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Abstract: The mechanism that causes the Alzheimer’s disease (AD) pathologies, including amyloid
plaque, neurofibrillary tangles, and neuron death, is not well understood due to the lack of robust
study models for human brain. Three-dimensional organoid systems based on human pluripotent
stem cells (hPSCs) have shown a promising potential to model neurodegenerative diseases, including
AD. These systems, in combination with engineering tools, allow in vitro generation of brain-like
tissues that recapitulate complex cell-cell and cell-extracellular matrix (ECM) interactions. Brain ECMs
play important roles in neural differentiation, proliferation, neuronal network, and AD progression.
In this contribution related to brain ECMs, recent advances in modeling AD pathology and
progression based on hPSC-derived neural cells, tissues, and brain organoids were reviewed and
summarized. In addition, the roles of ECMs in neural differentiation of hPSCs and the influences
of heparan sulfate proteoglycans, chondroitin sulfate proteoglycans, and hyaluronic acid on the
progression of neurodegeneration were discussed. The advantages that use stem cell-based organoids
to study neural degeneration and to investigate the effects of ECM development on the disease
progression were highlighted. The contents of this article are significant for understanding cell-matrix
interactions in stem cell microenvironment for treating neural degeneration.
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1. Introduction of Alzheimer’s Disease Pathology

1.1. Alzheimer’s Disease Pathology and Progression

Alzheimer’s disease (AD) is a very common, incurable age-associated and economically costly
disease characterized by progressive neurodegeneration, which causes deterioration and damage of
neurons within the cerebral cortex, loss of memory, and cognitive decline [1]. It is the most common
type of dementia and over 30 million people are suffering from this disease all over the world [2].
About 500,000 people die of AD every year and this number increases year by year. Currently,
no effective treatments or available drugs can cure AD and the total costs in 2010 were around
$172 billion in the United States [2], which makes it a heavy economic burden not only on the dementia
patients but also on our global society. Most of clinical cases in AD develop late-onset symptoms
(after the age of 65), also called sporadic AD (SAD). And about 2–5% of disease burden is an early-onset
type, called familial AD (FAD). FAD is related to genetic mutations, such as mutations in amyloid
precursor protein (APP), presenilin-1 (PS1), and presenilin-2 (PS2) [3]. The gene of PS1 encodes the
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catalytic subunit of γ-secretase that mediates APP cleavage for the generation of amyloid β42 (Aβ42)
peptides [4].

AD is identified by three cardinal features in human brain: Aβ plaques, neurofibrillary tangles
(NFTs), and neuron loss. Aβ plaques are usually formed because of the increased production or
deficient clearance of neuronal Aβ caused by unknown reasons. APP is proteolyzed to the soluble
and nontoxic Aβ monomers by β- and γ-secretases. The monomeric Aβ peptides then aggregate to
form toxic Aβ oligomers and further generate the insoluble fibrils, which ultimately form the plaques
(Figure 1) [5]. Some extracellular matrix (ECM) components, e.g., heparan sulfate proteoglycans
(HSPG), are considered to promote extracellular formation of amyloid plaques [6]. In addition,
a healthy body has the mechanism to remove Aβ peptides and balance their generation and clearance.
For instance, matrix metalloproteinase 3 (MMP3), a collagen IV proteinase, could degrade Aβ

components [7,8]. Also, a defective clearance of Aβ and an unbalance between Aβ generation and
clearance have been demonstrated in SAD [9]. Thus, the peculiar generation and flawed removal of
Aβ peptides cause Aβ accumulation. The more accumulations of Aβ peptides occur, the more senile
plaques are formed in the human brain.
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Figure 1. A possible pathology of Alzheimer’s disease (AD). It is postulated that AD may be caused by
the deposition of Aβ and tau hyperphosphorylation-derived neurofibrillary tangles (NFTs), both of
which could activate the caspase-associated apoptosis. In AD brain the monomeric Aβ peptides
aggregate to form toxic Aβ oligomers and further generate the insoluble fibrils, which ultimately form
the plaques. The toxic Aβ species could trigger an inflammatory response and increase the level of
ROS, which may cause neuron death. On the other hand, toxic Aβ species may be transferred into
cells and trigger the apoptosis of neurons. NFTs could either cause neuronal cell death or trigger
apoptosis of neurons. Aβ may interplay with tau-derived NFTs formation, while critical questions
about Aβ-induced tau pathology in AD are still unanswered. ECM: extracellular matrix; APP: amyloid
precursor protein; ROS: reactive oxygen species; SAT3: signal transducer and activator of transcription
3; JNK: c-Jun N-terminal kinase; GSK-3β: glycogen synthase kinase-3β.
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The NFTs in AD are composed of paired helical filaments consisting of hyperphosphorylated tau
(p-tau), a protein associated with the microtubules [10]. The normal form of tau is soluble, whereas
it depicts strong ability to assemble and become insoluble under physiological conditions. The over
phosphorylation of tau contributes to its disassembly from microtubules and its aggregation to form
insoluble fibers, that is, the NFTs. Protein kinases, such as mitogen-activated protein kinase (MAPK),
glycogen synthase kinase-3 (GSK-3), and Jun N-terminal kinase/stress-activated protein kinases
(JNK/SAPK), could upregulate phosphorylation of tau. Many studies support the notion that Aβ may
interplay with tau-derived NFT formation, while critical questions about Aβ-induced tau pathology in
AD are still unanswered. Overall, the perturbation of tau kinases and tau phosphatases leads to the
abnormal hyperphosphorylation of tau, which results in NFT generation and toxicity in neurons.

The Aβ plaque and NFT formation show toxicity to neuronal cells. However, the causes of
synaptic dysfunctions and selective loss of vulnerable neurons, particularly the subtypes, such as
pyramidal, cholinergic, noradrenergic, and serotonergic neurons, remain elusive [11]. Studies show
that Aβ plaques could trigger an inflammatory process by increasing the secretion of pro-inflammatory
factors, e.g., IL-6 and TNF-α, which impair microglia and the surrounding neural cells, and finally
result in neurodegeneration and neuron loss [12,13]. Based on the Aβ plaque deposition and cortical
NFT formation, AD initiates when the connection between entorhinal cortex and hippocampus begins
to disappear at the transentorhinal stage [5,14]. Other neuronal cells, such as GABAergic interneurons,
show their function loss during the advanced stage of AD, i.e., the isocortical stage.

1.2. Current Challenges and the Demand for a Good AD Model

Although the pathophysiological changes of AD are characterized, it is unclear what factors
induce the disease and how selective neuronal loss in AD is caused. Many hypotheses have been
proposed for the causes of pathological characteristics [5,9]. These hypotheses include: (1) amyloid
hypothesis, which posits that the gene mutations of APP and PS1/2 induce the overexpression or
deficient removal of Aβ toxic species, and thus lead to the other two cardinal changes associated
with AD (Figure 1); (2) tau hypothesis, which believes that the hyperphosphorylated tau protein
disassembles from microtubules and subsequently induces neuronal death (Figure 1); (3) unknown
triggering hypothesis, which postulates that some uncertain factors lead to the neurodegeneration,
both directly and indirectly, through the formation of plaques and tangles. The last case seems to
incorporate both the amyloid and tau hypotheses to interpret the etiology of AD. Although both
amyloid and tau hypotheses could explain some of the pathological hallmarks and clinical observations
about AD, there is still a controversy over which one occurs first. Thus, it is necessary to establish the
disease models of AD, given that it is difficult to obtain patient brain samples.

To date, the modeling of AD for mechanistic and pathological studies mainly relies on non-human
animal models and non-neuronal human cells. Non-neuronal cells usually lack the specific cellular
structures of neurons and fail to recapitulate the signaling pathway and other physiology of neurons.
Therefore, they cannot capture the three pathological changes in AD [15]. The transgenic animal
models, usually the mice, have been developed for discovering genetic mutations in FAD [16–18].
To some extent, these models could interpret the pathogenicity of Aβ accumulation, plaque formation,
and tauopathy. For instance, one study has developed a transgenic AD mouse model with a mutation
in APP [17]. The model showed senile plaque formation and disconnection of synapses, but the
presence of NFTs and neuronal loss was never found. Although animal models displayed the
benefits for understanding AD neuropathology, they fail to reflect human brain anatomy, genetics,
and the AD-associated neuron loss. More importantly, pharmacological testing and candidate drug
target screening for AD using these animal models have shown no successful development for
AD therapeutics till now [19]. Therefore, a more robust and suitable model that could capture
all the three cardinal characteristics of AD is demanded. Recently, human adult neural stem
cell-derived models through 3D culture in vitro, although limited by the cell source, were found
to increase Aβ plaque depositions and tau phosphorylation [20,21]. In another study, Choi et al.
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reported a 3D thin-layer culture system by embedding human neural stem cells into Matrigel to
model AD [22]. The overexpression of FAD mutations in APP and PS1 in embedded cells could
induce both extracellular Aβ plaque and phosphorylated tau aggregation in the soma and neurites.
These studies accurately paved the way for using human induced pluripotent stem cells (hiPSCs),
a more reproducible and scalable cell type, to model AD in vitro.

2. Human Pluripotent Stem Cells for Modeling AD

Human PSCs (hPSCs) include human embryonic stem cells (ESCs) derived from blastocysts and
hiPSCs reprogrammed from somatic cells. HPSCs show the properties of unlimited self-renewal
and potent differentiation capacity. Theoretically, hPSCs could give rise to the three-germ layers,
including ectoderm, endoderm, and mesoderm, and generate every cell type in the body (e.g., neurons,
heart, pancreatic, and liver cells). HiPSCs were pioneered by Shinya Yamanaka’s lab in 2006 that
the introduction of four reprogramming factors including Oct4, Sox2, c-Myc, and Klf4 (also dubbed
Yamanaka factors) could convert adult somatic cells into PSCs [23]. Using hiPSCs to model AD
shows great advantages compared to other cell lines or model systems. First, patient-specific cell
lines can be easily established just through collecting biopsy from patients (e.g., drops of blood or
a piece of skin) and reprogramming the tissue to hiPSCs (Figure 2). Therefore, the ethical controversy
using human embryos for human ESCs can be avoided. For AD, the patient-specific hiPSCs loaded
with gene mutations can easily recapitulate the mechanism of disease progression, especially for the
early-onset type. Thus, the transgenic technology for specific genetic manipulation used in animal
models becomes unnecessary. HiPSCs are also clinically advantageous since the use of autologous
tissue ideally surpasses the patient’s immune rejection. Moreover, hiPSCs with unlimited self-renewal
capacity could help to provide large numbers of patient-specific neuronal cells for in vitro research
and clinical applications.
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2.1. AD Models Using hPSCs

Generally, three methods are utilized to establish AD pathological phenotype using hPSCs
(summarized in Table 1). The first method is chemical induction, in which extrinsic chemicals,
such as Aβ42 oligomers and aftin5 (an Aβ42 inducer), are used to treat healthy hPSC-derived neural
cells and induce AD-related phenotypes [24–26]. The addition of extrinsic chemicals to the normal
hPSC-derived neurons could recapitulate some AD events, such as cytotoxicity of neuronal cells.
However, the progression and some important AD pathologies, such as extracellular Aβ plaque
formation, are difficult to recapitulate. The second method is to use genetic tools, such as lentivirus
vectors or CRISPR-Cas9 gene-editing system, to overexpress AD-related genes, such as APP, PS1/2,
and apolipoprotein E3/E4 (APOE3/E4), in hPSC-derived cells [27–29]. Using human ESC-derived
neurons with recombinant human APOE2, APOE3, or APOE4, Huang et al. showed that all three
APOE isoforms could upregulate APP and Aβ production but with different efficacy (APOE4 > APOE3
> APOE2) [29]. Park et al. co-cultured neurons and astrocytes derived from hPSCs overexpressing
FAD-APP mutations with immortalized SV40 microglia in a microfluidics-based system to study
neuro-inflammatory activity in AD [30]. For this approach, overexpression of mutant proteins is
needed to induce AD phenotype.

Table 1. Selected studies of hPSC-based models for Alzheimer’s disease.

Cell Line Neural Types AD Phenotypes Ref.

Chemicals Induced AD-Phenotypes Using hPSCs

Human ESC-derived
neurons treated with
Aβ42 oligomers

3D neurospheres and 2D,
basal forebrain cholinergic
neurons expressing ChAT
and β-tubulin III

Aβ oligomers suppressed the
number of functional neurons Wicklund et al., 2010 [31]

HiPSC-derived neurons
treated with β-secretase
(BSI) and γ-secretase
inhibitor (GSI)
and NSAID

2D, forebrain neurons
expressing FOXG1 and TBR1
(62%), CTIP2 (12%), Cux1
(83%) SATB (46%) at day 52

Differentiated neuronal cells
expressed Aβ40 and Aβ42. BSI,
GSI, and NSAID partially or fully
blocked Aβ production in the
hiPSCs-derived neuronal cells

Yahata et al., 2011 [32]

Human ESC and
hiPSC-derived neurons
treated with
Aβ42 oligomers

2D, cortical
glutamatergic neurons

Aβ oligomers yielded cell culture
age-dependent binding of Aβ and
cell death in the
glutamatergic populations

Vazin et al., 2014 [25]

HiPSC-derived neurons
treated with
Aβ1-42 oligomers

3D neurospheres, cortical
glutamatergic neurons, and
motor neurons

Aβ oligomers caused less cell
viability, more caspase expression
and higher ROS levels on cortical
excitatory neurons population.
GSK-3β inhibitor may attenuate
Aβ-induced cytotoxicity

Yan et al., 2016 [26]

HiPSC-derived neurons
induced by Aβ42
inducer (Aftin5)

3D cortical organoids,
neurons expressing NeuN,
NCAM, MAP2, and CTIP2

Increased secretion of Aβ42 and
the Aβ42/40 ratio Pavoni et al., 2018 [24]

Overexpression of AD-related gene in hPSCs using genetic modification

PSEN1 L166P mutant
hPSC-derived neurons
treated with γ-secretase
inhibitor (DAPT)
and NSAID

2D, hPSC-derived neural
stem cells (NSCs) expressing
Nestin and β-tubulin III

DAPT reduced secretion of both
Aβ42 and Aβ40. NSAID reduced
secretion of Aβ42. PSEN1 1L166P
mutation resulted in elevated
Aβ42/40 ratio.

Koch et al., 2012 [27]

PSEN1 (∆E9)
mutant hiPSCs

2D, hPSC-derived neural
progenitor cells (NPCs)
expressing Nestin and tau

The PS1 ∆E9 mutation increases
the Aβ42/Aβ40 ratio in human
neurons by decreasing Aβ40

Woodruff et al., 2013 [28]

Human ESC-derived
neurons model
tau pathology

2D, neurons expressing
Nestin, DACH1, SOX2,
β-tubulin III, and tau

P-tau impaired the transport of
mitochondria and led to axonal
degeneration and cell death

Mertens et al., 2013 [33]
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Table 1. Cont.

Cell Line Neural Types AD Phenotypes Ref.

Overexpression of AD-related gene in hPSCs using genetic modification

HPSC-derived neurons
co-cultured with ApoE
secreted glia

2D, human neurons
generated by forced
expression of neurogenin-2
(Ngn2), expressing MAP2
and NeuN

ApoE secreted by glia stimulates
neuronal Aβ40 and Aβ42
production with an ApoE4 >
ApoE3 > ApoE2 potency
rank order

Huang et al., 2017 [29]

Human NPCs and
hiPSC-derived cells
overexpressed APP
(K670N/M671L and
V717I) mutations

3D microfluidic platform,
tri-culture of neurons,
astrocytes, and microglia

Increased Aβ aggregation and
p-tau formation, induced
microglia recruitment and axonal
cleavage. Increased chemokines
and cytokines.

Park et al., 2018 [30]

AD patient-derived iPSCs

FAD-hiPSCs with
PSEN1/2 mutations

2D, neurons expressing
β-tubulin III (about 80%)
and MAP2

Change in APP processing;
increased Aβ42 secretion;
responding to γ-secretase
inhibitors and modulators.

Yagi et al., 2011 [34]

FAD-hiPSCs from a
patient with Down’s
syndrome
(Trisomy 21 defect)

2D, cortical glutamatergic
neurons expressing TBR1,
CTIP2, SATB and
β-tubulin III

Increased Aβ peptide production,
Intracellular and extracellular
Aβ42 aggregates. Decreased
Aβ40/Aβ42 with γ-secretase
inhibitors.
Tau hyper-phosphorylation in cell
bodies and dendrites. Neuronal
cell death.

Shi et al., 2012 [35]

FAD-hiPSCs with APP
gene duplications and
SAD-hiPSCs

2D, FACS-purified neurons
expressing β-tubulin III
(>90%) and MAP2

Neurons from AD patients had
higher levels of Aβ40, p-tau,
and active glycogen synthase
kinase-3β (aGSK-3β). β-secretase
inhibitors, not γ-secretase
inhibitors, reduced p-tau and
aGSK-3b.

Israel et al., 2012 [36]

FAD-hiPSCs with APP
mutations and
SAD-hiPSCs

2D, cortical neurons
expressing β-tubulin III,
MAP2, TBR1 and SATB2,
and astrocytes
expressing GFAP

Intracellular Aβ oligomer
formation; reduced extracellular
Aβ peptides.

Kondo et al., 2013 [37]

FAD-hiPSCs with APP or
PSEN1 mutations

2D, neural stem cells (NSCs)
expressing Nestin SOX2,
ZO1, β-tubulin III,
and MAP2

Increased the Aβ42/Aβ40 ratio
compared to healthy control. With
high concentrations of γ-secretase
inhibitors (NSAID-based GSMs
drugs), Aβ42/Aβ40 ratio
was decreased.

Mertens et al., 2013 [38]

FAD-hiPSCs with
PSEN1 mutations

2D, NPCs expressing
β-tubulin III Increased the Aβ42/Aβ40 ratio. Sproul et al., 2014 [39]

FAD-hiPSCs with PSEN1
(A246E) mutations

3D EB-based, neurons
expressing Nestin, PAX6,
FOXG1, TBR1, STAB2,
β-tubulin III, and MAP2

Increased the Aβ42/Aβ40 ratio,
increased expression of FOXG1,
mGluR1, and SYT1.

Mahairaki et al., 2014
[40]

FAD-hiPSCs with PSEN1
and AG mutations and
SAD-hiPSCs with
APOE3/E4 mutations

Basal forebrain cholinergic
neurons expressing MAP2,
ChAT, and VaChT

Elevated Aβ42. With γ-secretase
inhibitors, Aβ40 was increased
and calcium transient
was increased.

Duan et al., 2014 [41]

FAD-hiPSCs with
APP mutations

3D EB-based, forebrain
neurons expressing MAP2,
tau, β-tubulin III, Cux1,
TBR1, vGlut1

Increased Aβ42: Aβ40; Decreased
APPsα: APPsβ, γ-secretase
inhibitor blocked APPs,
β cleavage. Increased total tau and
p-tau (Ser262) d100. Aβ antibodies
blocked, increased total tau.

Muratore et al., 2014 [42]
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Table 1. Cont.

Cell Line Neural Types AD Phenotypes Ref.

AD patient-derived iPSCs

FAD-hiPSCs with PSEN1
(A246E, H163R or
M146L) mutations

2D, neurons expressing
Nestin, PAX6 and SOX1

Increased the Aβ42/Aβ40 ratio
compared to healthy control.
Reduced Aβ42 and Aβ38 by
γ-secretase inhibitor-GSM4.

Liu et al., 2014 [43]

FAD-hiPSCs with
PSEN1 mutations

3D EB based, neurons
expressing β-tubulin III

Increased the Aβ42 secretion level.
Elevated acid sphingomyelinase
(ASM) levels. ASM levels restored
by ASM siRNA treatment.

Lee et al., 2014 [44]

SAD-hiPSCs with
SOR1 variants

2D, FACS-purified neurons
expressing Nestin
and MAP2

Altered induction of SORL1
expression; altered Aβ

peptide production.
Young et al., 2015 [45]

FAD-hiPSCs with PSEN1
or APP mutations

2D, cortical excitatory
neurons expressing tau

Increased the Aβ42 secretion level.
Increased intracellular tau and
phosphorylated tau levels.

Moore et al., 2015 [46]

SAD-hiPSCs with
APP mutations

2D, neurons expressing
Nestin, PAX6 and
β-tubulin III

Increased phosphor-tau (p-tau)
and active glycogen synthase
kinase-3β (aGSK-3β).Reduced
p-tau by γ-secretase inhibitor.

Hossini et al., 2015 [47]

FAD-hiPSCs with PSEN1
(A246E) mutations and
SAD-hiPSC mutations

2D, neurons expressing
Nestin, SOX2, MAP2,
and β-tubulin III

Increased Aβ42 for
FAD-hiPSCs-derived neurons. Armijo et al., 2016 [48]

FAD-hiPSCs with PSEN1
(P117R)/APOE3/3
mutations and
SAD-hiPSCs with
APOE3/E4 mutations

3D neurospheres, neural
cells expressing GFAP,
and MAP2

Reduced neurites length and
neuronal viability. Elevated levels
of nitrite and apoptosis.
Hyper-excitable Ca+ signaling
phenotype. Protected neurites and
cell viability by treatment
of apigenin.

Balez et al., 2016 [49]

FAD-hiPSCs with APP
(V717I) mutations

3D EB based, forebrain
neurons expressing GABA,
PVB, and MAP2

Elevated levels of Aβ and sAPPα. Liao et al., 2016 [50]

SAD-hiPSCs

3D neuro-spheroid, cortical
neurons expressing PAX6,
MAP2, NeuN and
β-tubulin III

3D spheroids recapitulated both
amyloid β and tau pathology.
Reduced Aβ42 and Aβ40
production both in 2D and 3D
neurons with BACE1 or
γ-secretase inhibitors.

Lee et al., 2016 [51]

FAD-human iPSCs with
APP or PS1 mutations

3D brain organoids,
neuronal cells expressing
SOX2, and MAP2

3D organoids recapitulated
amyloid β, tau pathology, and
endosome abnormalities. Reduced
amyloid and tau pathology with
β-and γ-secretase inhibitors.

Raja et al., 2016 [52]

FAD-hiPSCs with PSEN1
(M146L) mutations and
SAD-hiPSCs with
APOE4 mutations

2D differentiation; cortical
neurons and astrocytes

Reduced morphological
heterogeneity in astrocytes. Jones et al., 2017 [53]

FAD-hiPSCs with APP
(V717I) mutations

3D EB-based differentiation,
caudal neurons expressing
HOXB4 and rostral neurons
expressing TBR1

Reduced the Aβ42/Aβ40 ratio but
increased the Aβ38/Aβ42 ratio
for caudal neurons. Higher levels
of total and phosphor-tau for
rostral neuronal fate.

Muratore et al., 2017 [54]

FAD-hiPSCs with PSEN1
(M146L, G384A, H163R
or A246E), APP (V717I)
mutations and
SAD-hiPSCs with
APOE4 mutations

2D, human cortical neurons
(iN cells) generated by force
expression of neurogenin-2
(Ngn2), iN cells expressing
SATB2, MAP2, vGlut1,
and TBR2

iPSC-based screening of
pharmaceutical compounds for
Aβ phenotypes; anti-Aβ cocktail
decreased toxic Aβ levels in
neurons derived from patients’
cells. A combination of existing
drugs synergistically improved
Aβ phenotypes of AD.

Kondo et al., 2017 [55]
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Table 1. Cont.

Cell Line Neural Types AD Phenotypes Ref.

AD patient-derived iPSCs

FAD-hiPSCs with PSEN1
mutations and
SAD-hiPSCs with
unknown mutations

2D, cholinergic neurons
(VAChT), dopaminergic
neurons (TH), GABAergic
neurons (GAD2/GAD1),
and glutamatergic neurons
(vGlut1/2)

Increased levels of extracellular
Aβ40 and Aβ42 for FAD and SAD
samples. Increased the
Aβ42/Aβ40 ratio for FAD sample.
Increased levels of p-tau and
GSK3β.

Ochalek et al., 2017 [56]

FAD-hiPSCs with PSEN1
(∆E9) mutations

3D EB-based differentiation,
astrocytes expressing GFAP
and S100β

AD astrocytes increased Aβ42
production, altered cytokine
release, dysregulated Ca2+

homeostasis, increased oxidative
stress and reduced
lactate secretion.

Oksanen et al., 2017 [57]

FAD-hiPSC with PSEN1
and APP duplication or
hiPSCs from Down’s
syndrome (Trisomy 21)

2D, cortical neurons
expressing TBR1, and MAP2

Synaptic dysfunction (long-term
potentiation) caused by PSEN1
and APP duplication secretomes
was mediated by Aβ peptides,
whereas trisomy 21 neuronal
secretomes induced dysfunction
through extracellular tau.

Hu et al., 2018 [58]

FAD-hiPSCs with PSEN1
(M146V) mutation

3D cortical organoids,
neurons expressing TBR1,
SATB2, BRN2, and MAP2

3D organoids recapitulated Aβ,
tau pathology, and neuronal cell
death. Reduced amyloid β with
DAPT, heparin and heparinase.

Yan et al., 2018 [59]

FAD-hiPSC with PSEN1
(A246E) or hiPSCs from
Down’s syndrome
(Trisomy 21)

3D cortical organoids,
neurons expressing NeuN,
SATB2, TBR1, and MAP2

Accumulation of Aβ and tau
aggregates and induced cellular
apoptosis AD organoids.

Gonzalez et al., 2018 [60]

SAD-hiPSCs from
APOE4/E3 mutations

3D organoids,
neurons, astrocytes, and
microglia-like cells

APOE4 organoids displayed
increased Aβ aggregation and
hyperphosphorylation of tau.

Lin et al., 2018 [61]

SAD-hiPSCs from
unknown mutations 3D neuro-spheroid, neurons

AD organoids neuronal
dysfunction was similar to AD
brain tissue by mass
spectrometry-based
proteomics analysis.

Chen et al., 2018 [62]

SAD-hiPSCs from
APOE4/E3 mutations

2D, neuronal cells
expressing MAP2

Showed aberrant mitochondrial
function.
Increased levels of ROS and DNA
damage. Increased levels of
oxidative phosphorylation
chain complexes.

Birnbaum et al., 2018 [63]

FAD-hiPSCs and
SAD-hiPSCs 2D, FACS-purified neurons Reduced tau phosphorylation by

retromer stabilization. Young et al., 2018 [64]

HiPSCs from a Down’s
syndrome patient by
controlling APP gene
copy number

2D, cortical neurons

Higher APP gene dosage
increased Aβ production, altered
the Aβ42/Aβ40 ratio and caused
deposition of the pyroglutamate
(E3)-containing
amyloid aggregates.

Ovchinnikov et al., 2018
[65]

SAD-hiPSCs from
APOE4/4 or APOE3/3
mutations

2D, cortical neurons and
GABAergic neurons

APOE4 increased Aβ production
in human neurons,
APOE4-expressing neurons had
higher levels of
tau phosphorylation.

Wang et al., 2018 [66]
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Table 1. Cont.

Cell Line Neural Types AD Phenotypes Ref.

AD patient-derived iPSCs

FAD-hiPSCs with APP
duplication mutants 2D, FACS-purified neurons

Neuronal cholesteryl esters (CE)
regulated the
proteasome-dependent
degradation of p-tau,
CE-mediated Aβ secretion by a
cholesterol-binding down in APP,
A CYP46A1-CE-tau axis was
identified as an early pathway.

van der Kant et al., 2019
[67]

Note: PSCs, pluripotent stem cells; ESCs, embryonic stem cells; iPSCs, induced pluripotent stem cells; AD,
Alzheimer’s disease; Aβ, β-amyloid peptide; 2D, two-dimensional; 3D, three-dimensional; BSI/BACE1, β-secretase
inhibitor; GSI, γ-secretase inhibitor; NSAID, nonsteroidal anti-inflammatory drug; ROS, reactive oxygen species;
GSK-3β, glycogen synthase kinase 3 beta; NSCs, neural stem cells, NPCs, neural progenitor cells; PSEN1/2,
presenlin1/2; APP, amyloid precursor protein; FAD, familial AD; SAD, sporadic AD; EB, embryoid body; FACS,
fluorescence-activated cell sorting; ChAT: Choline Acetyltransferase. Other Useful studies: Hu et al., 2015 Cell
Stem Cell [68], Human chemical-induced neuronal cells (hciNs) from FAD patient fibroblasts with APP (V717I)
or PSEN1 (I167del or A434T or S169del) mutations, increased extracellular Aβ42 level and the Aβ42/Aβ40
ratio. Espuny-Camacho et al., 2017 Neuron [69], Chimeric model of AD generated using hPSCs-derived neurons
(hPSC-neurons grafted into AD mice), major degeneration and loss of human neurons in chimeric AD mice, absence
of tangle pathology in degenerating human neurons in vivo. Wang et al., 2017 Stem Cell Reports [70], Neurogenin 2
(NGN2)-induced glumatergic neurons (iN cells) from hiPSCs, iN cells are used to identify tau-lowering compounds
in LOPAC (Library of Pharmacologically Active Compounds), and identified adrenergic receptors agonists as a class
of compounds that reduce endogenous human tau.

The third method is to use AD patient-specific iPSCs carrying AD phenotype and mutations [42,59].
HiPSCs derived from familial and sporadic AD patients have been differentiated into various types
of neuronal cells for studying specific AD pathologies (Table 1). The patients generally had genetic
mutations in APP, PS1, or PS2, in the case of FAD, and mutations in APOE3/E4 for SAD. Most of the
hPSC-derived AD models used either 2D or embryoid body/neurosphere differentiation protocols
to generate forebrain neurons, such as cortical glutamatergic neurons, GABAergic interneurons,
or cholinergic neurons. The neuronal cells were characterized through gene and/or neuronal marker
expression and tested for action potentials and calcium-handling ability for functional assessments.
The AD-related pathology including elevated Aβ42 production and hyperphosphorylated tau was
indicated in these models [71,72].

There are two main classes of mutations for familial AD: (1) mutations in APP; and (2) the
mutations in PS1 or PS2 [73]. Aβ is a cleavage product of APP, so the dysfunction of APP processing
can cause AD (Figure 1). PS1/PS2 mediate the regulated proteolytic events of several proteins including
γ-secretase [39], which plays an important role in Aβ generation. Mutations in PS1/PS2 also lead
to Aβ plaque accumulation. Human iPSC lines were derived from familial (APP mutation) and
sporadic AD patients and differentiated into cortical neurons (expressing TBR1 and SATB2) [37].
In FAD-derived cells, extracellular Aβ42 increased along with the decrease in intracellular Aβ2
compared to control neural cells. For SAD-derived cells, extracellular Aβ42 did not change while
intracellular Aβ42 decreased compared to control of neural cells. Astrocytes also accumulated
intracellular Aβ, which increased endoplasmic reticulum (ER) stress and reactive oxygen species
(ROS). To improve ER stress and inhibit ROS generation, drugs including BSI, DHA, NSC23766,
and dibenzoylmethane were evaluated. DHA decreased BiP (an HSP70 molecular chaperone located
in the lumen of the ER) protein level, cleaved caspase 4 and peroxiredoxin-4, and decreased ROS
generation. Differential response to DHA was observed for different patient-specific hiPSCs, indicating
that DHA may be used for a subset of AD patients.

To evaluate if hiPSCs can recapitulate AD phenotype in the patients and understand the
relationship between APP processing and tau phosphorylation, hiPSCs were derived from two familial
(mutations in APP) and two sporadic AD patients [36]. Neurons from AD patients (two familial and
one sporadic) had elevated levels of Aβ40, p-tau, and active glycogen synthase kinase-3β (aGSK-3β).
β-secretase inhibitors, but not γ-secretase inhibitors, reduced p-tau and aGSK-3β levels. In AD,
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synaptic loss is one pathological observation, and the decreased synapsin I is usually observed in the
affected human brain. In this study, no synaptic loss was observed and an extended culture period
may be required to observe synaptic loss.

Neural progenitor cells (NPCs) derived from hiPSCs from PS1 FAD patients were also
characterized [39]. The differentiation from hiPSCs used monolayer-based protocol with dual SMAD
inhibition for 14 days. The derived NPCs displayed normal electrophysiology. However, an increased
ratio of Aβ42/Aβ40 was observed in the conditioned medium compared to the control cell lines.
Genetic profiling identified the genes that were differentially regulated due to PS1 mutations in order
to find the molecules that might have a developmental role in FAD pathology. Three targets were found,
including NLRP2, ASB2, and NDP. In particular, NDP expression decreased in the hippocampus of the
late-onset AD brains. Moreover, synaptic dysfunction was observed in hiPSC-derived cortical neurons
with autosomal dominant AD mutations or trisomy of chromosome 21 [58]. The released Aβ peptides
from the FAD neurons with APP or PS1 mutations blocked hippocampal long-term potentiation
(LTP), while neurons with trisomy 21 inhibited LTP through extracellular tau [58]. In another study,
APOE4-expressing neurons showed elevated levels of tau phosphorylation, which was not related to
the increased Aβ production, and the cells displayed GABAergic neuron degeneration [66].

2.2. Neural Tissue Patterning of hPSCs

The advancements using hPSCs to model AD started with the generation of neuronal cells or
tissues that are directly affected by the disease through neural patterning (Figure 2). The key to success
of this utilization is to efficiently generate specific neuronal subtypes or brain-like tissues from hPSCs.
Neural tissue patterning is a complex process governed by intrinsic and extrinsic factors including
morphogens and cell-ECM interactions. During the development of mammalian brain, early neural
progenitors of the neural tube are derived through the inhibition of bone morphogenetic protein
(BMP) and activin signaling. The cells are then specified into neuronal subtypes of each brain region
along the rostral-caudal axis by tuning Wnt and retinoic acid (RA) signaling pathways, and along
the dorsal-ventral axis mainly by the gradient of sonic hedgehog (SHH) proteins. Based on this
knowledge, protocols utilizing the morphogens to mimic brain development have been established to
produce brain region-specific neuronal subtypes derived from hPSCs (Figure 3). For example, cortical
glutamatergic neurons and GABAergic neurons from hPSCs were acquired by the modulation of
SHH and fibroblast growth factor (FGF)-2 signals [25,74], while hindbrain/spinal motor neurons
were efficiently derived through the activation of SHH, RA, and Wnt signaling pathways [75].
HPSC-derived spherical brain-like tissues, such as cerebral organoids with definable forebrain,
midbrain, and hindbrain/spinal cord layers [76], and cortical spheroids with laminated regions [77]
were generated by the default neural development without extrinsic factors. Interestingly, recent
studies have obtained the whole spectrum of brain region-specific neural progenitors and neuronal
subtypes from hiPSCs [78,79], which indicates the remarkable value of hiPSC-based models for the
study and treatment of patient-specific neurological diseases. For AD, the Aβ deposition, tau tangles,
and neuronal loss ultimately occur in the cerebral cortex, leading to the cortical symptoms related to
language, attention, and visuospatial orientation. Therefore, studies modeling AD with hiPSCs often
begin with the generation of forebrain cortical neurons. Differentiation to forebrain neuronal fates is
based on the “default” induction strategies without exogenous patterning factors after dual-SMAD
inhibition in a monolayer culture or embryoid body (EB)-based culture [77,80].
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Figure 3. Regional specification in neural differentiation of pluripotent stem cells (PSCs) mimicking
in vivo regional patterning, and the use of the derived forebrain organoids for AD modeling.
The regional patterning of brain organoids was achieved by cell signaling modulators and the
corresponding organoids generated were used for disease modeling. DA: dopaminergic; FGF: fibroblast
growth factor; RA: retinoic acid; SHH: Sonic Hedgehog; BDNF: Brain-derived neurotropic growth
factor; SDF: Stromal cell-derived factor. Adapted and revised from [81].

2.3. A Novel Neural Patterning Method: Organoid Technology

The organoid systems derived from EB-based cultures emerge as a mixed cell population in a 3D
platform. Relying on the intrinsic ability of self-organization of hiPSCs, and sometimes with the help of
suitable exogenous factors (e.g., Matrigel), organoids recapitulate a large number of biological events
in vivo [82,83]. Organoids are 3D spatial organization including heterogeneous tissue-specific cells,
cell-cell interactions, and cell-ECM interactions, and exhibit certain physiological functions similar to
tissues or organs in human body [84]. During organoid formation, ECM is one of the most important
patterning factors that regulate and assist the self-organization and differentiation of stem cells within
the organoids (Figure 4) [85]. ECMs, either secreted by stem cells or derived from artificial scaffolds,
provide physical supports for cell attachment and organization and additional supplementation of
signaling cues for cell growth and differentiation [86,87]. This organoid technology bridges a gap in
the existing in vitro 3D culture systems by providing a robust approach for tissue patterning of stem
cells and is more representative of in vivo situations [88–90].
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Figure 4. Organoid formation from human pluripotent stem cells. (A) Organoids can be generated
from human pluripotent stem cells through the embryonic body (EB)-based procedure with the help
of exogenous factors, such as extracellular matrix (ECM). Organoids form 3D ordered structures to
mimic the in vivo situation of tissues or cells. (B) Organoids form based on the self-organization and
self-assembly of stem cells.

The first generation of neural rosettes from human ESCs was derived in 2001 by forming
spontaneously differentiated EBs and then plating EBs on coated dishes for neuroepithelial cluster
formation [91]. Combining the EB-based rosette patterning and serum-free culture, the so-called
SFEBq approach, i.e., serum-free floating culture of EB-like aggregates with quick re-aggregation,
was developed and could generate remarkably large rosettes with lumens and apicobasal structures
from hPSCs in 2008 [92]. In 2011, the self-organizing optic cups with retinal specifications from hPSCs
were derived using the entirely 3D EB-based neural culture [93]. This study indicates that neural
tissues with histologically accurate architecture could be patterned only in 3D floating culture of hPSCs.
All these studies paved the road for the advent of a new neural patterning technology, that is, organoid.
In 2013, Lancaster et al. derived cerebral organoids with a broad brain regionalization to model
microcephaly using EB-based culture with Matrigel embedding and agitation [76]. The organoids
could reach up to 4 mm in diameter with fluid-filled cavities that resembled ventricles rather than
the small neural-tube-like lumens found in rosettes. After that, the organoid-based neural patterning
methods of hPSCs have been utilized for mimicking human brain development, modeling neurological
disease in vitro, and testing potential drug candidates [81].

Using the SFEBq method, multilayer structures were derived from hiPSCs with lower and upper
cortical layer fates in dorsal forebrain [94]. The 3D aggregates can generate inhibitory neurons and
display neuronal connectivity (expression of synapsin I and PSD95). Genomics study showed the
correlation to the brain development at postconceptional weeks 4–10. Another 3D culture was used
to generate laminated cerebral cortex-like structure from hPSCs [77]. The cells were induced for
forebrain fate using dual SMAD inhibition for six days, followed by FGF-2/epidermal growth factor
treatment for 19 days, and the maturation with brain-derived neurotrophic factor (BDNF) and NT3.
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At day 18, 85% PAX6+ cells and >80% of FOXG1+ cells were observed. The organoid size increased
from 300 µm at two weeks to 4 mm at 2.5 months. The formed human cortical spheroids corresponded
to the late mid-fetal periods. The spheroids had a distinct ventricular zone and sub-ventricular zone.
The cells also formed superficial cortical layers (expressing BRN2 and SATB2 for layer II-IV, emerged
at day 76) and deep cortical layers (expressing CTIP2-layer V and TBR1-layer VI, showed up at day 52).
The presence of GFAP+ cells showed the astrogenesis (3–8% cells). Functional characterizations
include: (1) calcium imaging for spontaneous calcium spikes; (2) Na+/K+ currents; and (3) the firing of
action potentials. Slices of spheroids showed spontaneous synaptic activity, which can be reduced by
a glutamate receptor blocker. This study demonstrated the patterning and specification of different
neuronal and glial cell types which can be used for large-scale drug screening.

The organoid technology is a promising method to mimic human brain development and could
generate brain-like tissues for modeling neurological diseases, including autosomal recessive primary
microcephaly [95], Zika virus infection [96], autism spectrum disorder [97], Timothy syndrome [98],
brain tumors [99,100], and others (see the review by Amin et al., 2018 [101]). Lots of studies have
shown the feasibility of the organoid methods to model AD pathogenesis [24,52,60,61]. Our previous
studies found that dynamic culture of cerebral organoids promoted cortical layer structure compared
to static culture, and the 3D brain organoids from hiPSCs with PS1 M146V mutation could recapitulate
some AD-related phenotype, such as Aβ secretion and neuron death [59,102]. By using hiPSCs
with APOE4/E3 mutations, Lin et al. showed that APOE4 forebrain organoids displayed the
increased Aβ aggregation and hyperphosphorylated tau [61]. Taken together, 3D hPSC-derived
organoids provide structured neural tissues and specific microenvironments that can be used to
model AD-associated pathology.

2.4. Effects of ECMs on Neural Patterning of hPSCs

The central nervous system (CNS) is characterized by a functional network of neurons, glia,
and their secreted ECMs. ECMs constitute the essential physical structures for neural cells and
provide diverse biochemical signals for neurogenesis, neural cell migration and differentiation,
and synaptic plasticity. ECMs also play an important role in neural tissue patterning of hPSCs.
Studies performed with decellularized ECMs from different PSC derivatives indicated that ECMs
guided PSC differentiation into the cell types residing in the tissue from which the ECMs were
derived [103,104]. The ECM-stem cell interactions are mainly mediated by integrins, a large family
of heterodimeric transmembrane receptors connecting with an intracellular cytoskeleton. Thus, cell
migration, organization, and differentiation could be regulated through ECM-integrin-cytoskeleton
connections. For instance, the binding between α6β1 integrin and laminin is the key player for neural
stem cell adhesion to the vascular structures [105]. ECMs may also control stem cell fate decisions
through the modulation of intracellular signaling. For example, our previous study demonstrated that
undifferentiated PSC-derived ECMs could upregulate Wnt/β-catenin signaling, while NPC-derived
ECMs promoted neural patterning of PSCs through the inhibition of Wnt signaling pathway [106].

The biophysical properties, such as elastic modulus, geometry, and Poisson’s ratio of matrix,
also impact growth, proliferation, and neural differentiation of PSCs [107,108]. Stem cells cultured
on hydrogels with varied stiffness indicated that substrate elastic modulus can alter critical cellular
events, such as ECM assembly, cell motility, and cell spreading [109–111]. For neural patterning,
a large number of studies showed the important effects of matrix stiffness or elastic modulus
(Table 2) [111–118]. Saha et al. first showed that soft substrates supported neuron differentiation
from NPCs, while a higher elastic modulus (E ~ 1 to 10 kPa) promoted glial cell generation [111].
Leipzig et al. further demonstrated that substrates with Young’s modulus (E) below 1 kPa favored
neuronal differentiation, those in the range of 1 and 3.5 kPa supported astrocytes, and above 7 kPa could
enhance oligodendrocyte derivation [112]. By culturing hPSCs on Matrigel-coated polyacrylamide
substrates, a very soft matrix (E ~ 0.1 kPa) was found to support early neural differentiation
of hPSCs [119]. Normally, cells sense elasticity during the attachment on the substrate through
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focal adhesions and formation of stress fibers. Their responses to the matrix properties rely on
myosin-directed contraction and cell-ECM adhesions, which involve integrins, cadherins, and other
adhesion molecules [120]. The Poisson’s ratio is another important biophysical cue that influences stem
cell behaviors, as the nuclei of ESCs exhibit a negative Poisson’s ratio in the pluripotent-state [121].
Our previous work found that Poisson’s ratio of matrix could confound the effects of elastic modulus
on PSC neural differentiation [108]. In conclusion, ECMs serve as a reservoir of biochemical and
biophysical factors that impact stem cell growth, organization, and differentiation.

Table 2. Effects of matrix modulus on pluripotent stem cell fate decisions.

Cell Source Range of Modulus and
Substrates

Effect on Morphology,
Proliferation, and Differentiation Reference

Neural progenitor cells 0.1 kPa–10 kPa; PA gels
based vmIPNs

Soft gel (100–500 Pa) favored
neurons, harder gel (1–10 kPa)
promoted glial cells.

Saha et al., 2009 [111]

Neural progenitor cells 1–20 kPa;
MAC substrates

<1 kPa favored neuronal
differentiation; <3.5 kPa supported
astrocyte, >7kPa favored
oligodendrocyte.

Leipzig et al., 2009 [112]

Mouse ESCs 41–2700 kPa; collagen
coated PDMS surface

Increasing substrate stiffness from
41–2700 kPa promoted cell
spreading, proliferation,
mesendodermal and osteogenic
differentiation.

Evans et al., 2009 [122]

Rat neural stem cells
180–20,000 Pa;
3D alginate
hydrogel scaffolds

The rate of proliferation of neural
stem cells decreased with an
increase in the modulus of the
hydrogels. Lower stiffness
enhanced neural differentiation.

Banerjee et al., 2009 [123]

Mouse ESCs 0.6 kPa; PA gel substrates Soft substrate supported
self-renewal

Chowdhury et al., 2010
[124]

Human ESCs and iPSCs 0.7–10 kPa;
GAG-binding hydrogel

The stiff (10 kPa) hydrogel
maintained cell proliferation and
pluripotency.

Musah et al., 2012 [125]

Human ESCs

0.05–7 MPa, 3D PLLA,
PLGA, PCL or PEGDA
scaffold coated
with matrigel

50 to 100 kPa supported ectoderm
differentiation; 100 to 1000 kPa
supported endoderm differentiation;
1.5 to 6 MPa supported mesoderm
differentiation.

Zoldan et al., 2011 [126]

Human ESCs and iPSCs 0.1–75 kPa;
matrigel-coated PA gels

Soft matrix (0.1 kPa) promoted early
neural differentiation. Keung et al., 2012 [119]

Human ESCs 1 kPa, 10 kPa, 3 GPa;
PDMS substrates

Rigid matrix promoted
cardiac differentiation. Arshi et al., 2013 [127]

Mouse ESCs
0–1.5 kPa, 3D collagen-I,
Matrigel,
or HA hydrogel

<0.3 kPa less neurite outgrowth and
supported glial cell; 0.5 to 1 kPa
more neurite outgrowth and
supported neurons.

Kothapalli et al., 2013
[113]

Human ESCs 0.078–1.167 MPa;
PDMS substrates

Increased stiffness upregulated
mesodermal differentiation.

Eroshenko et al., 2013
[128]

Human ESCs 1.3 kPa, 2.1 kPa, 3.5 kPa;
HA hydrogel

Stiffness of 1.2 kPa was the best to
support pancreatic
β-cell differentiation.

Narayanan et al., 2014
[129]

Human ESCs 4–80 kPa; PA hydrogels

Stiffness of 50 kPa was the best for
cardiomyocyte differentiation.
Stiffness impacted the initial
differentiation of hESCs to
mesendoderm, while it did not
impact differentiation of cardiac
progenitor cells to cardiomyocytes.

Hazeltine et al., 2014
[130]
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Table 2. Cont.

Cell Source Range of Modulus and
Substrates

Effect on Morphology,
Proliferation, and Differentiation Reference

Human iPSCs
19–193 kPa; 3D PCL, PET,
PEKK or PCU
electrospun fibers

The substrate stiffness was inversely
related to the sphericity of
hiPSC colonies.

Maldonado et al., 2015
[131]

HPSCs 6 kPa, 10 kPa, 35 kPa;
Matrigel micropatterns

High stiffness (35 kPa) induced
myofibril defects of hPSC-derived
cardiomyocytes and decreased
mechanical output.

Ribeiro et al., 2015 [132]

hPSC-derived
hepatocytes

(hPSC-Heps)

20, 45, 140 kPa;
collagen-coated PA
hydrogels substrates

On softer substrates, the hPSC-Heps
formed compact colonies while on
stiffer substrates they formed
a diffuse monolayer. Albumin
production correlated inversely
with stiffness.

Mittal et al., 2016 [133]

Rat cortical neurons
(RCN)

5 kPa (soft), PA gels;
500 kPa (stiff),
PDMS substrates;

Soft substrates enhanced cortical
neurons migration. Stiff substrates
increased synaptic activity.

Lantoine et al., 2016 [114]

Mouse ESCs and iPSCs 300–1200 Pa;
3D PEG hydrogels

Stiffness and other biophysical
effectors promoted somatic-cell
reprogramming and iPSC
generation; lower modulus
(300–600 Pa) showed higher
reprogramming efficiency.

Caiazzo et al., 2016 [134]

Human ESCs 400 Pa, 60 kPa;
PA hydrogels

On stiff substrates, β-catenin
degradation inhibits mesodermal
differentiation of human ESCs.

Przybyla et al., 2016 [135]

Human ESCs 1–100 kPa; barium
alginate capsules

Stiffness of 4–7 kPa supported cell
proliferation and higher stiffness
suppressed cell growth. Increased
stiffness promoted endoderm
differentiation, while suppressed
pancreatic induction. About 3.9 kPa
was the best for
pancreatic differentiation.

Richardson et al., 2016
[136]

Mouse intestinal stem
cells (ISC)

300 Pa, 700 Pa, 1.3 kPa,
1.7 kPa; PEG hydrogels

Higher stiffness enhanced ISC
expansion. Lower stiffness
supported ISC differentiation and
organoid formation.

Gjorevski et al., 2016
[137]

Mouse neural progenitor
cells (NPC)

0.5–50 kPa; 3D
elastin-like
protein hydrogels

In stiffness from 0.5 to 50 kPa, NPC
stemness maintenance did not
correlate with initial
hydrogel stiffness.

Madl et al., 2017 [115]

Mouse ESCs and hiPSCs 10–100 kPa;
3D PU scaffolds

Scaffolds with proper stiffness,
Poisson’s ratio and pore structure
enhanced neural differentiation
of PSCs.

Yan et al., 2017 [108]

Human iPSCs 3–168 kPa;
PDMS substrates

Elasticity of substrates significantly
affected cell colony formation.
Intermediate substrate elasticity of
about 9 kPa is preferable to reach an
EB-like aggregation and optimal for
cardiac differentiation.

Wang et al., 2018 [138]

Mouse ESCs
3.4 kPa, 64 kPa, 144 kPa;
PEGDA or PEG
hydrogel substrates

Soft hydrogel (3.4 kPa) showed
strong cell attachment and a growth
pattern similar to 2D surface. Stiff
hydrogel (144 kPa) supported
a 3D aggregation.

Dorsey et al., 2018 [139]

Mouse iPSCs 0–2.4 MPa;
PDMS substrates

Stiffer substrate supported
pluripotency of iPSCs. Softer
substrate promoted
cardiac differentiation.

Fu et al., 2018 [140]
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Table 2. Cont.

Cell Source Range of Modulus and
Substrates

Effect on Morphology,
Proliferation, and Differentiation Reference

Neural crest stem cells
(NCSCs) from hiPSCs

1kPa, 15 kPa, 1 GPa; PA
gel substrates

>50 kPa promoted smooth muscle
cells from NCSCs, <15 kPa
promoted glial cells from NCSCs.

Zhu et al., 2018 [116]

Mouse hippocampal
neurons

2.13 kPa, 22.1 kPa;
PDMS substrates

Stiff substrate enhanced
voltage-gated Ca2+ channel currents
in neurons.

Wen et al., 2018 [117]

Neural crest stem cells
(NCSCs) derived

from hESCs

3.3 kPa, 1.7 MPa, 1 GPa;
PDMS substrates

Soft substrate increased
differentiation of ectodermal
mesenchymal stem cells (MSCs)
from NCSCs via CD44 mediated
PDGFR signaling.

Srinivasan et al., 2018
[118]

iPSCs and neonatal rat
cardiomyocytes

9, 20, 180 kPa;
PA gel substrates

Cardiac differentiation preferred
rigid substrates, and beating
behavior preferred soft substrate.

Hirata et al., 2018 [141]

Human iPSCs

About 24 Pa, fibrin-based
gel substrates (human
platelet lysate gel);
>1 GPa,
tissue culture plastics

Soft substrates did not impact on
differentiation of iPSCs into MSCs. Goetzke et al., 2018 [142]

Human ESCs

118 ± 51 Pa, 800 ± 180 Pa,
5600 ± 1100 Pa, and 8900
± 1500 Pa; decellularized
fibroblast-derived
matrices crosslinked
by genipin

Soft matrix supported cell migration
and induced EMT of hPSC. Stiff
matrix supported cell pluripotency
and suppressed EMT of hPSCs.

Kim et al., 2018 [143]

Note: PA, polyacrylamide; vmIPNs, variable moduli interpenetrating polymer networks; MAC, methacrylamide
chitosan; PDMS, polydimethylsiloxane; HA, hyaluronic acid; PLLA, poly-L-lactide acid; PLGA: poly(lactic
co-glycolic acid); PCL, polycaprolactone; PEGDA, polyethylene glycol diacrylate; PET, polyrethylene
terephthalate; PEKK, poly(etherketoneketone); PCU, polycarbonate-urethane; GAG, glycosaminoglycan; PEG,
polyethylene glycol; PU, polyurethane; PDGFR, platelet-derived growth factor receptor beta (PDGFRβ) signaling;
EMT, epithelial-mesenchymal-transition.

3. Proteoglycans in the ECMs of AD Brain

The brain ECMs express low amounts of fibrous proteins, such as collagen and laminin, but high
amounts of glycosaminoglycans (GAG) compared to other tissue types. The ECMs in the brain include
glycoproteins and proteoglycans originated from neurons or glia. Proteoglycans (PGs) are a group
of glycoproteins that carry covalently bound sulfated GAG chains which play important roles in cell
differentiation, tissue morphogenesis, and phenotypic stabilization via cell-matrix adhesiveness and/or
binding to growth regulators. GAGs are composed of repeating disaccharide units attached to a core
protein through serine residue and carbohydrate linkage regions. Depending on the disaccharide
structures, PGs can be divided into chondroitin/dermatan sulfate, heparin/heparan sulfate (HS),
and keratan sulfate side chains. In the CNS, the majority of proteoglycans have either heparin sulfate
or chondroitin sulfate side chains. PGs are expressed at different stages of human brain development
and are produced non-homogenously by different neural cell types [144].

3.1. Chondroitin Sulfate Proteoglycans (CSPGs) in Brain Development

CSPG family consists of four members: (1) lecticans, a family including aggrecan, versican,
neurocan, and brevican; (2) phosphacan; (3) small leucine-rich proteoglycans, e.g., decorin and
biglycan; (4) other CSPGs including neuroglycan-C and NG2 [145]. Distribution and expression
of these CSPGs vary during human brain development. Aggrecan and versican are distributed in
ECMs of various non-neuronal tissues as well as neural tissues, whereas neurocan and brevican
appear to show a neural tissue-specific distribution. Versicans are found to express in the post-natal
development of brains. Brevican is expressed predominantly by astrocytes, not neurons. NG2, a large
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transmembrane CSPG, is expressed by oligodendrocyte progenitor cells in CNS. Neurocan, a secretory
CSPG, is reported to be synthesized mainly by neuronal cells.

The CSPGs are either secreted as ECMs or inserted to the plasma membrane of the cells.
The attachment of CSPGs to the cell membrane is either through a collagenous ligand or by core
proteins and cell surface-associated CSPGs such as aggrecan. The concentrations of aggrecan and
brevican increase during brain development. The concentration of neurocan also increases with
development to reach a peak in the early postnatal period and declines thereafter. The full-length
neurocan is the major variant in pre- and early postnatal brains, while it is hardly detectable in the
mature brain. Phosphacan and receptor-type protein tyrosine phosphatase are produced by both glial
cells and neuronal cells. Variations in sulfate content and localization on the same GAG chains or the
same core protein are tissue-specific or cell-specific. The expression of specific GAG biosynthetic and
modifying enzymes by individual neural cell types dictates the type of carbohydrate modification of
the core proteins expressed in each cell type [146].

3.2. Heparin/HSPG in Brain Development

Heparan sulfate proteoglycans are heavily glycosylated proteins, in which some HS and
GAG chains are covalently attached to a core protein, which can be either surface proteins
(e.g., syndecans/glypicans) or secreted proteins (e.g., agrin/collagen type XVIII/perlecan) [147].
N-Syndecan (syndecan-3), a transmembrane HSPG, has the capacity to bind to heparin-binding
growth factors with a neurite-promoting activity, such as FGF-2, pleiotrophin/HBGAM, and midkine.
This matrix-growth factor interaction is found to be the basis for the axonal development of neural
cells. Also, N-syndecan works as a receptor molecule for pleiotrophin, which then enhances the
phosphorylation of intracellular cytoskeleton-regulating molecules, such as cortactin and fyn-kinase.
It was found that the association of cortactin and fyn-kinase with N-syndecan was increased after
induction of long-lasting synaptic sensitivity called long-term potentiation.

N-syndecan regulates the neuronal activity-dependent connectivity through the fyn signaling
pathway. N-syndecan, together with syndecan-2, also appears to be involved in the maturation of
synapses. Syndecan-2 interacts with calcium/calmodulin-dependent serine protein kinase, a PDZ
family protein that induces the formation of mature dendritic spines, and supports the development
of postsynaptic specialization [148]. Heparin is one of the glycosaminoglycans that bind to different
proteins and thereby promote various neural functions, such as preventing blood clotting, neuronal
communication, and brain development.

3.3. Impacts of CSPG on AD Pathology

The motor and sensory areas of the cortical brain, which show cytoskeletal changes during
AD development, were found to express prominent levels of CSPGs. These results suggested the
importance of CSPGs on AD development, e.g., synaptic loss. Numerous molecular events occur in the
post-synaptic density of an excitatory synapse in response to a train of pre-synaptic action potentials.
One of these factors is the presence of peri-synaptic ECMs, a lattice of chondroitin sulfate-bearing
proteoglycans, termed lecticans (e.g., aggrecan, brevican, neurocan, and versican), bound to hyaluronic
acid near their N-terminus and tenascin-R near their C-terminus. Alterations in brain ECMs occur
early in AD progression. The synaptic loss is observed prior to neuronal cell death, and the loss of
synapses in the outer molecular layer of the hippocampal dentate gyrus is more highly correlated with
cognitive impairment than other classical AD pathology including NFTs and senile plaques. ECMs can
respond to network activity by incorporating secreted molecules, by shedding extracellular domains
of transmembrane molecules, or by freeing products of activity-dependent proteolytic cleavage as
signaling messengers.

Lecticans, also known as hyalectans, have been studied for their influence on the plasticity
of synapses because of the elevated expression in AD patients. Lecticans are found to contribute
to diminished synaptic plasticity. Involvement of CSPGs in hippocampal synaptic plasticity was
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confirmed using the enzyme that specifically digests chondroitin sulfates, chondroitinase ABC
(ChABC) [149]. Injection of ChABC in young AD mice elevated lectican levels and resulted in
a reversal of contextual fear memory deficits and restoration to normal long-term potentiation. ChABC
treatment results in the removal of CS chains from lectican core proteins (and other CS bearing PGs).
These studies demonstrated that removal of CS chains stimulated neural plasticity. Increasing evidence
has demonstrated that CS-bearing ECM molecules increase with age and are associated with AD.
CS-bearing PGs bind to Aβ, but it remains unknown whether Aβ binds to brain-derived lecticans.
Injection of ChABC increased synaptic density surrounding plaques and reduced Aβ burden in the
s/m of the hippocampus [150].

3.4. Impacts of Heparin/HSPGs on AD Pathology

HSPGs are found to grow concomitantly with amyloid filament formation. HSPGs have a negative
charge and thereby concentrate on the ligands and protect them from proteolysis while making
insoluble complexes [151]. Heparin and HSPGs regulate the activity of a number of proteases involved
in AD. HSPGs promote Aβ aggregation, stabilize Aβ fibrils, and inhibit Aβ degradation. Perlecan and
agrin are found to be the important HSPGs that are involved in the pathogenesis and localized with
Aβ deposits in AD brain. Perlecan accelerates Aβ fibril formation and maintains the Aβ fibril stability
by using Perlecan’s HS-GAG chains [152]. Agrin also binds to Aβ and accelerates fibril formation and
protects fibrillar Aβ from proteolysis (Figure 5) [153]. HSPGs bind Aβ with high affinity and promote
intracellular Aβ uptake in multiple cell types and thereby increase the cytotoxicity [154].
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HSPGs are also the target of Aβ-induced oxidative stress production. Studies propose that
minimal chain length is a prerequisite for efficient fibril polymerization and deposition. Fragmentation
of HS using heparinase III was found to inhibit the polymerization and deposition of amyloid
peptides [155]. Heparinase is a glucuronidase that specifically cleaves heparan sulfate, thereby
preventing Aβ-HSPG interactions. The formed HS oligosaccharides then bind amyloid monomers
to prevent them from polymerizing and assembling into larger aggregates. Treatment of cells with
heparinase III also reduced the HSPG-based Aβ-induced ROS production.

HSPGs modulate the Aβ-associated neuroinflammation and Aβ clearance from the human brain.
Several in vitro studies indicated the interaction of Aβ with GAGs including HS and heparin, a HS
analogue with a higher sulfation degree [156]. All those studies describe that the N-terminus of Aβ is
a HS-binding motif and this sequence supports the interaction between Aβ and HSPGs [157]. Studies
also suggest that the Aβ peptides compete with FGF-2 for HS binding site. The interaction depends
on several factors, such as the sulfation pattern, chain length of the GAGs, and the pH. The higher
sulfation in heparin boosted the affinity and the degree of Aβ-HS complex formation was higher
compared to Aβ-HSPG complex. Lower binding of heparin fragments shorter than 6-sugar units to Aβ



Cells 2019, 8, 242 19 of 30

also suggested the requirement of GAG chain length for the interaction [158]. It is also proposed that
the Aβ-HS interaction is mutually protective because HS is protected from heparanase degradation
and Aβ is protected from protease degradation.

Cellular degradation of HSPGs using heparanase (an endo-β-glucuronidase that specifically
cleaves HS side chains of HSPGs) decreased the cytotoxicity of Aβ peptides on the cells [154].
Aβ clearance from the cells is performed in different ways, including degradation by proteolytic
enzymes or receptor-mediated Aβ transport across the blood-brain barrier, in which the main receptor
is low-density lipoprotein receptor-related protein-1 (LRP-1) [159,160]. The complex interactions of
Aβ precursor protein ApoE, LRP-1, and HSPG facilitate Aβ internalization. Recent studies found
that HSPGs and LRP-1 mediate Aβ internalization in a seemingly cooperative manner, in which
HSPGs regulate Aβ binding to cell surface through LRP-1 [159]. These findings suggest that cell
surface HS mediates Aβ internalization and toxicity. Tau binding and internalization also depend on
HSPGs, which are critical mediators of tau fibril internalization. Tau binding to HSPGs is required for
transcellular propagation [161]. Further understanding of the interactions between ECM molecules
and Aβ peptides and their effects on neuronal differentiation should help to develop new treatment
methods for AD.

3.5. Heparin-Based Therapy for Neural Degeneration

Aβ-related activation and the followed neuroinflammation are dependent on the region 1–11 of
the peptide [162]. Related studies of the molecules that have the ability to pharmacologically target
this region indicate the possible therapeutic effects of heparin [163]. In vitro treatment of neurons
with heparin reduced Aβ-associated cytotoxicity, revealing the capability of heparin on AD treatment.
Heparin, which has been widely used as an anticoagulant in clinical use, has the capability to bind
to the region 12–17 of Aβ (HHQK) [157], near to the contact and complement activation residues.
The heparin-binding regions of these proteins are characterized by clusters of arginines and lysines.
These clusters form centers of highly positive charge density that electrostatically interact with the
acidic groups of heparin.

The binding of heparin to the regions of Aβ occurs as electrostatic interactions between
cationic sites of Aβ and anionic sulfate residues of heparin. This causes steric changes in the Aβ

and influences the biological function, which in turn reduces the inflammation of neural cells
by inhibiting Aβ complement and contact systems and thereby reduces the neurodegeneration.
Complement and contact systems are related inflammatory cascades and are dependent on the
reciprocal activation. These systems share a major inhibitor factor (C1 INH) with each other (Figure 6),
which is downregulated in AD brain. Inhibition of complement activation by heparin might also be
due to the potentiation of C1-1NH. C1-1NH attaches to the enzymes and works as an inhibitor of
spontaneous activation of the complementary system. The addition of low molecular weight heparin
reduced plaques and Aβ accumulation in a mouse AD model [164]. Association between heparin
and the Aβ peptides was found to be pH-dependent. Heparin-binding to the peptides reduced the
concentration of the peptides and the expression of kinnogen.

Biologically active beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) interacts
directly with HS/heparin and has a high relative affinity for these polysaccharides. It has been
reported that heparin inhibits BACE1 activity in vitro and thereby regulates the production of Aβ

peptides [163,165]. It is also suggested that Aβ is a metalloprotein that expresses both high and low
metal affinity sites. The AD patients are characterized by elevated levels of copper and zinc in the
hippocampal region. These metals have been found to accelerate the accumulation of Aβ and promote
the ROS release to the cells. Cu2+ acts as a bridge between anionic groups on HSPGs and cationic
groups of the NFTs. It was also found that free carboxyl groups are required for HSPG binding to
NFTs. Heparin can bind to the extracellular superoxide dismutase, a homotetrameric Cu2+ and Zn2+

containing glycoprotein, and regulate the activity of these metals which reduce accumulation of Aβ

peptides (Figure 6).
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4. Studying ECM Effects in hiPSC-Derived Forebrain Organoids

Combining the knowledge of forebrain organoids and the ECM development in AD pathology,
our studies used heparin (competes for Aβ affinity with HSPG), heparinase III (digests HSPGs),
chondroitinase (digests CSPGs), and hyaluronic acid (HA) to treat the cortical and hippocampal
forebrain spheroids/organoids exposed to Aβ42 oligomers [166]. Briefly, cortical spheroids were
generated using dual SMAD inhibition followed with FGF-2 and cyclopamine (an Shh inhibitor).
In the case of hippocampal differentiation, the hiPSCs were treated with dual SMAD inhibitors,
cyclopamine, and IWP4 (a Wnt inhibitor), followed by treatment with CHIR99021 (a Wnt activator)
and BDNF. Exogenous addition of Aβ42 oligomers was found to reduce the expression of β-tubulin
III, suggesting the associated neuronal cell death. The treatments of ECM-related molecules with
Aβ42 oligomers promoted β-tubulin III expression, indicating the protective effect of these ECM
related molecules. Further analysis on the forebrain and hippocampal markers revealed that ECM
enzymes were capable of rescuing TBR1+ cells in cortical forebrain spheroids and PROX1+ neurons
in the hippocampal spheroids in the presence of Aβ42 oligomers. These results suggest the
necessity of further evaluation of various brain ECMs on forebrain spheroid patterning and cell
survival and the related neurological disorders to derive better therapeutic interventions. In addition,
heparin-conjugated HA hydrogels were synthesized and characterized [107]. A comparative study
with heparin-HA hydrogels with varying modulus reveals that the lower modulus (300–400 Pa)
hydrogel supports the forebrain fate whereas the higher modulus (1000–1300 Pa) hydrogel supports
hindbrain fate of hiPSCs. This patterning effects may be regulated through modulation of the
Hippo/YAP signaling.
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5. Conclusions and Perspectives

Recently, the findings of adult neurogenesis in humans have sharply declined, which raises
questions about animal models to study human central nervous system [167]. The emerging hPSC
technology and organoid methods represent promising opportunities to investigate the development
of human brain and neurological diseases. These stem cell-based organoid systems have recapitulated
some biological events, such as temporal and spatial organization of brain tissues, neuronal-glial cell
interactions, and cell-matrix interactions. However, these models need to show promise to reveal
new features of normal and pathological phenomena of neurogenesis. One aspect of the interests
is that the patient-derived hPSCs with mutations, such as APP or PS1/PS2, could be used to study
the roles of specific genes in FAD development and progression. Another aspect is that organoids
provide a more advanced in vitro tool to investigate complex niche interactions, such as how HSPGs
are involved in Aβ pathogenesis. While the organoid models have great advantages, they are also
challenged by the low homogeneity and reproducibility. The brain organoids may be different from
each other not only in size but also structure, which makes it difficult to control the quality and predict
the readouts. Future improvements, such as novel biomaterials combined with new culture system
design (e.g., microfluidics), may be utilized to better control neural patterning in a more accurate and
predictable way.
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