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Metabolomics Approach Based on 
Multivariate techniques for Blood 
transfusion Reactions
seul Ji Lee1, Haiping Wang1, soo Hyun Ahn2, Mi Kwon son3, Gyu Hwan Hyun1, 
sang Jun Yoon1, Jeongmi Lee4, Jeong Hill park5,6, Johan Lim7, soon-sun Hong3 & 
sung Won Kwon5

Blood transfusions temporarily improve the physical state of the patient but exert widespread 
effects on immune and non-immune systems. Perioperative allogeneic blood transfusions (ABT) are 
associated with various risks, including coagulopathy, incompatibility, transmission of infectious 
agents, and allergic reactions. Nevertheless, little is known about the global metabolic alterations 
that reflect the possible reactions of blood transfusions. In this study, we investigated metabolite 
changes generated by ABT in a rat model using metabolomics technology. To further profile the 
“metabolome” after blood transfusions, we used both liquid chromatography-quadrupole time-of-
flight high-definition mass spectrometry and gas chromatography-mass spectrometry. ABT promoted 
a stimulatory microenvironment associated with a relative increase in glucose transporter 1/4 (GLUT1/
GLUT4) expression. Supporting this result, glucose metabolism-related enzyme IRS1 and interleukin-6 
(IL-6) were abnormally expressed, and levels of lysophosphatidylcholine (LysoPC) and its related 
enzyme phospholipase A2 (PLA2) were significantly altered in allogeneic groups compared to those in 
autologous groups. Finally, amino acid metabolism was also altered following ABT. Taken together, 
our results show a difference between autologous and allogeneic blood transfusions and demonstrate 
correlations with cancer-associated metabolic changes. Our data provide endogenous information for a 
better understanding of blood transfusion reactions.

As a lifesaving therapeutic treatment, there is a need for blood transfusions in patients undergoing surgery1 or 
with anemia2. However, blood transfusions still pose significant risks, including coagulopathy, incompatibility, 
transmission of infectious agents, and allergic reactions3–7. In a recent study, although blood transfusion reac-
tions are rare, the risk of death, postoperative infection, and other adverse clinical outcomes was elevated among 
patients who received perioperative allogeneic blood transfusion (ABT)8,9. Moreover, based on the integration 
of data from observational studies via meta-analyses, significant associations between perioperative ABT and 
related cancer-specific mortality or cancer recurrence have been reported10,11. Accordingly, it is worth noting 
that the situations in which patients are perioperatively given ABT are likely to show side effects or induce cancer 
recurrence. Although a hypothesis regarding the genome and proteome, termed transfusion-related immuno-
modulation (TRIM), has been extensively proposed12,13, the molecules and mechanisms involved have not been 
fully elucidated14. Additionally, it is not known whether this problem is confined to immunosuppression.

Metabolomics involves the systematic study of endogenous metabolites and aims to comprehensively quantify 
and identify metabolites from biological samples that are the end products of cellular processes15. Gene expres-
sion data and proteomic analyses cannot provide a full description of the underlying physiology, and thus metab-
olomics is a useful supplement, offering a better understanding of physiological changes16. For the sake of gaining 
new insight into blood transfusions as well as to provide a new theoretical basis for clinical research, it is neces-
sary to clarify the global metabolic alterations that accompany blood transfusions. The exploration of biomarkers 
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contributes significantly to the development of supporting theoretical explanations for the results of clinical study. 
Distinguishing allogeneic blood transfusions from autologous blood transfusions may lead to the identification of 
critical biomarkers with adverse impacts on cancer patients who receive ABT for treatment17.

As a model for the study of humans, rats offer many advantages over mice and other organisms. More specifi-
cally, rats were once successfully used in blood transfusion research18–20. In this article, we established blood trans-
fusion models in two strains of laboratory rats, Lewis rats and Sprague-Dawley (SD) rats, as all members of each 
strain are nearly genetically identical21. Moreover, due to the high sensitivity and selectivity of high performance 
liquid chromatography-quadrupole-time-of-flight combined with mass spectrometry (HPLC-Q-TOF-MS)22, it 
is often used to profile changes in endogenous metabolites. Additionally, gas chromatography combined with 
mass spectrometry (GC-MS) has particular advantages for the analysis of compounds with relatively low molec-
ular weights23,24; therefore, more comprehensive metabolite profiling can be conducted by performing both 
HPLC-Q-TOF-MS and GC-MS.

This study focused on the differences between autologous and allogeneic blood transfusions in a rat model 
that provides a highly physiologically relevant setting for studying the interplay between blood transfusions and 
homeostasis in the microenvironment. The acquired data were optimized using a series of statistical approaches, 
and differential metabolites were identified using standards and databank-based MS/MS spectrum analysis. On 
the basis of the relevant literature and pathway databases, the biological natures of the various markers, includ-
ing lipids, glucose, and amino acids, were discussed to further elucidate the possible mechanisms underlying 
the negative impact of ABT. We also found that levels of GLUT1/4, PLA2, IL-6, and IRS-1 varied in the plasma. 
Interestingly, these common transporters or signals differentially affected the regulatory cells involved in cancer 
metabolism. These findings suggest new non-clinical evidence of blood transfusion-associated impacts on cancer.

Results
Observation. Fourteen Lewis rats received a 1-mL transfusion of Lewis rat blood through the dorsal vein as 
a control (autologous) group, and 14 others received a 1-mL transfusion with SD rat blood as a test (allogeneic) 
group. Seven days after autologous blood transfusion and ABT, all of the experimental animals appeared in good 
condition, and no abnormalities were found. During the process of blood sampling, no hemolysis occurred.

Global detection of biomarker candidates. We used HPLC-Q-TOF-MS and GC-MS to identify global 
differences in metabolites in rat blood following autologous and allogeneic blood transfusions. We implemented 
the empirical Bayes procedure by Efron25 [local false discovery rate (FDR)] to control for multiple testing errors 
that arise when testing many hypotheses simultaneously. At a local FDR level of 0.1, we tested both the null 
hypothesis (Hp0) of no difference in the proportion of subjects with a non-zero intensity and the null hypothesis 
(Hμ0) of no difference in the mean of the intensity. Therefore, we tested the overall null hypothesis 

∩= μH H H( )p0 0 0  of no difference in both the proportion and mean of the intensity at a local FDR level of 
0.2 (= 2 × 0.1).

More specifically, for the HPLC-Q-TOF-MS data, we considered the ith metabolite as displaying a significantly 
different non-zero intensity proportion if ≤ . × −p 5 765 10pi

LC 3 at the local FDR level of 0.1. Also, at the local FDR 
level of 0.1, we considered the ith metabolite as showing a significantly different mean of the intensity if 

≤ . ×μ
−p 5 969 10i

LC 7. As a result, we identified 474 significant metabolite features at a local FDR level of 0.2 based 
on the HPLC-Q-TOF-MS data. In the same manner, for the data from GC-MS, we identified 196 metabolite fea-
tures satisfying ≤ . × −p 4 846 10pj

GC 2 or satisfying ≤ . ×μ
−p 6 812 10j

GC 5 at a local FDR level of 0.2.

Identification of differential metabolites. Identification of compounds detected by GC-MS was based 
on comparisons of mass spectra, retention indices (RIs), and authentic standards. According to comparison with 
the NIST and WILEY mass spectral databases registered in the GC-MS analysis system, followed by detection of 
the corresponding standards using GC-MS, 16 metabolites were identified. The combination of chromatographic 
properties and mass spectra gave an indication of a match to a specific compound (Fig. S4). In HPLC-Q-TOF-MS 
analysis, structural elucidation of metabolites should be routinely performed by the acquisition of additional MS 
data. Therefore, in the second step, we applied MS/MS experiments using an ion collision energy of 10–50 eV 
in the positive mode to obtain structural information via interpretation of the fragmentation patterns of the 
biomarker candidates. The typical mass error was less than 5 ppm. All lysophosphatidylcholines (LysoPCs) were 
confirmed based on characteristic fragments of 184.07, 104.11, and 86.1 m/z, as previously described26,27. These 
features were tentatively compared with those of the online database. The identification results confirmed that 
most of the candidates had a specific spectrum (Figs S5–S13). To qualitatively evaluate the confidence of metabo-
lite identification, the standard LysoPC(17:0) was run on the same instrument with the same parameters.

Ultimately, 24 discriminant metabolites for distinguishing allogeneic from autologous blood transfusions were 
identified, including LysoPC (14:0), LysoPC (16:0), LysoPC (16:1), LysoPC (18:0), LysoPC (18:1), LysoPC (18:2), 
LysoPC (20:2), LysoPC (20:4), alanine, citric acid, glucose, glutamic acid, glutamine, glycine, isoleucine, lactic 
acid, lysine, ornithine, proline, pyroglutamic acid, serine, threonine, urea, and valine (Table 1).

Multivariate analysis. Principal component analysis (PCA) plots were generated to visualize the explana-
tory power of the identified marker candidates. The concentrations of the 24 marker candidate metabolites were 
confirmed to differ depending on the type of transfusion (allogeneic or autologous), as shown by the score plot, 
and the differences were confirmed by partial least squares discriminant analysis (PLS-DA) (Fig. 1).

Furthermore, clustering analysis was conducted using these 24 marker candidates. Samples from each of the 
blood transfusion types were shown to cluster as a group (Fig. 2), and a heat map of the clustering results was 
generated using Euclidian distances and Ward’s linkage.
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Sandwich enzyme-linked immunosorbent assay (ELISA). We analyzed IL-6, GLUT1, GLUT4, PLA2, 
and IRS1 levels in rat sera using sandwich ELISA, and each analysis included a standard curve. A representative 
standard curve for each of the five analyses is shown in Fig. 3(a–e). The linearity of each standard curve was con-
firmed, and R values of 0.99 (0.96 for GLUT1) were noted. The GLUT1, GLUT4, and IL-6 levels of the ABT test 
group were increased by approximately 143%, 116%, and 414%, respectively, compared with levels in the control 
group. In contrast, levels of PLA2 and IRS1 were approximately 54% and 44% lower than those of the autologous 
blood transfusion group, indicating the loss of activity of these two receptors (Fig. 3f). All five of these analyses 
showed significant differences (p < 0.05) between the autologous and allogeneic blood transfusion groups.

Pathway analysis and interpretation. We next aimed to evaluate the obtained metabolomes in depth 
using Ingenuity Pathway Analysis (IPA), a web-based omics application for analyzing and interpreting metabo-
lomes and transcriptomes. The results of pathway analysis showed that each metabolite or protein was directly 
or indirectly related to the others (Fig. 4). Notably, all 22 entities were found to be connected with the entity 
“cancer”, indicating that changes in endogenous expression as a result of ABT may be related to cancer. The results 
of the fold change analysis revealed that the metabolome expression of lysine, urea, alanine, glutamine, isoleu-
cine, ornithine, LysoPC(20:4), citric acid, LysoPC(18:2), LysoPC(14:0), glycine, LysoPC(16:0), LysoPC(18:1), 
LysoPC(20:2), and LysoPC(18:0) in the allogeneic group was less than half that in the control group. Moreover, 
the metabolome expression of glucose, serine, proline, valine, pyroglutamic acid, glutamic acid, threonine, 
and lactic acid in the allogeneic group was more than twice that in the control group. Additionally, we used 
MetaboAnalyst to conduct an enrichment analysis of this pathway-associated metabolite set. The results indicated 
a significant Warburg effect (p = 0.00132, FDR = 0.0234) (Fig. S14).

Discussion
In this study, we conducted for the first time a metabolic profile of rats undergoing allogeneic and autologous 
blood transfusions using GC-MS and HPLC-Q-TOF-MS to identify potential metabolic responses. Based on 
pathway analysis, the identified metabolites and proteins were found to be related to the entity “cancer”, implying 
a relationship between ABT and cancer.

The modulation of the immune systems of ABT recipients has been accepted as a condition known as TRIM28. 
As a key component of low-density lipoproteins (LDL)29, LysoPC regulates a variety of biological processes, 
including cell proliferation, tumor cell invasiveness, and inflammation. Not only does it promote inflammatory 
effects, including increased expression of endothelial cell adhesion molecules and growth factors, monocyte 
chemotaxis, and macrophage activation30,31, but it also is considered to be a potent regulator of T cell-activated 
inflammation at sites of tissue damage based on a previous study. Therefore, LysoPC is a natural adjuvant for 
the immune system, inducing humoral and cellular immune responses32. As a consequence, the reductions in 

Potential biomarker Molecular weight −log10 (p)
Log2 (Fold change) 
(test/control)

GC-MS

Alanine 89.09 1.90 −12.49

Citric acid 192.12 1.86 −3.56

Glucose 180.16 6.33 1.89

Glutamic acid 147.13 5.01 15.07

Glutamine 146.15 19.79 −11.82

Glycine 75.07 3.02 −2.02

Isoleucine 131.18 11.32 −11.76

Lactic acid 90.08 4.17 17.62

Lysine 146.19 10.44 −15.32

Ornthine 132.16 1.89 −10.52

Proline 115.13 5.31 5.19

Pyroglutamic acid 129.12 1.87 13.72

Serine 105.09 2.64 2.99

Threonine 119.12 6.14 17.49

Urea 60.06 2.86 −13.52

Valine 117.15 3.48 11.92

HPLC-Q-TOF-MS

LysoPC (14:0) 467.30 22.43 −2.32

LysoPC (16:0) 495.33 2.56 −1.39

LysoPC (16:1) 493.32 2.13 −0.94

LysoPC (18:0) 523.36 3.38 −1.14

LysoPC (18:1) 521.35 2.02 −1.29

LysoPC (18:2) 519.33 2.32 −3.16

LysoPC (20:2) 547.36 4.21 −1.23

LysoPC (20:4) 543.68 3.47 −5.39

Table 1. Identified metabolites that differentiate rats subjected to allogeneic (test) and autologous (control) 
blood transfusions.
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LysoPC observed in the present study indicate that the suppression of T cells may occur in immune reactions after 
ABT, which may weaken the anti-tumor response. A similar phenomenon is described by the TRIM hypothesis, 
including the suppression of the activities of cytotoxic cells and monocytes, release of immunosuppressive pros-
taglandins, and increase in suppressor T-cell activity after blood transfusions33–36.

Another aspect of the metabolic regulation of the effector phase for tumor occurrence is the dependence on 
aerobic glycolysis in most cancer cells, a phenomenon termed “the Warburg effect.” Abundant glucose availability 
allows the production of ATP quickly through the aerobic glycolysis pathway, which also generates important 
metabolic intermediates for cancer cell growth and proliferation37. More recently, studies have demonstrated 
the high rate of glucose utilization by tumor cells, invoking the idea of using the Warburg effect against cancer 
cells by reducing glucose levels38,39. Our results show that in comparison to autologous blood transfusions, levels 
of glucose are higher after allogeneic blood transfusions, and this increase in glucose as a consequence of blood 
transfusion provides an excellent environment for the growth of cancer cells. Likewise, our results indicated that 
the expression of other glycolysis-related metabolites, such as citric acid, glutamine, glutamic acid, and lactic acid, 
was altered as well. We also conducted an enrichment analysis and showed that the marker candidates are associ-
ated with a Warburg effect. The activation of glucose transporters GLUT1 and GLUT4 together with glucose plays 
important roles in central carbon metabolism in cancer40,41. The potential connection between glucose growth 
and LysoPC and its relative receptors can be explained by the fact that LysoPC has been found to potentially 
enhance glucose uptake, reducing blood glucose levels in normal mice42. Additionally, in other studies, research-
ers have discovered a positive correlation between phospholipase A2 (PLA2) and glucose levels43. These results 
suggest that a reduction in LysoPC may directly or indirectly affect glucose homeostasis.

In addition, the results in this study indicate the up- and down-regulation of several amino acids follow-
ing ABT, such as alanine, glycine, glutamine, isoleucine, lysine, proline, serine, threonine, and valine. Amino 
acid metabolism has been a focus of increased attention from cancer researchers and immunologists due to its 

Figure 1. Multivariate statistical analysis based on non-targeted metabolite profile data derived from allogeneic 
(test) and autologous (control) blood transfusions. PCA (a) and PLS-DA (c) score plots for the first two 
components obtained from GC-MS and HPLC-Q-TOF-MS data. PCA (b) and PLS-DA (d) loading plots.
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importance in the metabolic reprogramming of proliferating cells. Many amino acid metabolic enzymes are 
described as immunosuppressive in the tumor microenvironment and represent targets for cancer therapy44. 
Therefore, it is expected that changes in the expression of these amino acids in the metabolome following ABT 
would have the potential to affect the development of cancer.

Based on the biomarkers identified in this study, we propose a metabolic pathway related to blood 
transfusion-induced changes. Our ELISA results help to illustrate the possible roles of different transporters and 
signaling molecules. The suppression of IRS1 and the activation of IL-6 are both reported to induce or promote 
tumor metastasis45,46. Although the pathways identified by previous studies47–49 indicated, in part, the dysregula-
tion of LysoPC and glucose in some diseases, the elucidation of this pathway will facilitate our understanding of 
the likely effects of ABT. However, additional studies should be conducted to confirm the role of this pathway in 
blood transfusions and cancer recurrence.

Methods
Chemicals and reagents. All chemicals and reagents, unless otherwise stated, were purchased from Sigma-
Aldrich Inc. (St. Louis, MO, USA). HPLC-grade chloroform, water, acetonitrile, and methanol were purchased 
from Avantor Performance Materials Inc. (Center Valley, PA, USA). The lipid standard was purchased from 
Avanti Polar Lipids (Alabaster, AL, USA).

Rat model, blood transfusions, and sample collection. Twenty-eight male adult Lewis rats (160–
180 g) were used as the transfusion recipients, while 14 adult Lewis rats and 14SD rats were used as blood 
donors. All animals were housed in individual cages and given food and water ad libitum throughout the study. 
Animals were observed for over two weeks prior to initiation of the study to check for evidence of pre-existing 
abnormalities.

Blood was obtained from donor animals by vena cava puncture and was transfused into recipients immedi-
ately after drawing to avoid the influence of anticoagulants and additional agents. Fourteen Lewis rats received a 
1-mL transfusion50 with Lewis rat blood through the dorsal vein as a control group, and 14 others received a 1-mL 
transfusion with SD rat blood as a test group. This volume of donor blood was chosen to closely approximate the 
intravascular volume changes achieved in animals receiving 1 mL of whole blood19.

Animals were sacrificed 7 days after transfusion via cardiac air embolus. A total of 2 mL whole blood was 
obtained from each recipient by vena cava puncture through a laparotomy incision. Blood was placed in 
equal-volume heparin tubes before centrifugation at 1,300 × g and 4°C. Plasma was kept on ice for about 4 h 
before testing. The remaining samples were stored at −65°C until further analysis.

Figure 2. Heat map visualization of 24 significantly altered features in allogeneic (test) blood transfusion 
samples compared to those in autologous (control) blood transfusions. Shades of red and blue indicate increases 
and decreases, respectively, in the concentrations of metabolites. Clustering results are also shown. Euclidean 
distances were measured, and Ward’s clustering algorithm was used to construct the heat map.
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All rat experiments were approved and reviewed by Inha University (Approval ID: INHA 140321-283) and 
were performed in accordance with relevant guidelines and regulations.

Sample preparation. GC-MS. To each 100 μL aliquot of plasma, 250 μL of solvent with a volume ratio 
of 2.5:1:1 of methanol, water, and chloroform was added, followed by vortexing for 1 min. After heating at 60°C 
for 30 min, the sample was centrifuged at 14,000 × g and 4°C for 5 min51. A 250-μL sample of supernatant was 
transferred to a clean test tube and dried under nitrogen at 20°C. The residue was then oximated with 40 μL 
methoxyamine hydrochloride (20 mg/mL in pyridine) and kept at 60°C for 60 min, followed by the addition of 
20 μL N,O-bis(trimethylsilyl)trifluoroacetamide-trimethylchlorosilane (BSTFA-TMCS). The mixture was then 
kept at 60°C for another 45 min and filtered by centrifugation at 14,000 × g and 20°C for 10 min. The supernatant 
was collected for injection.

HPLC-Q-TOF-MS. Protein was precipitated with a threefold volume of acetonitrile (final concentration, 25%), 
followed by vortexing for 2 min and centrifugation at 14,000 × g and 4°C for 20 min. The supernatant was dried 
by purging with nitrogen. For analysis, samples were reconstituted in 100 μL acetonitrile/water (4:1) solvent52. 
Mixtures of pooled test group samples and pooled control group samples in a 1:1 (v:v) ratio with solvent were 
used as quality control (QC) samples.

GC-MS analysis. GC-MS analysis was performed using a GCMS-QP2010 system (Shimadzu, Germany). 
Chromatographic separation was performed on a DB-5MS column (30 m × 0.25 mm, 0.25 μm, Agilent 

Figure 3. Calibration curves of the typical standards of GLUT1 (a), GLUT4 (b), PLA2 (c), IRS1 (d), and a 
rat IL-6 ELISA (e, exponential form) kit are shown. The calculated concentrations of the optical densities 
of GLUT1, GLUT4, PLA2, IRS1, and IL-6 (f) in sera from rats subject to autologous and allogeneic blood 
transfusions were determined by sandwich ELISA.
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Technologies, Santa Clara, CA, USA). The GC oven temperature was held at 100°C for 5 min, increased to 180°C 
at a rate of 5°C/min, then increased to 300°C at a rate of 5°C/min and held at the final temperature for 5 min. A 
1-μL sample was injected in the split mode, and helium (99.9999% He) was used as the carrier gas at a constant 
flow of 1 mL/min. The injection temperature and ion source temperature were 300°C and 200°C, respectively. 
After a 3-min solvent delay, mass spectra were obtained at 4 scans per second with a mass range of m/z 40–600. 
The ionization energy was 70 eV in the electron impact mode. Standards were injected for identification.

HPLC-Q-TOF-MS analysis. LC-MS analysis was performed on an HPLC (Agilent) system equipped with 
an ODS column (100 × 2.1 mm, 1.7 μm) and coupled to an electron spray ionization quadrupole TOF-mass spec-
trometer (6510 ESI-Q-TOF-MS, maXis, Bruker, Billerica, MA, USA). The column temperature was 50°C with a 
flow rate of 0.35 mL/min. For non-targeted metabolomics, a linear gradient was applied for the first 26 min and 
then changed from 98% A (0.1% formic acid in water) to 100% B (acetonitrile) by holding for 20 min52. The mass 
spectrometer was operated in the ESI positive ionization mode, with ultra-high purity nitrogen as the nebulizer 
and drying gases (8.0 L/min) at a temperature of 200°C. The scan mode was applied for detection, and the scan 
mass ranged from 50 to 1000 m/z. For characterization and

QC data, a QC sample (a mixture of every sample) was injected at regular intervals during the run sequence. 
To obtain information for the identification of the metabolites, data-dependent MS/MS was performed by a 
collision energy ramp from 10 to 50 eV. All other parameters were the same as mentioned above. The standard 
LysoPC(17:0) was chosen to confirm the identification results. The entire process was performed using chroma-
tography software (Bruker Daltonics).

Data processing and statistical analysis. After data acquisition by HPLC-Q-TOF-MS and GC-MS, 
de-noising, baseline correction, and peak detection were performed. To exclude noise peaks in the subsequent 
analysis, MZmine 2.1053 (http://mzmine.github.io/) was employed for data pre-processing (Fig. S1).

We tested whether there was a significant difference in the intensity of each metabolite between control and 
treatment groups using R software. Noting that the observed data were derived from only a few samples and fre-
quently had intensity values of zero for each metabolite, we compared not only the mean of the (log-transformed) 
intensity but also the proportion of detected samples (subjects having a non-zero intensity) for each metabolite 
between the two groups.

For the ith or jth metabolite, to compare the proportions of detected samples with a small sample size, we used 
a chi-squared test with continuity correction54 and observed the p-values ppi

LC based on the data from LC for i = 1, 
… 13872 and ppj

GC based on the data from GC for j = 1, …, 6089. Further, to test the mean difference, we consid-
ered an independent two-sample t-test using detected subjects and observed the p-values 

μp i
LC and 

μp j
GC based on 

the data from LC and GC, respectively.

Identification of differential metabolites. Using GC-MS data, the selected metabolites were identified 
against standards, and a metabolite was deemed to be positively identified if the retention time and MS spectrum 
matched those of the authentic standards. For HPLC-Q-TOF-MS, MS/MS data were analyzed using a recently 
published strategy for the identification of selected metabolites55,56. Based on the accurate mass information, 
the Human Metabolome Database (HMDB) (http://www.hmdb.ca/), METLIN (http://metlin.scripps.edu/index.
php), Massbank (www.massbank.jp/), Lipid Maps (http://www.lipidmaps.org/), and PubChem Compound 
(http://www.ncbi.nlm.nih.gov) were searched with a mass accuracy tolerance of 5 ppm to generate a list of 

Figure 4. Metabolic pathway analysis of variations induced after ABT by IPA. (QIAGEN Inc.,https://www.
qiagenbioinformatics.com/products/ingenuitypathway-analysis) Up- and downregulated metabolites and those 
with no change are shown in red, green, and yellow, respectively.
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mass-matched putative metabolites. MS/MS spectra emphasize neutral losses and product ions, which are charac-
teristic of a metabolite group and allow for discriminating among database hits. The lipid standard LysoPC(17:0) 
was detected to verify the identification results by a comparison of its mass spectra and chromatographic reten-
tion time with those of plasma samples.

Multivariate analysis. We analyzed the identified metabolites using MetaboAnalyst 4.057 (http://www.
metaboanalyst.ca/). Log transformation was performed to approximate a normal distribution. Data scaling was 
performed using the “auto scaling” function. As a result, a box plot and kernel density plot were obtained (Figs S2 
and 3. The data were summarized by far fewer variables, called scores, which were weighted averages of the origi-
nal variables. The weighted profiles were called “loadings.” PCA was conducted using the “prcomp” package. The 
calculation was based on singular value decomposition.

PLS regression is a control method for the extraction of data that predicts class membership (Y) from the 
linear combination of original variables (X) using multiple regression analysis techniques. A PLS regression 
was performed using the “plsr” function of the R “pls” package. Classification and cross-validation were per-
formed using the corresponding wrapper function in the “caret” package. A permutation test was conducted to 
evaluate the importance of class distinction. In each permutation, a PLS-DA model between the data (X) and 
replaced class-label (Y) was constructed using the optimum number of components, which was identified from a 
cross-validation test against a model based on the original class assignment.

For the agglomerative hierarchical cluster analysis, each sample started in a separate cluster, and an algorithm 
combined them until all of the samples clustered together. A heat map was created as a visual aid in addition to 
phylogenetic trees. Hierarchical clustering was conducted using the “hclust” function in the “stat” package.

ELISA. For analysis of IL-6 levels in rat sera, we used ELISA kits (R&D Systems, Minneapolis, MN, USA). The 
plates were coated with 100 μL of 2 μg/mL anti-IL-6 capture monoclonal antibody diluted in phosphate-buffered 
saline (PBS) for 24 h at room temperature. The plates were washed three times with PBS containing 0.1% Tween-
20 and incubated with 100 μL/well of 1% bovine serum albumin (BSA, Sigma-Aldrich) in PBS for 1 h at room 
temperature. The rat sera and various concentrations of recombinant IL-6 were incubated overnight at 4°C. The 
plates were washed three times with PBS containing 0.1% Tween-20 and incubated with 100 μL/well of 50 ng/mL 
biotinylated anti-IL-6 detecting antibody for 2 h at room temperature. The plates were then washed and incubated 
for 30 min with 100 μL of horseradish peroxidase-conjugated streptavidin (Vector Laboratories, Burlingame, CA, 
USA). After washing, the 2,2-azino-bis substrate reaction was stopped by adding 50 μL of 2 N H2SO4. The absorb-
ance was measured at 450 nm using a microplate reader. Ten rats were included in each group, and three replicate 
wells were used for each analysis. The levels of GLUT1, GLUT4, PLA2, and IRS1 in rat sera were also assessed 
using ELISA kits (Mybiosource, San Diego, CA, USA) according to the manufacturer’s instructions.

Pathway analysis and interpretation. Data were analyzed through the use of IPA (QIAGEN Inc. 
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis)58. After importing target metabo-
lites and proteins as entities, we searched for diseases or phenotypes with as many connections as possible with 
the 22 entities. Concentration values were visualized, with shades of red, green, and yellow indicating up- and 
downregulation and no change, respectively, based on the log2 fold change in concentration between the allo-
geneic and autologous blood transfusion groups. We used MetaboAnalyst to conduct an enrichment analysis. 
Over-representation analysis (ORA) was implemented using the hypergeometric test to evaluate whether a par-
ticular metabolite set was represented more than expected by chance within the metabolite list; p-values were 
provided after adjusting for multiple testing.
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