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Abstract

Often, the reader of a published paper is interested in a comparison of parameters that has not been presented. It is not
possible to make inferences beyond point estimation since the standard error for the contrast of the estimated parameters
depends upon the (unreported) correlation. This study explores approaches to obtain valid confidence intervals when the
correlation (r) is unknown. We illustrate three proposed approaches using data from the National Health Interview Survey.
The three approaches include the Bonferroni method and the standard confidence interval assuming r~{1 (most
conservative) or r~0 (when the correlation is known to be non-negative). The Bonferroni approach is found to be the most
conservative. For the difference in two estimated parameter, the standard confidence interval assuming r~{1 yields a
95% confidence interval that is approximately 12.5% narrower than the Bonferroni confidence interval; when the correlation
is known to be positive, the standard 95% confidence interval assuming r~0 is approximately 38% narrower than the
Bonferroni. In summary, this article demonstrates simple methods to determine confidence intervals for unreported
comparisons. We suggest use of the standard confidence interval assuming r~{1 if no information is available or r~0 if
the correlation is known to be non-negative.

Citation: Fitzmaurice G, Lipsitz S, Natarajan S, Gawande A, Sinha D, et al. (2014) Simple Methods of Determining Confidence Intervals for Functions of Estimates
in Published Results. PLoS ONE 9(5): e98498. doi:10.1371/journal.pone.0098498

Editor: Nandita Mitra, University of Pennsylvania, United States of America

Received February 12, 2014; Accepted May 4, 2014; Published May 28, 2014

Copyright: � 2014 Fitzmaurice et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Support provided by grants MH 054693, CA 160679, and CA 06922 from the U.S. National Institutes of Health. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: gfitzmaurice@partners.org

Introduction

The conventional presentation of measures of association or

effect in medical journals is in terms of tables of estimates and

standard errors. Unfortunately, this information alone does not

allow readers to make inference on a comparison of interest that

has not been presented. Although point estimation of the contrast

is straightforward, inference is not because its standard error

depends upon unreported correlations among the published

estimates. There can be substantial correlation among the

estimates due to the study design (e.g., clustering in complex

sample surveys), the method of estimation (e.g., adjusted estimates

that control for confounding), or comparisons with a common

reference group.

For example, a recent article on PSA screening, using data from

the 2000 and 2005 National Health Interview Survey (NHIS),

presents unadjusted estimates and confidence intervals, of the US

population screening rates for men $70 years old in three distinct

life expectancy groups [1]. However, these results do not permit

inferences about comparisons among the three groups. The

unadjusted estimates of the population PSA screening rates in the

three groups are correlated due to the complex sampling frame

utilized in these surveys with stratification and clustering. Because

there are individuals from the same cluster in all three groups, and

observations from the same cluster tend to be positively correlated,

the unadjusted estimates of PSA screening rates in the three

groups are positively correlated. To make inference on the

differences in the screening rates in the three groups, we require

standard errors for the differences. However, these depend not

only on the standard errors for the estimated rates but also on the

unreported correlations among the estimated rates.

Another common example where conventional presentation of

estimates and standard errors does not allow readers to make

inference on a comparison of interest is the reporting of effects of

categorical covariates in regression models. For example, in the

PSA screening study, the authors also present the results of a

logistic regression model for screening rates, where one of the key

covariates is the life expectancy variable discussed earlier,

categorized as ’high’, ’intermediate’, or ’low’, with ’high’ being

the reference group. Adjusted odds ratios and 95% confidence

intervals are presented. Suppose, however, the reader is interested

in the odds ratio for ’intermediate’ versus ’low’. An estimate can be

obtained by taking the ratio of the reported odds ratios of

’intermediate’ versus ’high’ and ’low’ versus ’high’; note, the two

odds ratios forming this ratio are correlated because they involve a

comparison with a common reference group (’high’). However, a
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confidence interval for this ratio cannot be obtained without

information about the (unreported) correlation between the two

odds ratios.

This note provides simple, theoretically valid methods to obtain

confidence intervals for these measures of effect that will have the

correct coverage probabilities, i.e., in repeated sampling from the

same population, the proportion of 95% confidence intervals that

contain the true value will be at least 95%. For many studies, the

typical contrast of most interest is a simple difference in

parameters; for example, a difference in rates (or log rates), or a

difference in log odds. We describe methods to obtain confidence

intervals using differences in correlated estimates. In Section 1 of

the Methods we describe the use of the Bonferroni inequality to

obtain confidence intervals. In Section 2 of the Methods we discuss

the potential conservativeness of the Bonferroni method and

consider alternative methods for obtaining less conservative

confidence intervals. In the Results, these methods are applied

to the PSA screening study.

Methods

1. Bonferroni Method for Difference in Parameters
Most readers of medical journals are familiar with the

Bonferroni inequality as applied to multiple tests [2]. In that

setting, to preserve an overall 5% chance of finding significant

results if K tests are performed, each test is performed at a

significance level of 5% divided by K. In this section, we consider

differences of two parameters b1 and b2 (here K = 2); say D= b12

b2. We obtain a confidence interval for D by first obtaining

separate confidence intervals for b1 and b2, and then combining

the endpoints of the two confidence intervals. However, by the

Bonferroni inequality [3], for the resulting confidence interval for

D to have 95% coverage probability, we must calculate 97.5% CI’s

for b1 and b2 before combining them.

Specifically, if b̂bj , j = 1,2, is approximately normally distributed,

then a 97.5% CI for bj is b̂bj+2:24 se(b̂bj) where se(b̂bj) is the

estimated standard error of b̂bj We denote the 97.5% CIs for b1

and b2, by ½b̂b1L, b̂b1U � and ½b̂b2L, b̂b2U �, respectively. The lower and

upper limits of the Bonferroni 95% CI for the difference in

parameters D, (DL, DU), is

½b̂b1L{b̂b2U ,b̂b1U{b̂b2L�

or equivalently (b̂b1{b̂b2)+2:24 ½se(b̂b1)zse(b̂b2)�; see [4], for

example, for a detailed proof of this result.

2. Less Conservative Confidence Intervals
The Bonferroni confidence interval has the desirable property

that it can be easily calculated, and does not require any

knowledge or assumptions about the correlation between b̂b1 and

b̂b2. However, Bonferroni confidence intervals are known to be

conservative (unnecessarily wide) when many confidence intervals

are simultaneously calculated [5]. Although the 95% Bonferroni

confidence interval for D= b12b2 is based on only two confidence

intervals, it can still be conservative, as we now discuss. Further,

we also describe a simple alternative that is less conservative.

Recall that the 95% Bonferroni confidence interval for D= b12

b2 is:

(b̂b1{b̂b2)+2:24 ½se(b̂b1)zse(b̂b2)�:

In contrast, a general expression for the standard 95%

confidence interval for D= b12b2 is:

(b̂b1{b̂b2)+1:96
�
se2(b̂b1)zse2(b̂b2){2 r̂r se(b̂b1) se(b̂b2),

where r̂r is the (unreported) estimated correlation between b̂b1 and

b̂b2. From this expression, note that the standard error for (b̂b1{b̂b2)
takes on its maximum value, and thus the confidence interval is

widest, when r̂r~{1, yielding

(b̂b1{b̂b2)+1:96
�
se2(b̂b1)zse2(b̂b2)z2 se(b̂b1) se(b̂b2)

.

However, it can easily be shown that

se2(b̂b1)zse2(b̂b2)z2 se(b̂b1) se(b̂b2)~½seb̂b1)zse(b̂b2)�2

,so that a less conservative confidence interval than the Bonferroni

interval has the simple form

(b̂b1{b̂b2)+1:96 ½se(b̂b1)zse(b̂b2)�:

This yields a confidence interval that is 12.5% narrower than

the corresponding Bonferroni confidence interval presented

earlier, while ensuring coverage probability of at least 95%. We

also note that this 95% confidence interval is even more

straightforward to calculate because it involves only differences

between the reported lower and upper limits of the 95%

confidence intervals for b1 and b2. That is, if we now denote the

95% CIs for b1 and b2 by ½b̂b1L, b̂b1U � and ½b̂b2L, b̂b2U �, respectively,

then the 95% CI for D= b12b2 is simply ½b̂b1L{b̂b2U , b̂b1U{b̂b2L�:
Finally, in the two examples that have motivated this paper,

although the value of the correlation between b̂b1 and b̂b2 may not

be known, it can safely be assumed to be positive, i.e., r̂r§0. In

both of these settings, even less conservative confidence intervals

can be obtained by assuming r̂r~0. This yields the following 95%

confidence interval for D= b12b2:

(b̂b1{b̂b2)+1:96
�
se2(b̂b1)zse2(b̂b2):

When se(b̂b1)&se(b̂b2) this yields a 95% confidence interval that

is approximately 38% narrower than the corresponding Bonfer-

roni confidence interval and 29% narrower than the correspond-

ing confidence interval assuming r̂r~{1. When se(b̂b1)=se(b̂b2)
this yields confidence intervals that are anywhere from 12.5% to

38% narrower, i.e., the improvements relative to the Bonferroni

method are greater when se(b̂b1)&se(b̂b2). Finally, when the

correlation is known (and positive) rather than assumed to be

zero, the standard method yields confidence intervals that are

13%, 29%, and 50% narrower than our proposed method for

correlations of 0.25, 0.5, and 0.75 respectively when

se(b̂b1)&se(b̂b2); the differences between the methods are more

modest when se(b̂b1)=se(b̂b2). This emphasizes the point that while

the proposed method is an improvement over the Bonferroni

method, it can be quite conservative when the correlation is

appreciable.

Confidence Intervals for Functions of Estimates
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Results

Application to Prostate-Specific Antigen Screening Study
We apply the proposed method to the results from the PSA

screening study [1]. The authors present unadjusted estimates of

the US population screening rates for men $70 years old in three

life expectancy groups: 1) those having high life expectancies (15%

probability of 5-year mortality), 2) intermediate life expectancies

(16% to 47% probability of 5-year mortality), and 3) low life

expectancies ($48% probability of 5-year mortality). Suppose we

are interested in the screening rate differences among groups. The

reported estimated rates (95% CIs) are 47.3% (44.0%, 50.6%) for

the high life expectancy group; 39.2% (35.9%, 42.4%) for the

intermediate life expectancy group; and 30.7% (25.8%, 35.6%) for

the low life expectancy group. It is easily seen that these confidence

intervals are symmetric about the rates, and thus equal the

estimates 61.96 standard errors. Therefore, the estimated

standard errors are 1.7 for the high life expectancy group; 1.7

for the intermediate life expectancy group; and 2.5 for the low life

expectancy group, respectively. Recognizing that due to the

complex survey design with clustering, the correlation between the

rates can safely be assumed to be positive, a 95% confidence

interval for the rate difference, say D= b12b2, can be calculated

as (b̂b1{b̂b2)+1:96
�
se2(b̂b1)zse2(b̂b2): Thus, the screening rate

difference of high versus low life expectancy groups is 16.6%

(10.7%, 22.5%) and intermediate versus low life expectancy

groups is 8.5% (3.8%, 13.2%). In contrast, the more conservative

95% Bonferroni confidence interval for the rate difference,

(b̂b1{b̂b2)+2:24 fse(b̂b1)zse(b̂b2)g, yields discernibly wider confi-

dence intervals: (7.2%, 26.0%) for high versus low life expectancy

groups and (20.9%, 17.9%) for intermediate versus low life

expectancy groups.

Further, in the PSA screening study, the authors also present the

results of a logistic regression model for screening rates, where one

of the key covariates is the life expectancy variable discussed

above, categorized as high, intermediate, or low, with ’high’ being

the reference group. Adjusted odds ratios and 95% confidence

intervals are presented. From the paper, the estimated adjusted

odds ratio for screening (95% CIs) are 0.81 (0.65, 1.01) for

intermediate versus high; and 0.66 (0.48, 0.91) for low versus high.

Further, it is easily seen that these confidence intervals were

initially obtained on the log odds ratio scale as log OR61.96 se(log

OR), and the endpoints for this CI were exponentiated. Thus, the

estimated adjusted log-odds ratio for screening (se) is 20.21 (0.11)

for intermediate versus high; and 20.42 (0.16) for low versus high.

Suppose we are interested in the odds ratio for intermediate versus

low group. Recognizing that the reported estimated adjusted log-

odds ratios are positively correlated due to the common reference

group for both estimates, the log-odds ratio for intermediate versus

low group is 20.212(20.42) = 0.21, with 95% CI (20.17, 0.59);

this 95% CI is based on the expression,

(b̂b1{b̂b2)+1:96
�
se2(b̂b1)zse2(b̂b2), from Section 2 of the Methods

(assuming r̂r~0). Exponentiating the log odds ratio and the

endpoints of the 95% CI, we obtain an adjusted odds ratio (95%

CI) for the intermediate versus low group of 1.23 (0.84, 1.81). Note

that if one uses the most conservative assumption about the

correlation (r̂r~{1) with (b̂b1{b̂b2)+1:96 ½se(b̂b1)zse(b̂b2)� then

the 95% CI for the intermediate versus low group, (0.73, 2.09) is

wider than under the assumption that r̂r~0, although somewhat

narrower than the corresponding 95% Bonferroni confidence

interval with (b̂b1{b̂b2)+2:24½se(b̂b1)zse(b̂b2)�, which equals

(0.66,2.28).

Discussion

This article demonstrates simple and theoretically valid methods

to determine confidence intervals for comparisons of interest that

have not been reported. The main focus is on univariate functions

of two parameters, such as the rate difference or relative risk or a

regression parameter for a different reference group than

published. All of the methods described in this paper are very

simple to apply; with the appropriate results abstracted from a

published paper, a calculator can be used to obtain the confidence

interval and make inferences on a comparison of interest. The

methods can also be applied when standard errors based on the

bootstrap or other resampling methods have been reported as an

alternative to the usual asymptotic standard errors; however, the

validity of the methods does require the assumption that the

sampling distribution of the estimates is approximately normal.

Although the 95% Bonferroni confidence interval is statistically

valid, it is conservative. We propose an alternative to the

Bonferroni confidence interval using the most conservative

assumption about the correlation (r̂r~{1), which leads to a less

conservative confidence interval. Finally, there are many settings

where the value of the correlation between b̂b1 and b̂b2 may not be

known, but it can safely be assumed to be positive. In those

settings, an even less conservative confidence interval can be

obtained by assuming zero correlation. Although the proposed

method is an improvement over the Bonferroni method, it can be

quite conservative when the correlation is appreciable and should

only be used when the information required to construct more

appropriate confidence intervals is not available.

There is a connection between the proposed method and the

approach of testing whether two parameters are different by

looking at whether there is overlap between the confidence

intervals for the estimates of the parameters [6]. The focus of the

latter method is on hypothesis testing, rather than the construction

of confidence intervals, and is most commonly applied when the

estimates are independent (hence uncorrelated). It can be shown

that the approach of comparing overlap between confidence

intervals is equivalent to making the conservative assumption that

r= 21; see [6]. In contrast, in that setting, our proposed method

differs and is less conservative since the upper bound for the

standard error would be based on the assumption that r= 0.

Finally, we note that there are some measures, such as the

population attributable risk [4], that cannot be formulated as

differences in two parameters; in the Appendix we extend the

results in Section 2 of the Methods for such non-linear functions of

two parameters. The method can also be applied in the meta

analysis of a general function of two parameters, say g(b1,b2), when

for one or more of the studies only point estimates and standard

errors are available for b1 and b2. The usual fixed effect meta-

analytic estimator is simply a weighted average, with weights that

are the inverse of the variance (or squared standard errors). The

method described in the Appendix can be used to obtain an upper

bound for the standard error, and hence the weight, when only

point estimates and standard errors are available for b1 and b2.

Appendix

Confidence Intervals for General Non-Linear Functions
Suppose we are interested in a general non-linear univariate

function of the two parameters, say g(b1,b2), which cannot be

written as a difference b12b2. Because of the conservativeness of

the Bonferroni confidence interval in Section 1 of the Methods in

comparison to the alternative confidence interval proposed in

Section 2, here we discuss confidence intervals similar to those in

Confidence Intervals for Functions of Estimates
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Section 2 for a general non-linear function. That is, we consider

95% confidence intervals of the form g(b̂b1, b̂b2)+1:96se

fg(b̂b1, b̂b2)g, using a conservative estimate for sefg(b̂b1, b̂b2)g.
Using the so-called ‘‘delta method’’, sefg(b̂b1, b̂b2)g can be

approximated as

sefg(b̂b1, b̂b2)g&
�
D2

1se2(b̂b1)zD2
2se2(b̂b2)z2 r̂rD1 D2se(b̂b1) se(b̂b2),

where D1 is the derivative of g(b̂b1, b̂b2) with respect to b̂b1 and D2 is

the derivative of g(b̂b1, b̂b2) with respect to b̂b2, and r̂r is again the

(unreported) estimated correlation between b̂b1 and b̂b2.

For example, consider the population attributable risk (PAR),

PAR~Pd
RR{1

RR

� �
,

where Pd is the probability of exposure given disease, and RR is the

multivariate relative risk. For the PAR, with b1 = Pd and b2 = RR

the delta method gives,

sefPARg&Þ R̂R{1

RR̂

 !2

se2( P̂d)z
P̂d

R̂R2

 !2

se2( R̂R )z2 r̂r
(R̂R{1) P̂d

R̂R3

 !
se( P̂d) se( R̂R)

,where r̂r is the estimated correlation between pd
^

and RR
^

. From

published results, one can easily obtain all the estimates [ RR
^

, pd
^

,

se(pd
^

) ,se(RR
^

)] in sefPARg, so that one would again choose the

value of r̂r that gives the maximum value of sefPARg. If RR
^

$1,

then one would choose r̂r = 1; if RR
^

,1, then one would choose

r̂r = 21. Finally, we note that the Bonferroni method can also be

used to obtain confidence intervals for the PAR; see [4]. Both

methods ensure coverage probability of at least 95%. However, as

discussed in Section 2 of the Methods, the use of an upper bound

for the standard error of the difference, b12b2, yields narrower

confidence intervals than the Bonferroni method; we conjecture

that this result also holds for non-linear functions of the two

parameters such as the PAR.
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