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Abstract: This aim of this study was to find effective spectral bands for the early detection of oral
cancer. The spectral images in different bands were acquired using a self-made portable light-emitting
diode (LED)-induced autofluorescence multispectral imager equipped with 365 and 405 nm excitation
LEDs, emission filters with center wavelengths of 470, 505, 525, 532, 550, 595, 632, 635, and 695 nm,
and a color image sensor. The spectral images of 218 healthy points in 62 healthy participants and
218 tumor points in 62 patients were collected in the ex vivo trials at China Medical University Hospital.
These ex vivo trials were similar to in vivo because the spectral images of anatomical specimens were
immediately acquired after the on-site tumor resection. The spectral images associated with red,
blue, and green filters correlated with and without nine emission filters were quantized by four
computing method, including summated intensity, the highest number of the intensity level, entropy,
and fractional dimension. The combination of four computing methods, two excitation light sources
with two intensities, and 30 spectral bands in three experiments formed 264 classifiers. The quantized
data in each classifier was divided into two groups: one was the training group optimizing the
threshold of the quantized data, and the other was validating group tested under this optimized
threshold. The sensitivity, specificity, and accuracy of each classifier were derived from these tests.
To identify the influential spectral bands based on the area under the region and the testing results,
a single-layer network learning process was used. This was compared to conventional rules-based
approaches to show its superior and faster performance. Consequently, four emission filters with the
center wavelengths of 470, 505, 532, and 550 nm were selected by an AI-based method and verified
using a rule-based approach. The sensitivities of six classifiers using these emission filters were more
significant than 90%. The average sensitivity of these was about 96.15%, the average specificity was
approximately 69.55%, and the average accuracy was about 82.85%.

Keywords: AI-based band selection; rule-based band selection; oral squamous cell carcinoma; LED
induced autofluorescence; multispectral imager

1. Introduction

Oral cancer has become a severe health problem in many developing and developed
countries. In addition to the economic burden of patients and their families, related medical
care has been a central issue of national health. According to the World Health Organi-
zation (WHO), 657,000 new cases of oral cancer are diagnosed each year, and more than
330,000 deaths occur due to oral cancer [1]. In Taiwan, oral cancer is ranked as the fifth
leading cause of death among common cancers. About 7000 new cases and 3000 deaths of
oral cancer occur in Taiwan each year [2]. The incidence rate and mortality rate in Taiwan
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ranked first and second, respectively, compared with 35 other countries in the OECD.
Patients suffering from oral cancer normally have habits of smoking and/or betel-nut
chewing in Taiwan and Southeast Asia [3–5].

Fluorophore, which is the intermediate product of heme biosynthesis, generates
fluorescence after it absorbs a specific excitation light; this phenomenon is called autofluo-
rescence. The fluorophores in human tissue include flavins adenine dinucleotide (FAD),
nicotinamide adenine dinucleotide (NADH), and structural protein of collagen, elastin, and
keratin. FAD has autofluorescence in the green spectrum between 510 and 570 nm; NADH
has autofluorescence in the blue spectrum between 450 and 490 nm; and protoporphyrin
has autofluorescence in the red spectrum between 620 and 640 nm [6]. The concentrations
of NADH and FAD in tumor tissue were smaller than that of normal tissue because tumor
tissue might have higher aerobic metal metabolic activity than normal tissue [7]. This might
result in lower intensity of blue and green autofluorescence in tumor tissue compared to
that of normal tissue. Structural proteins are considered to make a smaller contribution
to fluorescent emission in tumor tissue compared to that of normal tissue because the
thickness of the epithelial layer in premalignant and malignant tissues can be larger than
that of normal tissue [8,9]. Protoporphyrin may vary with the carcinoma progression;
however, it also varies with the number of bacteria on the mucosa [10].

Optical spectroscopy has customarily been used to determine the specified bands
for identifying abnormal tissue. Gillenwater et al. [11] found that the fluorescence in-
tensity of abnormal oral tissue significantly decreased in the blue spectrum between 455
and 490 nm compared to that of normal oral tissue. Betz et al. [12] indicated that the
fluorescence intensity of malignant mucosa significantly decreased in the green region
at 540 and 575 nm compared to that of normal mucosa. Müller et al. [13] demonstrated
that the autofluorescent change of NADH and collagen has potential for cancer diagno-
sis. Majumder et al. [14] measured the spectrum of autofluorescence in squamous cell
carcinoma excited by a nitrogen laser, and the accuracy of classifying the carcinoma from
the normal squamous cell was over 85% based on total principal component regression.
Schwarz et al. reported that the fluorescent spectrum of different depths in oral tissue
could enhance the detection of optical changes associated with premalignant because the
collagen in the underlying stroma might change with the progression of malignant tumor
tissue [15]. Mallia et al. [16] indicated that the ratio of fluorescent intensity at 500 nm to
that at 645, 705, and 685 nm could discriminate hyperplasia from dysplastic and normal
tissues. In addition to optical spectroscopy, hyperspectral imaging systems (HIS) can
measure not only the spatial distribution of the reflectance or transmittance but also the
spectral distribution in the specified spectrum range. The hyperspectral imaging system
can measure over 100 bands of the spectra. In recent decades, the system has been used in
many types of research, including remote sensing, food production, medical detection,
and agriculture applications. In a previous study, we developed the embedded relay
lens microscopic hyperspectral imaging system (ERL-MHSI) and employed the system in
cancer-related research [17]. Depending on the spatial resolution and spectral resolution of
the ERL-MHSI system, the data can be analyzed with hyperspectral morphological images.
This is a useful tool for research but may not be appropriate for the quick screening of
oral cancer detection devices, because the HIS usually requires minutes to scan a target to
capture the spatial and spectral data, and the volume of the HIS is usually high. The HIS or
spectrometer can be used to find the characteristic spectrum for identifying the target, but
the spectrum is difficult to directly implement in a multi-spectra system; the number of
spectral bands is too large to practically allow implementation in a portable multispectral
imager. Thus, a multispectral imager composed of a few determined band-pass filters is
fundamentally important for the quick screening of oral cancer.

Traditionally, an oral examination for oral cancer involves a visual inspection and pal-
pation of oral lesions under illumination. If the clinician suspects there is a risk of abnormal
tissue progressing to cancer tissue, an oral biopsy for histopathological analysis is necessary.
It is a challenge for experienced clinicians to observe the superficial characteristics of oral
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cancer due to the subtle changes of epithelia in the cancer’s malignant progression. To
enhance visualization for quick screening of oral cancer, several handheld assistant tools
have been developed, such as VELscope [18], Identafi 3000 (DentalEZ Inc., Malvern PA,
USA)) [19], and EVINCE (MMOptics, São Carlos, Brazil) [20]. These devices provide a
light source from ultraviolet light-emitting diodes (LEDs) to excite the oral tissue and help
an examiner observe the autofluorescence of oral tissue through a long-pass or band-pass
optical filter. By observing the fluorescence loss, the development and progression of oral
neoplasia can be artificially identified and scored using these devices. These devices have
been used in clinician examinations and trials, showing their ability and efficacy for the
screening of oral cancer [21–31]. Recently, Jeng et al. [32] developed a principle component
analysis based method that combined a VELscope and Raman spectroscopy to improve
the detection of oral cancer. Jeng et al. [32] further used linear discriminant analysis and
quadratic discriminant analysis to increase differentiation between normal, premalignant,
and malignant lesions based on the autofluorescence images acquired from the VELscope;
the accuracy of the classifications was increased by 2% to 14% [33]. Huang et al. [34] created
a two-channel autofluorescence detection that used 375 and 460 nm excitation light sources
and 479 and 525 nm band-pass emission filters to detect oral cancer and precancerous
lesions. The results revealed that autofluorescence had high sensitivity for detecting oral
cancer. Cherry et al. [35] examined oral potentially malignant disorders (OMPDs) based on
autofluorescence imaging and suggested that autofluorescence imaging had the potential
to track OMPDs.

These beneficial tools mainly aim to enhance the visualization of autofluorescent loss
in abnormal tissue. In this study, we developed a portable handheld multispectral imager
to acquire the spectral image of the tumor and normal oral tissue in several bands and
attempted to determine the effective spectral bands for identifying oral cancer based on
several quantitatively computing methods. In a previous study, our team proposed a self-
made portable LED-induced autofluorescence multispectral imager device for the screening
of oral cancer [36]. This earlier device is mainly composed of LEDs, emission filters, and a
CMOS imaging sensor, and was used to collect the spectral images of autofluorescence in
normal and tumor tissues. The results of this study illustrated that the autofluorescence of
the healthy and tumor tissues had significant variance in the blue intensity. However, how
to determine appropriate band filters is a vital issue in portable devices, especially for quick
screening of oral cancer. In the current study, the methodology for band selection of the
LIAF multispectral imager was proposed and demonstrated using 436 sample points from
62 patients in ex vivo trials undertaken at China Medical University Hospital. Two light
intensities and two wavelengths of the LEDs, 365 and 405 nm, were used as the excitation
light sources; nine wavelengths of the spectral band, 470, 505, 525, 532, 550, 595, 632,
635, and 695 nm, were acquired. The spectral images were pre-processed by four image
processing methods, including intensity, histogram, entropy, and fractional dimension.
The threshold of the quantized value for screening the tumor points was optimized by
calculating the area under the receiver operating characteristic curve (ROC). To find the
effective spectral bands, a single-layer network learning process was used, and results were
compared to a conventional rules-based process.

2. Materials and Methods
2.1. Instrument Composition and Spectral Characteristics

The autofluorescence multispectral imager was equipped with excitation blue or
purple LED sources, a long-pass filter suppressed from the excitation light sources, several
band-pass filters, and a CMOS image sensor to capture the autofluorescence multispectral
images from the reflection of specimens. The LIAF multispectral imager was minimized
and implemented as a self-made, convenient-portable, and easy-handheld device, as shown
in Figure 1. The device uses LEDs to induce the autofluorescence of target tissue and acquire
the spectral images of the autofluorescence; the excitation LED light sources module was
equipped with six excitation LEDs; the emission filters on the rotatory filter array passed
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the spectrum of the autofluorescence within a certain wavelength range of interest and
rejected the spectrum without the wavelength range of interest; and the imaging system
was composed of a color CMOS imaging sensor and lens capturing the fluorescent image
induced from the tissues. The LEDs are placed on a Metal Core Printed Circuit Board
(MCPCB), which can cool the heat produced by the LEDs. The current of LEDs is controlled
using pulse width modulation techniques which are generated by the imaging module.
The probe is in front of the holder blocking out the ambient light and fixing the object
distance of the system. The filter ring contains band-pass filters arranged in a circle and can
be rotated by the users’ fingers to change the filters. The target tissues are excited by the
LEDs, which generate autofluorescence transmitting across the band-pass filter, long-pass
filter, and the lens. The autofluorescence is captured by the imaging sensor afterward.

Figure 1. Mechanical drawing and explosion drawing of the LIAF multispectral imager.

The LIAF multispectral imager was divided into four-channel (4CH) and eight-channel
(8CH) versions based on the number of band-pass filters on the filter ring (Figure 2).
Furthermore, the total current intensities of the LEDs were 350 mA in the 4CH version
and 1000 mA in the 8CH version (Figure 2). The 4CH and the 8CH LIAF used the same
excitation LEDs. The four channels in the rotary filter ring of the 4CH LIAF multispectral
imager had three band-pass filters and one without filters. The center wavelengths of
these filters were 525, 635, and 695 nm. The seven channels in the rotary filter ring of
the 8CH LIAF multispectral imager had six band-pass filters and one without filters. The
center wavelengths of these filters were 470, 505, 532, 550, 595, and 632 nm. To block the
reflection of the excitation light entering the imaging system, a long-pass filter (LP455)
was adopted in the 8CH LIAF multispectral imager (Figure 2); this filter can block the
wavelength of light shorter than 455 nm and pass the wavelength of the light longer than
455 nm. Because the 4CH LIAF multispectral imager was the earlier version of the LIAF
multispectral imager, the LP455 was not adopted in this version.

2.2. Patient History and Experimental Design

Patients who were referred to the Department of Otolaryngology-Head and Neck
Surgery at China Medical University Hospital because of suspicious oral lesions or were
waiting for head and neck surgery in the hospital ward were recruited to participate in the
study. This study was reviewed and approved by the Institutional Review Board of China
Medical University Hospital (CMUH102-REC1-069) [37], and the analysis was checked and
approved by the Department of Biomedical Engineering, National Yang Ming Chiao Tung
University, Taiwan. Written informed consent was obtained from each subject enrolled in
the study. Patients in the region between 20 and 100 years of age were eligible to participate.
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Figure 2. Composition of the 4CH LIAF multi-spectral imager and 8CH LIAF multi-spectral imager,
including excitation lights, LED current, band-pass filters, a long-pass filter, and a CMOS sensor.

The patients involved in this study were divided into three experiments, as shown
in Table 1. The first experiments (Exp_1) involved 17 patients using the 4CH LIAF multi-
spectral imager without the correcting procedure. The second experiment (Exp_2) involved
19 patients using the 4CH LIAF multi-spectral imager with the correcting procedure. The
third experiment (Exp_3) involved 26 patients using the 8CH LIAF multi-spectral imager
with the correcting procedure. The anatomical specimens were collected from the surgical
resection of the different patients, except for two anatomical specimens collected from one
patient in Exp_3. Thus, a total of 28 specimens were involved in Exp_3.

Table 1. Characteristics of the subjects in three experiments.

Experiment Exp_1 Exp_2 Exp_3

Version of the imaging system 4CH 4CH 4CH
Dark image correction no yes yes

Patient 17 19 26
Male: Female 17/00 16/03 23/03

Specimen (sample points) 17 (106) 19 (108) 28 (222)
Age 54 ± 14 58 ± 12 58 ± 11

The experiment procedure is shown in Figure 3. After the instruments were set and the
surgeon completing the surgical operation, the surgeon immediately selected several points
of the tumor region and healthy region on the anatomical specimen (Figure 4a). The third
step was to capture a dark image and a white image of white balance and diffuse reflectance
targets. The dark image and white image were used to perform a dark calibration, and
a white calibration for reducing the intensity offset produced from the imaging sensor
and reducing the impact of the various flux in the light source. The surgeon aimed the
LIAF multi-spectral imager at each selected point and pressed the trigger of the LIAF
multi-spectral imager to start the capturing procedure (Figure 4b). The capturing procedure
comprised steps 4 to 9. The third step was to capture the dark image without emitting light.
The fourth step was to excite the point, and the fifth step was to capture the autofluorescence
image of the point (Figure 4c). The third step to the fifth step was performed again after
the light source was changed automatically. After the capturing procedure was completed,
the indicator of the LIAF multi-spectral imager was illuminated. The surgeon changed the
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band-pass filter by rotating the rotary filter ring and started the next capturing procedure.
The surgeon repeated the above operation until the active channels of the rotary filter ring
were all used. Sequentially, the surgeon repeated the third to ninth steps for all points. As
shown in Table 2, a total of 53 healthy points and 53 tumor points were collected in Exp_1; a
total of 54 healthy points and 54 tumor points were collected in Exp_2; and a total of 111
normal points and 111 tumor points were collected in Exp_3.

Figure 3. Flowchart of the trials.

Figure 4. (a) Tumor regions and normal regions, which are captured are marked as a white circle.
(b) LIAF captures the tumor or normal points. (c) Captured image with a circle indicating the opening
scope of the probe.

Table 2. Information of the specimens and the sample points in three experiments.

Experiments
Total Sample Points Testing Group

Group A Group B

Specimens Normal
Points

Tumor
Points Specimens Normal

Points
Tumor
Points Specimens Normal

Points
Tumor
Points

Exp_1 17 53 53 9 27 27 8 26 26
Exp_2 19 54 54 10 28 28 9 26 26
Exp_3 30 111 111 15 51 51 15 60 60
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2.3. Data Collection and Analysis

The spectral images of the specimens captured from the selected points of tumor tissue
and normal tissue were used in the analysis. The pixels of one image used for analysis were
only in the probe region (Figure 4c). Because the SOI-268 is a color CMOS imaging sensor,
one image contains red (R), green (G), and blue (B) gray-level images. Three gray-level
images were used as an independent data set. The first step was to analyze the images of
the points depending on four methods, including intensity, histogram, fractal dimensions,
and entropy. The first method calculated the summation of the gray level of the pixels in
the probe region (ROI) of one spectral image. The summation, I, is expressed as:

I = ∑x,y∈ROI f (x, y), (1)

where f is the gray level of the pixel at coordinate (x,y) that is in the ROI. The second
method was to find the highest number S of the intensity level in a spectral image:

S = max{nk}, (2)

where nk is the number of pixels in f with intensity rk that denotes the intensities of an L-
level spectral image; k is from 0 to L-1. In information theory, entropy measures uncertainty
in a set of random variables. The third method was to calculate the entropy H, expressed as:

H = −∑n
i=0 P(rk)× log2 P(rk), (3)

where P(ri) is the proportion of the gray level rk in a spectral image. The fourth method
uses the concept of fractal dimension. The fractal dimension is an index that characterizes
the complexity of a pattern. The morphological shape of the tumor tissue could be chaotic
because of the random proliferation of the tissue. Thus, the fractal dimension may be
useful in oral cancer detection. The first step of the fourth method was to binarize the
images using Otsu’s method. Otsu’s method finds the optimum threshold of rk when the
maximizing inter-class variance σ(rk) is found. σ2(rk) is expressed as:

σ2(rk) = ∑t−1
k=0 P(rk)×∑L−1

k=t P(rk)×
[

∑t−1
k=0 rk × P(rk)

∑t−1
k=0 P(rk)

−
∑L−1

k=t−1 rk × P(rk)

∑L−1
k=t−1 P(rk)

]2

, (4)

where k ranges from 0 to L. The optimum threshold t was used to transform a gray-level
image f into a binary image fb. The transfer is expressed as:

fb(x, y) =
{

1, f (x, y) ≥ t
0, f (x, y) < t

. (5)

A kernel of size 2 by 2 pixels moved over the binary image fb and computed the sum
of the product at each location. fc is the result of the spatial correlation and is expressed as:

fc(i, j) =

 1, ∑
i+1,j+1
x=i,y=j fb(x, y) ≥ 1

0, ∑
i+1,j+1
x=i,y=j fb(x, y) < 1

. (6)

After the spatial correlation, the summation of fc was calculated as follows:

D = ∑M−2,N−2
i=0,j=0 fc(i, j), (7)

where M and N are the dimensions of fc.
The red, green, and blue filters were regarded as three spectral bands and correlated

with the emission filters to become new spectral bands; thus, a total of 30 spectral bands are
listed in Table 3. In addition, a total of two excitation light sources and four image processing
methods were used; thus, a total of 96 and 168 combinations were regarded as different
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classifiers in Exp_2 and Exp_3, respectively (Figure 2). The data of each combination were
divided into two groups, A and B, for the cross-validation, as shown in Table 2. One group
was the training set, and the other group was a validation set. The training set was used to
optimize the threshold for distinguishing the normal from the tumor points. The optimized
threshold was tested in a validation set to derive the sensitivity, specificity, and accuracy of
the classifier.

Table 3. Spectral transmittances of the R, G, and B filters correlated with and without the emission filters.

No. Spectral
Bands

Band
Wavelength

(nm)

The Central
Wavelength of

the Spectral
Transmittance

No. Spectral
Bands

Band
Wavelength

(nm)

The Central
Wavelength of

the Spectral
Transmittance

C01 525 nm_B 510 ± 30.0 0.24 C16 532 nm_B 520 ± 20.0 0.16
C02 525 nm_G 540 ± 30.0 0.64 C17 532 nm_G 540 ± 25.0 0.64
C03 525 nm_R 570 ± 15.0 0.13 C18 532 nm_R 570 ± 10.0 0.09
C04 635 nm_B 660 ± 40.0 0.10 C19 550 nm_B 540 ± 15.0 0.13
C05 635 nm_G 600 ± 42.5 0.26 C20 550 nm_G 540 ± 15.0 0.63
C06 635 nm_R 620 ± 42.5 0.94 C21 550 nm_R 550 ± 15.0 0.05
C07 695 nm_B 700 ± 25.0 0.22 C22 595 nm_B 600 ± 20.0 0.09
C08 695 nm_G 700 ± 22.5 0.36 C23 595 nm_G 580 ± 250 0.42
C09 695 nm_R 700 ± 27.5 0.84 C24 595 nm_R 600 ± 17.5 0.95
C10 470 nm_B 490 ± 25.0 0.26 C25 632 nm_B 640 ± 15.0 0.09
C11 470 nm_G 490 ± 15.0 0.17 C26 632 nm_G 640 ± 17.5 0.16
C12 470 nm_R 750 ± 10.0 0.03 C27 632 nm_R 630 ± 17.5 0.82
C13 505 nm_B 500 ± 30.0 0.28 C28 Blue 500 ±50.0 0.30
C14 505 nm_G 540 ± 35.0 0.63 C29 Green 540 ±45.0 0.68
C15 505 nm_R 580 ± 15.0 0.10 C30 Red 620 -40.0 1

The threshold was the cross point of two Gaussian distributions of normal and tumor
data. The normal and tumor data in which the p-value of the Kolmogorov–Smirnov (KS)
tests [32] exceeded 0.05 were assumed to have a Gaussian distribution. The Gaussian
distribution of the normal and tumor data was determined by their mean and the standard
deviation. These distributions were used to find the optimized threshold and calculate the
receiver operating characteristic curve (ROC). One threshold determines one sensitivity
standing for a fraction of true positives to all tumor points and one specificity standing
for a fraction of true negatives to all normal points. The accuracy standing for a fraction
of true positive and true negative to all points was also determined (Table 4). The ROC
curve is plotted with the sensitivities and one minus specificity of the various threshold
(Figure 5). The optimal threshold marked as “filled circle” was determined by the highest
accuracy, sensitivity, and specificity on the ROC (Figure 5). The area under the ROC curve
(AUC) was used to evaluate the performance of the classifiers [38–41].

Table 4. Definition of the sensitivity, specificity, and accuracy.

True Condition

Condition Positive Condition Negative

Predicted condition
Predicted Positive True-Positive (TP) False-Positive (FP)

Predicted Negative False-Negative (FN) True-Negative (TN)

Sensitivity
= TP/(TP + TN)

Specificity
= TN/(FP + FN)

Accuracy = (TP + TN)/(TP + TN+ FP + FN)
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Figure 5. (a) Gaussian distribution of normal and tumor data. The Gaussian distributions of normal
and tumor data are drawn as a solid line and dotted line, respectively. The crossing point marked
as “�” represents the optimized threshold. (b) The ROC curve of normal and tumor data in one
classifier. The crossing point marked as “•” represents the optimized threshold.

3. Results
3.1. LAIF Spectral Imaging with and without Filters

The spectrum, radiant flux, and luminous flux of the excitation LEDs were measured
using a SMS-500 spectrometer in conjunction with an integrating sphere. The measurement
was compliant with CIE 127:2007 [42]. First, the spectral calibration and absolute luminous
flux calibration of the measurement system were implemented. Then, the excitation LEDs
were installed in the integrating sphere. The spectrum, radiant flux, and luminous flux of
the excitation LEDs driving the forward currents of 500 and 1000 mA were each measured
ten times. The ten records of each condition were averaged. The spectral radiant flux of
the excitation light sources is shown in Figure 6. The total radiant flux of the 365 nm LEDs
driving the forward current of 500 and 1000 mA was 76,613 and 141,663 µW. The total
radiant flux of the 405 nm LEDs driving the forward current of 500 and 1000 mA was
782,890 and 1,267,606 µW. The peak wavelength of the 365 nm LEDs and 405 nm LEDs was
365 and 401 nm. The full width at half maximum (FWHM) of the 365 nm LEDs ranged
from 364.26 to 375.64 nm. The FWHM of the 405 nm LEDs ranged from 395.55 to 411.95 nm.
The designed peak wavelength of the 405 nm LEDs differed from the measured peak
wavelength but was still in the measured FWHM. The dominant wavelength of the 365 nm
LED was 462 nm. The CIE x and y of the 365 nm LEDs were 0.2182 and 0.1607, respectively,
which approaches the purple–blue color. The dominant wavelength of the 405 nm LED was
431 nm. The CIE x and y of the 405 nm LEDs were 0.1742 and 0.0188, respectively, which
approaches the blue color. The relative spectral intensity of the excitation light sources
is shown in Figure 6. The 8CH LIAF and the 4CH LIAF multi-spectral imager used the
SOI-268 CMOS sensor. The transmittance of the red, green, and blue filters correlated with
the spectral response of the sensor are marked as dotted lines and the spectral transmittance
of the emission filters used in the 4CH version are marked as solid lines in Figure 7. The
spectral transmittance of the emission filters used in the 8CH version is marked as solid
lines in Figure 8; the spectral transmittance of long-pass filter LP455 is plotted in Figure 8 as
dotted lines with cross marks. The peak wavelength and the corresponding transmittance
of the red, green, and blue filter correlated with and without each emission filter are shown
in Table 3.
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Figure 6. Spectral radiant flux of the excitation LEDs.

Figure 7. Spectral transmittance of the emission filters and RGB color filters of the 4CH LIAF
multi-spectral imager [43–46].

Figure 8. Spectral transmittance of the emission filters, long-pass filter, and RGB color filters of the
8CH LIAF multi-spectral imager [43,47–53].

3.2. Band Selection for Oral-Cancer Diagnosis

In this study, we attempted to identify effective spectral bands for the screening of
oral cancer. The selection of the spectral bands was based on the AUC of the classifiers
tested in a training set and the sensitivity, specificity, and accuracy of the classifiers tested
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in a validation set. A total of thirty spectral bands were collected from the R, G, and B filter,
correlated with and without the nine emission filters. Each spectral band was included in
eight classifiers associated with two excitations and four image processing methods. The
data of each classifier was divided into two groups, A and B. One group was a training set,
and the other one was a validation set. For evaluating the performance of the classifiers,
the AUC and the optimized threshold of the training set were calculated. The threshold
was used to test the validation set to calculate the sensitivity, specificity, and accuracy. The
minimum, first quartile, second quartile, third quartile, average, and maximum AUC of
the group A, B, and A + B in eight classifiers of 30 spectral bands were calculated and
are depicted in Figures 9–11, respectively. The average AUC of 3C10 (470 nm_B), 3C14
(505 nm_G), 3C17 (532 nm_G), 3C20 (550 nm_G), 3C28 (B), and 3C29 (G) was higher than
the others.

Figure 9. The AUC statistic of the classifiers with 30 spectral bands in Exp_1, Exp_2, and Exp_3. The
data in each classifier was used to calculate the AUC (A + B). The solid red points are the average
AUCs. The highest and lowest black bold dash lines are the maximum and minimum AUC. The
highest and the lowest blue dash lines are third and first quartile AUC. The mid-blue dashed lines
are the median AUC.

Figure 10. The AUC statistic of the classifiers with 30 spectral bands in Exp_1, Exp_2, and Exp_3.
The data in group A was used to calculate the AUC. The solid red points are the average AUCs.
The highest and lowest black bold dash lines are the maximum and minimum AUC. The highest
and the lowest blue dash lines are third and first quartile AUC. The mid-blue dashed lines are the
median AUC.
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Figure 11. Statistic AUC of the classifiers with 30 spectral bands in Exp_1, Exp_2, and Exp_3. The data
in group B was used to calculate the AUC. The solid red points are the average AUCs. The highest
and lowest black bold dash lines are the maximum and minimum AUC. The highest and the lowest
blue dash lines are third and first quartile AUC. The mid-blue dashed lines are the median AUC.

3.2.1. Rules-Based Band Selection

For further band selection, the top four AUCs of each spectral band were only consid-
ered and taken into the average for ranking; that is, the four worst AUCs of each spectral
band were not taken into account. The top six average AUC values of the spectral bands
are shown in Table 5. The spectral bands, namely 3C14, 3C10, 3C17, 3C29, 3C20, and 3C28,
ranked in the top six AUCs of the groups A, B, and A + B. The results illustrate that the
blue and green filter correlated with and without four emission filters of center wavelength
470, 505, 532, and 550 nm exhibited the best performance for the screening of oral cancer.
Combined with selecting the spectral bands, the effective excitation light source and image
processing methods were further selected. The aim of rapid screening of oral cancer is
to efficiently identify suspicious oral mucosa tissues in the early stage of oral cancer; the
high sensitivity of the screening result is preferable relative to its high specificity; thus,
the criteria for selecting the effective excitation light source and the imaging processing
methods were based on the sensitivity of the testing results. The sensitivity, specificity, and
accuracy of the validating results in 3C14, 3C10, 3C17, 3C29, 3C20, and 3C28 are shown in
Figure 12. The classifiers with the highest sensitivity (over 94%) in the validating results
were selected and are marked as red dotted circles in Figure 12.

Table 5. Average AUCs (%) of group A + B, A, and B.

A + B A B
No. AUC No. AUC No. AUC

3C14 91.52 3C29 90.93 3C14 92.76
3C10 90.74 3C28 90.39 3C10 90.92
3C17 90.62 3C14 90.36 3C17 90.19
3C29 89.08 3C10 90.27 3C20 90.04
3C20 88.49 3C17 89.58 3C29 87.93
3C28 86.63 3C20 87.00 3C28 85.34
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Figure 12. (a) Sensitivity, specificity, and accuracy of the classifiers using the 505 nm emission filters correlated with the
green filter. (b) Sensitivity, specificity, and accuracy of the classifiers using the green filter. (c) Sensitivity, specificity, and
accuracy of the classifiers using the 470 nm emission filters correlated with the blue filter. (d) Sensitivity, specificity, and
accuracy of the classifiers using the 550 nm emission filters correlated with the green filter. (e) Sensitivity, specificity, and
accuracy of the classifiers using the 532 nm emission filters correlated with the green filter. (f) Sensitivity, specificity, and
accuracy of the classifiers using the blue filter. Each spectral band which is the emission filter correlated with the red, green,
and blue filters has eight classifiers according to the excitation LEDs and the methods. The red dotted circles indicate the
classifiers with the highest sensitivity (over 94%).

3.2.2. AI-Based Band Selection

An artificial intelligence (AI) method was used to select the spectral bands. The method
is illustrated in Figure 13. In iteration I, the spectral bands in which the average AUC was over
85% were selected. In iteration II, the accuracy, sensitivity, and specificity of each classifier in
these selected spectral bands were used to calculate the weighting core. The method optimized



Sensors 2021, 21, 3219 14 of 19

the weighting W to find the maximum weighting score of the classifiers. The classifier which
had the highest weighting score in one of the selected spectral bands determined the effective
excitation light sources and imaging processing methods in conjunction with this spectral
bands. For the screening of oral cancer, high sensitivity is more important than high specificity;
thus, the sensitivity has the highest weighting value (0.8) compared to specificity and the
accuracy. The selected spectral bands of the AI-based method in the data without grouping
(A + B), group A, and group B are shown in Table 6. These four spectral bands were also
selected using the rules-based method, namely 3C14, 3C17, 3C20, 3C28.

Figure 13. AI-based band selection method flow chart. Four spectral bands are selected from C01 to
C30 in the first stage. The classifier whose AUC is greater than 85% is selected from each selected
spectral band. A total of four classifiers are selected in the second stage. The accuracy, sensitivity,
and specificity of four selected spectral bands are multiplied by the corresponding weighting score
W and summed. The summed accuracy is multiplied by 0.1, the summed sensitivity is multiplied
by 0.8, and the summed specificity is multiplied by 0.1. The weighting sore is the summation of the
three multiplied values. The method adjusts the weightings to find the maximum weighting score
for each selection, and the weighting score of each selection is calculated and compared to find the
best filter groups.

Table 6. Results of AI-based band selection in three data groups.

No. Excitation Method Weighting (W)

A + B

3C20 405 nm Intensity 0.7
3C14 405 nm Intensity 0.1
3C17 405 nm Intensity 0.1
3C28 405 nm Intensity 0.1

A

3C20 405 nm Intensity 0.7
3C10 405 nm Intensity 0.1
3C17 405 nm Intensity 0.1
3C29 365 nm Intensity 0.1

B

3C14 405 nm fractal dimension 0.7
3C17 405 nm Intensity 0.1
3C20 405 nm Intensity 0.1
3C29 365 nm Histogram 0.1
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4. Discussion and Conclusions

In this study, a method of the screening of oral cancer was used to observe the
autofluorescence of the tissue after the tissue was excited by LEDs. The autofluorescence
was filtered by the different RGB filters with or without emission filters and recorded by
the imaging sensor. In the experiments, we adopted the red, green, and blue filters in the
SOI268 with or without the emission filters, which have center wavelengths of 525, 635,
695, 470, 505, 532, 550, 595, and 632 nm. The most important purpose of this paper was
to select the effective filters for the rapid screening of oral cancer. In rules-based band
selection, the spectral bands which identically ranked among the top six average AUCs of
the classifiers tested in the data group A, B, and the data without grouping (A + B), were
C14, C10, C17, C29, C20, and C28; the average of the top four AUCs in the test of eight
classifiers in these spectral bands was greater than 85% (Table 5). The AI-based method
selected the four spectral bands, which were the same as the those for the selection of the
rules-based method. The blue and the green filter of the SOI268 CMOS imaging sensor
showed good performance with or without the emission filters. Furthermore, the emission
filters with center wavelengths of 550, 532, 470, and 505 nm showed better performance
than other filters.

The goal of the LIAF multi-spectral imager is to allow rapid screening at the early stage
of oral cancer. For quick screening at an earlier stage, high sensitivity of testing results
is more important than high specificity. Therefore, the selection of the excitation LED
wavelength and the computing methods aimed to find the classifiers which had the highest
sensitivity. Each spectral band was involved in eight classifiers that used two excitation
light sources and four quantitative computing methods. In the rule-based method, if the
sensitivity of the classifier is higher than 90%, the classifier is adopted. According to the
results (Figure 12), a total of six classifiers were selected, including a 365 nm excitation
LED with the intensity method in C14, a 405 nm excitation LED with the intensity method
in C10, a 405 nm excitation LED with the intensity method in C17, a 365 nm excitation
LED with the intensity method in C29, a 405 nm excitation LED with the intensity method
in C20, and a 405 nm excitation LED with the intensity method in C28. In the AI-based
method, the final six combinations were selected, including a 405 nm LED with the intensity
method for C14, a 405 nm LED with the intensity method for C10, a 405 nm LED with the
intensity method for C17, a 365 nm LED with the intensity method for C29, a 405 LED
with the intensity method for C20, and a 405 nm LED with the intensity method for C28.
These classifiers in the rules-based and AI-based methods were identically adopted. The
sensitivity of these six classifiers was larger than 90%. The average of the sensitivities to
these six classifiers was 96.15%; the average of the specificities was 69.55%; and the average
of the accuracies was 82.85%. For the investigated application, these six classifiers could be
implemented in a LIAF multispectral imager for the quick screening of oral cancer.

The methodology of the AI-based band selection used the area under the ROC curve
(AUC) to evaluate the performance of all classifiers. The advantage of the ROC and AUC is
that the performance of the combinations does not depend on the threshold. Furthermore,
the AI-based method was successfully verified by the ruled-based method. The advantage
of the AI-based method is that the method can adjust the weighting to rapidly identify the
best four combinations consisting of four bands. The weightings can decide the means of
detection based on the four selected classifiers with four spectral bands. The rule-based
method is based on the AUC ranks of the spectral bands in the data without grouping
(A + B), group A, and group B to select the final four spectral bands. However, the rules-
based method is unable to determine the means of detection based on the six selected
classifiers with four spectral bands and cannot adjust itself to improve the testing results.
The construction of the rule-based method is based on considerable background knowledge
and is time-consuming. Therefore, the rules-based method can be replaced by the AI-based
method. In the future, the AI-based methodology of the band selection and the combination
selection can be applied to other cancer detection for quick screening.
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Pioneer studies used an optical spectroscope to investigate the autofluorescent spec-
trum of the normal and abnormal oral tissue, and found that the autofluorescence intensity
of the abnormal tissue decreased in blue and green spectral regions compared to that
of normal oral tissue [6–16]. The selected spectral bands in this study are consistent in
the blue and green regions. However, the specific spectral bands did not encompass or
were not equal to the peak wavelength of autofluorescent for identifying oral cancer in
previous studies. The peak wavelength of excitation light sources was not consistent in all
studies because the excitation band of the fluorophores is broad [6,53]. The spectroscope
might not be suitable to quickly screen and demarcate oral cancer in the whole oral cavity
due to the narrow view and single measured point of most spectroscopes [53]. Several
handheld assistant tools, such as VELscope, Identafi, and EVINCE, have been developed
to enhance the visualization of oral lesions based on observing the loss of green or blue
autofluorescence in abnormal tissue [18–20]. In most studies in which these tools have
been successfully used in clinical trials, examiners or surgeons identified the oral lesion us-
ing the tool or the image captured with the tool [21–31,54–70]. In this study, we developed
a portable handheld LED-induced autofluorescence multispectral imager that might be
more suitable for quick screening of oral cancer compared to optical spectroscopy or HIS.
For this reason, 550, 532, 470, and 505 nm emission filters used in conjunction with 365
and 405 nm excitation LEDs were selected to enhance the differentiation between tumor
tissue and normal tissue. These filters were implemented in a multi-spectral imager, and
the computing methods used were able to provide a quantitative value for identifying
oral cancer without requiring the opinion of experts.
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