment, the robot hand and a manipulated object. Our proposal is based on the visual
relationship between the regions H ptq and O ptq. Figure 5 illustrates three cases where this spatial
information provides an interaction relationship between an object and the hand. At first, the object is
not caught and the hand is not positioned on the object. At this stage, the fingers have not yet started
to move and the tactile pressure should be zero (Figure 5a). When the hand is positioned according to
the “Grasp planner” and “Finger trajectory planne” (Figure 3), the fingers are moved and some of them
can press the object but it is not enough to grasp and lift the object without sliding (Figure 5b). Later, at
a given time, the contact and appropriate touch of the fingertips allow the robot hand to pick up the
object correctly, or not. That is, sometimes, if the object has flexible properties, then it can change its
position due to the finger pressure, causing a sliding of the object among the fingers (Figure 5c).
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4.2. Computing the Intersection between the Robot Hand and the Object

The proposed method of “visual monitoring of grasping” supervises the grasping process and is
based on an estimation of the intersection region. In any real grasping task (Figure 6a), the manipulated
flexible objects O ptq change their volume and shape in relation to time t. Likewise, the robot hand
H ptq changes its pose according to the kinematics. From now on to simplify, H means H ptq and O
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means O ptq. Both the object and the hand are represented as 3D regions in this work. On the one
hand, O is calculated using a segmentation process from the point cloud P of the scene acquired by the
Kinect sensor (Figure 6), as discussed in Section 3. On the other hand, H is given by the hand pose and
calculated from the kinematics of the robot (Figure 6a). We compute the 3D convex hull of the set of
points of the object surface for O. Furthermore, we calculate a 3D virtual bounding hull that fits the
points of fingertips and the palm area for the representation of H. The convex hull of a set of points is
the smallest area which contains those points and its volume is calculated as:

"

ÿ|S|

i“1
αi pi

ˇ

ˇ

ˇ

ˇ

p@i : αi ě 0q ^
ÿ|S|

i“1
αi “ 1

*

(5)

where S is either H or O set and pi is a point of P˚. αi is the weight assigned to pi in such a way that
is a non-negative value if the point belongs to S. Thus, on the one hand, we have for each value αH

i
when S “ H that:

αH
i ppiq “

#

1
|H| , pi P Qˆ CTfi

0, other case
(6)

where pi P P˚ is the point associated to αi, |H| is the number of points in H and Qˆ CTfi
is the set of

points indicating the fingertip poses. On the other hand, each value αO
i when S “ O is computed as:

αO
i ppiq “

#

1
|O| , pi P PO

0, other case
(7)

The interaction between the robot hand and the object is estimated by the relationship between the
object and the robot hand, and it is computed by the comparison of the 3D regions H and O. In order
to do this, we obtain the overlap between the 3D convex hull, object, and the virtual bounding hull,
robot hand (Figure 6b). This is done as follows:

I “ H XO “

"

ÿ|I|

i“1
αH

i αO
i pi

ˇ

ˇ

ˇ

ˇ

´

@i : αH
i αO

i ě 0
¯

^
ÿ|S|

i“1
αH

i αO
i “ 1

*

(8)

where I is the intersection volume between H and O. Therefore point pi P I when at the same time
pi P H and pi P O. Moreover, the hand grasps the object when the intersection is greater than I ptq “ O
and smaller than I ptq “ min pH ptq , O ptqq. Note that, I ptq is the generalization of I for the time t.
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Figure 6. Visualization of the main steps of the visual monitoring algorithm for a grasped object scene:
(a) point cloud of the scene and robot kinematics; (b) result of the detection of 3D regions of both the
robot hand and the object.

Finally, the grasping task is evaluated by the “Grasp visual evaluation” (Figure 3). This conditional
block determines whether the visual system must finish and it generates an event message by “Event
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message generator” block or continues with the supervision of grasping task. Thus, when I ptq “ 0, and
the object has fallen from the robot hand to the ground, “Grasp visual evaluation” finishes the tracking
loop of the visual system and “Event message generator” block creates an event message encapsulated
as a packet with the connect values of intersection and deformation. Hence this event message is sent
to the control system.

5. Detection of Deformations by Means of Surface Curvatures

A novel contribution of this work is its presentation of an approach for the detection of
deformation in flexible objects. The method “detection of deformations” is based on the general idea
presented in [42], where the authors compute surface gradients for the modelling of surfaces as
curvature levels, although the objective is much more ambitious in this work. Here, the issue goes
further than a specific implementation of that general idea, insofar as we present a new method
for detecting when a deformation is occurring in real time by means of differential deformation
estimation among time points. This is done by analysing the curvatures of the object’s surface through
a timing sequence.

The aim is to know whether the flexible object is grasped properly. That is to say, the object is
considered it has been well grasped if the deformation distribution measured as a surface variation
undergoes meaningful changes in connecting with a reference frame. The ideal situation is given when
the distribution of surface variation is constant throughout the grasping task. The comparison process
between the surface at various time points is conducted by comparing variations in the surface in each
point of a points cloud which contains the object.

The method locally analyses the points cloud which represents the object surface for extracting
the surface variation as curvature values cpi at each point of the surface PO “

 

pi P R3(. To analyse the
surface variation at point pi, the eigenvalues and the eigenvector of covariance CP in a neighbourhood
environment with a radius r matrix are extracted as in [42]. CP is computed as:

CP “ PPT “

»

—

–

pi1 ´ p
¨ ¨ ¨

pik ´ p

fi

ffi

fl

»

—

–

pi1 ´ p
¨ ¨ ¨

pik ´ p

fi

ffi

fl

T

(9)

where each pij is a point of the neighbourhood environment Nj and p is the centroid of the path.
k defines the number of points Nj.

Besides, the computation of eigenvalues λj and eigenvectors vj of CP is done by applying singular
value decomposition (SVD) as:

CP¨ vj “ λj¨ vj (10)

Once the eigenvalues are computed, the surface variation (curvature) is calculated as:

cpi “
λ0

λ0 ` λ1 ` λ2
(11)

where λ0 ď λ1 ď λ2 are the eigenvalues associated to the eigenvectors of a covariance matrix. Then, the
points with similar curvature values cpi are clustered together in level curves. These level curves are
defined as a function SP : R3 Ñ R , as follows:

SP “
!

px, y, zq P R3 : Φ px, y, zq “ l
)

(12)

where l is a constant value and represents a level curve on the surface. The control rule used to
determine whether a specific point pi belongs to a specific level curve li is:

"

pi P lk | k “ curvature ppiq ˆ
|P˚|
|P|

*

(13)
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Consequently, each of the level curves is computed as a cluster, and it is represented with
the same colour when the points of surface have a similar value of the curvature (Figure 6a).
Therefore, two significant curves are highlighted, such as the level of maximum curvature (displayed
in dark blue) and the level of boundary curvature (in yellow), which represents all points with the
minimum curvature, without considering the zero value (displayed in red is the region with a value of
zero). If the curvature is zero, then there is no deformation and all points of the surface lie on a flat.

Figure 7 represents PO and its level curves SP at two different time t; in this case, t “ 0 and
t “ 53. It is later obtained via a signal which adjusts the original signature of the curvature distribution
for PO. This is done by using a least-squares fitting of the curvature values by means of a quadratic
function g p f , xq that allows the method to obtain a more representative signature of the curvature
distribution as:

g p f , xq “ w1xn `w2xn´1 ` . . .`wnx`wn`1 “
ÿn

k“0
wk`1xn´k – f pxq (14)

where n is the range of the quadratic function and wn is a coefficient associated to the polynomial term
x. Figure 7b represents SP and its adjust g pSP, iq with a continuous curve line (the colour is orange in
the first case, and blue in the second case) at two different time.
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6. ∆-Modulation and Grasping Evaluation

The detection of deformation is a huge problem that cannot be tackled without regard to the
time variable t, i.e., the signature of the curvature distribution of an object, as is shown in Figure 7,
gives information regarding its surface shape but not its deformation. Therefore, in order to obtain
deformation data, the way as changes the surface shape with respect to the time was studied using our
method of ‘∆-modulation. Figure 7 is an example of how the signature of curvature distribution can
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be retrieved with regards to time, by comparing the curvature values between different time points.
Figure 7, especially, shows the curvature and its ∆-modulation for the point clouds shown in Figure 6.

The method of ∆-modulation used to encode the signature of curvature distribution with regards
to t in concrete is a sequence with two time values, for reducing its complexity. This method
provides advantages for the comparison of signals over time. In ∆-modulation, the input
signature is approximated by a step function where each sampling interval α increases or decreases
one quantization level δ. Figure 7a,b both show an example in which the step function is overlapped
with the original signature with regard to time. The main feature of the step function is that its
behaviour is binary: at every α, the function moves up or down by the amount δ. Therefore, the
∆-modulation output can be represented by just one bit for each sample, and is represented in
Figure 7a,b as a binary function. Consequently, ∆-modulation obtains a bit chain that approximates
the derivative of the original signature. It is generated as 1 if the step function increases or 0 if the step
function decreases.

Once ∆-modulation has encoded the signature of a curvature’s distribution in both times, the
outputs are compared by a subtraction logic operation as is shown in Figure 8c. A simple interpretation
of this operation result is as follows:

‚ Case 1: The object is not deformed whether the output is always 0.
‚ Case 2: It is considered that the object is deformed.
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A disadvantage of this method is that it is dependent on the type of fitting used (here, a quadratic
function), which could result in an over-fitting or under-fitting problem and then the function would
not be sufficiently representative. To overcome this problem, we simplify the signature, making
a histogram into a generating function that represents the signature of the curvature distribution in
a simpler way that before (Figure 9a,b). The use of a histogram makes this method adjustable in terms
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of its sensitiveness. For instance, if we want a more reactive approach for deformation detection, it will
be better the use of many classes. Therefore, we use this new representation of the signature, named
curvature histogram HP in order to apply the “∆-modulation” method and so we can easily acquire
a derivative function which is comparable itself between two time points (Figure 9c,d). The binary
comparison of both derivative functions is a new pulse function, as shown in Figure 9e,f. This signal is
created by adding 0 in the context of “case 1”, or 1 in the context of “case 0”.

Furthermore, the proposed method is able to determine when the manipulated object is being
deformed, implementing it as a Finite-State Machine (FSM). Figure 10 represents this implementation.
The FSM starts in the “undeformed” state and remains in this state until it receives the value “1” from
the deformation signal; then the FSM changes to the state called “on hold”. Once in the “on hold”
state, the FSM returns to the previous state is named “undeformed”, or changes to another state called
“deformed”, depending on whether the deformation signal represents a low or high level, respectively.
This middle state is used to prevent the method from detecting false positives (a value of “1” that
should be “0”) according to the deformation signal.
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Figure 9. (a) The histograms of the curvature signatures of a point cloud, which represents an object,
at two time points; (b) The signal of the histogram; (c,d) The delta modulation output and its
approximation staircase signal for the signal of the histogram in both cases; (e) The result of subtracting
both modulated signals; (f) The deformation signal measured as a time signal in a grasping task.
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Figure 10. The Finite-State Machine for identifying from the deformation signal whether the object 
has been already deformed. 

Aside from the evaluation of grasping by measuring of intersection ܫ and deformation “Grasp 
visual evaluation” (Figure 3) is a conditional block to check which is the state of the FSM. Thus, “Grasp 
visual evaluation” finishes the tracking loop of the visual system and “Event message generator” block 
creates an event message, as it is commented in Section 4, if FSM is on “deformed” state. 

7. Experiments and Results 

In this section, we show the capabilities and effectiveness of our visual method. This method 
combines 3D visual processing from RGBD and the dexterous Shadow hand kinematics in order to 
accomplish the proper grasping of non-rigid objects. Our method implements the grasp adjustment 
from vision-based switching controller. In each step, the algorithm checks the interaction between 
the robot hand and the grasped object using visual information. The ability of our visual perception 
algorithm allows the robot system to correct the uncertainty/error caused by the lack of tactile/force 
data, or bad measurements when the grasped object has flexibility properties, such as in objects made 
from plastic polymers. 

The next four subsections describe several relevant grasping experiments using flexible objects 
that were made from different materials, and that also have different shapes, sizes, textures and 
colours: a sponge, a brick, a plastic glass and a shoe insole. Each of those objects presents a challenge 
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Figure 10. The Finite-State Machine for identifying from the deformation signal whether the object has
been already deformed.

Aside from the evaluation of grasping by measuring of intersection I and deformation “Grasp
visual evaluation” (Figure 3) is a conditional block to check which is the state of the FSM. Thus, “Grasp
visual evaluation” finishes the tracking loop of the visual system and “Event message generator” block
creates an event message, as it is commented in Section 4, if FSM is on “deformed” state.

7. Experiments and Results

In this section, we show the capabilities and effectiveness of our visual method. This method
combines 3D visual processing from RGBD and the dexterous Shadow hand kinematics in order to
accomplish the proper grasping of non-rigid objects. Our method implements the grasp adjustment
from vision-based switching controller. In each step, the algorithm checks the interaction between
the robot hand and the grasped object using visual information. The ability of our visual perception
algorithm allows the robot system to correct the uncertainty/error caused by the lack of tactile/force
data, or bad measurements when the grasped object has flexibility properties, such as in objects made
from plastic polymers.

The next four subsections describe several relevant grasping experiments using flexible objects
that were made from different materials, and that also have different shapes, sizes, textures and colours:
a sponge, a brick, a plastic glass and a shoe insole. Each of those objects presents a challenge for the
method. Some relevant frames of the manipulation task showing visual information computed by our
system are presented for three of them, such as the result of the detected object tracker, the curvature
data and the volume evolutions.

7.1. Experiment 1: Sponge

The sponge is ideal for testing the grasping tasks of flexible objects because it has a homogeneous
distribution of elasticity and stiffness on its surface. These properties generate high levels of
deformation close to attachment points where the fingers are located, but only slight deformations in
the object’s centre (Figure 11a). For this reason, the sponge is rapidly deformed close to the fingertips at
the beginning of the grasping process, although the deformation velocity tends to decrease quickly over
time. Additionally, the observed deformation is regular and incremental regarding time (Figure 11b).
The sponge’s homogeneous colour and regular geometry help the “object detection” module of our
approach to extract the object’s region from the points cloud of the scene. It should be noted that the
sponge’s size decreases gradually due to the properties mentioned above.

This test is a points cloud sequence of a grasping movement with 250 frames. The fingers of the
robot hand do not move in the first 25 frames. The following frames show a sudden, sharp hand
movement; this can be seen between Frames 26–115. Then, from frame 116 until the end, the hand
movement is not considered relevant to this experiment because the deformation can be detected in
the previous frames.
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Figure 11. A sequence of video frames showing the grasping of a sponge: (a) The points cloud of the 
scene and the tracking process in the object’s detection; (b) A curvature map to measure the 
deformation level of the object; (c) The intersection for measuring the visual contact between the robot 
hand and object. 

On the one hand, Figure 11a shows the tracking of the detected object. In particular, it shows 
how the target model of the sponge evolves dynamically during the deformation, fitting and tracking 
the object while its size is changing as a result of the contact force. On the other hand, Figure 11b 
shows the traces of the curvature map in which the regions with low curvature levels slowly 
disappear, but, simultaneously, the deformation regions close to the fingers indicate that the 
curvature levels are constant from frame 38 onwards. Additionally, Figure 11c shows the decrease in 
both the region of the hand and the object estimated as a hull. 

7.2. Experiment 2: Brick 

In contrast with the sponge’s features, the brick’s features are not homogeneous. The brick is 
made of several carton caps and their number, shape and structure determine the level of the brick’s 

Figure 11. A sequence of video frames showing the grasping of a sponge: (a) The points cloud of
the scene and the tracking process in the object’s detection; (b) A curvature map to measure the
deformation level of the object; (c) The intersection for measuring the visual contact between the robot
hand and object.

On the one hand, Figure 11a shows the tracking of the detected object. In particular, it shows
how the target model of the sponge evolves dynamically during the deformation, fitting and tracking
the object while its size is changing as a result of the contact force. On the other hand, Figure 11b
shows the traces of the curvature map in which the regions with low curvature levels slowly disappear,
but, simultaneously, the deformation regions close to the fingers indicate that the curvature levels are
constant from frame 38 onwards. Additionally, Figure 11c shows the decrease in both the region of the
hand and the object estimated as a hull.

7.2. Experiment 2: Brick

In contrast with the sponge’s features, the brick’s features are not homogeneous. The brick is
made of several carton caps and their number, shape and structure determine the level of the brick’s
elasticity, flexibility and stiffness. The most rigid points of its structure are its edges and the least rigid
ones are the centre of the sides. These properties generate irregular deformation, limiting the spread of
deformations to the brick’s edges (Figure 12b).
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We have chosen a brick because it is a very common household object and has been used widely 
in recognition experiments by other researchers in the field. A brick is also usually painted with 
serigraphs of different colours. Its colour is not homogeneous and this fact entails more complexity 
and a new challenge for the object’s recognition and the tracking process (Figure 12a). 

As above, the test includes 250 frames; however, the robot is motionless in the first 40 frames 
and it moves between Frames 41 and 60, in which it is possible to determine the brick’s deformation 
level and the interaction between the hand and the brick (Figure 12b,c). The other frames do not 
provide interesting information for the surveillance of this grasping task. 

Figure 12. Some frames from a video sequence depicting a brick: (a) The points cloud of the scene and
the tracking process in the object’s detection; (b) A curvature map to measure the deformation level
of the brick’s surface; (c) The intersection to measure the visual contact between the robot hand and
the object.

We have chosen a brick because it is a very common household object and has been used widely
in recognition experiments by other researchers in the field. A brick is also usually painted with
serigraphs of different colours. Its colour is not homogeneous and this fact entails more complexity
and a new challenge for the object’s recognition and the tracking process (Figure 12a).

As above, the test includes 250 frames; however, the robot is motionless in the first 40 frames and
it moves between Frames 41 and 60, in which it is possible to determine the brick’s deformation level
and the interaction between the hand and the brick (Figure 12b,c). The other frames do not provide
interesting information for the surveillance of this grasping task.

Figure 12a highlights the small amount of variability in the frames; this fact indicates the
robustness of the object tracker. Besides this, Figure 12b shows slight variations of deformation
in the first few frames but remains almost constant after the deformation. Additionally, the intersection
changes only a little because of the brick’s rigidity (Figure 12c).
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7.3. Experiment 3: Plastic Glasses

This experiment has been designed to show the behaviour of our approach when using another
household object, such as a plastic glass. Its structure and manufacturing materials define new elastic
and flexibility properties compared with those of the objects above. In particular, the grasping tasks
cause irregular deformations of the glass. Its features of a homogeneous colour and simple geometry
expedite the creation of a vision system for suitable recognition. As our aim is not to present new
techniques for object recognition, we have always used objects that do not have complex shapes
and many colours. In this case, the glass allows the vision system to check the behaviour of the
newly implemented methods when the object size is smaller than a sponge or brick, and is made of
another material.

The test also has 250 frames but, here, the first 18 frames show the robot hand when it is motionless,
frames 19 to 38 show the robot making a little movement and from here until frame 133, the fingers
make a grasping movement (Figure 13). As in previous experiments, the rest of the frames do not
supply new data of interest for the detection of deformation and the control of grasping movements.
In this experiment, little variability in the tracker’s evolution is observed in Figure 13a, in contrast with
a great variability in the curvature map, shown in Figure 12b.
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7.4. Experiment 4: Shoe Insole

The last experiment was carried out in a different environment with a different ambient lighting.
In contrast to the three previous experiments, here, both robot hand and RGBD sensor are mounted at
the end of industrial robot arms (Figure 14a).
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Figure 14. Some frames of a video sequence of a shoe insole: (a) An overview of the visual system 
working in a new workspace; (b) The points cloud of the scene and the tracking process in the object’s 
detection; (c) A curvature map to measure the deformation level of the glass’s surface; (d) The 
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Then, the recognition process of search a marker board is no longer necessary since The fingers 
pose are calculated from the spatial location of the industrial robot arm which is equipped with de 
RGBD sensor as: 
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Figure 14. Some frames of a video sequence of a shoe insole: (a) An overview of the visual system
working in a new workspace; (b) The points cloud of the scene and the tracking process in the
object’s detection; (c) A curvature map to measure the deformation level of the glass’s surface;
(d) The intersection to measure the visual contact between the robot hand and the object.

Then, the recognition process of search a marker board is no longer necessary since The fingers
pose are calculated from the spatial location of the industrial robot arm which is equipped with de
RGBD sensor as:

CTfi
“ CTR ˆ

RTE ˆ
ETFA ˆ

FATfi
(15)

where R is the robot frame located at its base and E is the effector-robot. CTR ˆ
RTE are the

transformation of the robot frame with respect to the camera and the transformation of the
effector-robot with respect to the robot frame, respectively.

This experiment (Figure 14b) has 250 frames as above experiments. By comparison with previous
Experiments 6.1–6.3, the main challenge of this experiment is to prove that our visual system works
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when a scenario is different. Here, hand-robot is mounted at the end of industrial robot, the ambient
lighting has more intensity, the pose of camera has also changed and the object is another.

8. Discussion and Analysis of the Results

The previous experiments, shown in Figures 11–13 were analysed to determine the main capability
of how well our visual monitoring strategy works in discovering deformations and determining a good
grasping motion. This goal was achieved by the two new methods presented here. First, the proposed
method of “detection deformation” with “∆-modulation” is able to measure deformations with regards
to time, from RGBD data using a curvature distribution. The second method of “visual monitoring of
grasping”, based on the intersection of regions, is used to determine whether an object is being correctly
grasped, with the absence of contact between the robot hand and the object. The results of this analysis
are shown in Figure 15.
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For each experiment, as it is noted above, the results of the visual monitoring approach are shown
in the first row of the figure. The charts show the relationship between the H ptq and O ptq volumes,
as well as I ptq and O ptq ´ I ptq. It is clear that H ptq tends to decrease due to the hand’s movement.
This is a typical case of a grasping task in which the robot hand is closed in order to wrap around
and grip an object. In contrast, O ptq does not follow that same trend. For example, in the case of the
sponge, its volume does not change much. This fact is due because the area of the object located close
to the fingers is compressed and so the other parts located further away are expanding. Furthermore,
these charts show the grasp-monitoring results. Thereby, if the red dashed lines I ptq tend towards
zero, then the hand is losing its grip on the object. Consequently, O ptq ´ I ptq tending towards O ptq
means the same thing. Apart from that result, the second row of the figure shows how the average of
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the curvature distribution changes over time. These curves show the relationship between the average
of the curvature distribution at the initial time and the rest of time t, ensuring the consistency of the
results shown in the third row of Figure 15.

Moreover, the results of our method “deformation detection” with “∆-modulation” are shown in the
third row of Figure 15. The three plots present a view of how the deformation signature evolves in
connection with H ptq, i.e., how the object is deformed while the hand is working. These results are used
to analyse the sensitivity, specificity and accuracy (Table 1) of our approach for detecting deformations
by using the hand’s movement. Three sequences for each object (nine tests) with 250 frames each one
was used to carry out this study.

Table 1. Information retrieved from the charts of Figure 15 for 3 tests of each object were carried out
with different hand poses.

Experiment Sensitivity 1 Average Specificity 2 Average Accuracy 3 Average

Tests 1–3: Sponge 0.7750 1 0.8286
Tests 4–6: Brick 0.8333 1 0.8889

Tests 7–9: Plastic glass 0.8837 0.7160 0.7742
1 Sensitivity measures the proportion of positives that are correctly identified as such; 2 Specificity measures the
proportion of negatives that are correctly identified as such; 3 Accuracy is the level of measurement that yields
true and consistent results.

The three statistical features give information about the behaviours of our method. The sensitivity
measures the proportion of times that the visual system has determined correctly that the object is
deformed. The sensitivity is computed as:

sensitivity “
TP
P
“

TP
TP` FN

(16)

where P is the number of times that the system detects a deformation, in contrast, N is the number
of times that the system does not detect deformation.Then TP is the number of times that the system
succeeds about deformation and FP is the number of times that the system fails detecting deformations.
Similarly, TN is the number of times that the visual system succeeds when this determines if the
object is not deformed and FN is the times that the visual system confuses an undeformed object with
a deformed object. Using this relation, the specificity is defined as:

speci f icity “
TN
N

“
TN

FP` TN
(17)

In contrast with the sensitivity, specificity measures the proportion of times that the visual system
has determined correctly that the object is not deformed. Also, the accuracy is calculated in this
work as:

accuracy “
TP` TN

P` N
(18)

Ideally, the behaviour of the deformation signal in these experiments should be like a step function
with just one rising edge, since the robot hand makes only one grasping movement. This rising edge
would have to occur in the moment at which the hand starts to grasp the object and its H ptq starts to
change. Hence “1” values before the ideal rising edge are considered to be false positive “0” values;
after that, they are considered to be false negative ones.

9. Conclusions

The use of visual data in grasping tasks and intelligent robot manipulation is still an emerging
topic. In the past, force and tactile sensors have often been used for these tasks without considering
visual information. Although there are some approaches that use some visual data, they were just
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designed to recognize the object to be grasped or manipulated but never to check or supervise the task
during the grasping process in order to detect when deformations occurred, or when there was a loss
of contact if it was caused by displacement of the object within the hand. In this work, the experiments
focused on 3D sensors, such as RGBD, combined with a multi-fingered robot hand, without considering
tactile data from another kind of sensor. Furthermore, there are still some challenges remaining when
the grasping tasks are directed to solid objects as much as to elastic ones.

The proposed approach is motivated by the need to develop new strategies to solve problems
throughout the grasping tasks and to supply robustness. Thus, this paper presents a novel sensorized
approach in order to carry out robot-hand manipulation of an unmarked object whose flexibility
properties are unknown. This new algorithm is based on geometric information of the object and the
curvature variations on its surface, and it is used to procure suitable grasping motions even when the
object is being deformed. Using visual data with the help of robot-hand kinematics, this new approach
allows us to check when a deformation is being caused by the multi-fingered robot and whether there
is a lack of contact between the hand and object from a visual sensing point of view. The experiments
show the behaviour of the methods in several grasping tasks in which the object’s deformation can
be measured using a visual sensor. In the future, our approach could be combined with a hybrid
tactile/visual control system for a reactive adjustment of pressure and the contact of fingers, whenever
tactile data are not adequate for the manipulation process.
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