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Breast cancer is a disease affecting an increasing number of women worldwide. Several efforts have been made in the last years to
identify imaging biomarker and to develop noninvasive diagnostic tools for breast tumor characterization and monitoring, which
could help in patients’ stratification, outcome prediction, and treatment personalization. In particular, radiomic approaches have
paved the way to the study of the cancer imaging phenotypes. In this work, a group of 49 patients with diagnosis of invasive ductal
carcinoma was studied. The purpose of this study was to select radiomic features extracted from a DCE-MRI pharmacokinetic
protocol, including quantitative maps of 𝑘trans, 𝑘ep, V𝑒, iAUC, and 𝑅1 and to construct predictive models for the discrimination
of molecular receptor status (ER+/ER−, PR+/PR−, and HER2+/HER2−), triple negative (TN)/non-triple negative (NTN), ki67
levels, and tumor grade. A total of 163 features were obtained and, after feature set reduction step, followed by feature selection
and prediction performance estimations, the predictive model coefficients were computed for each classification task. The AUC
values obtained were 0.826 ± 0.006 for ER+/ER−, 0.875 ± 0.009 for PR+/PR−, 0.838 ± 0.006 for HER2+/HER2−, 0.876 ± 0.007 for
TN/NTN, 0.811 ± 0.005 for ki67+/ki67−, and 0.895 ± 0.006 for lowGrade/highGrade. In conclusion, DCE-MRI pharmacokinetic-
based phenotyping shows promising for discrimination of the histological outcomes.

1. Introduction

Breast cancer is the most common malignant tumor that
affects women worldwide [1, 2]. It is one of the leading cause
of cancer death in women, with alarming statistics in the
young population (under 40 years) [3].

An early diagnosis and classification of the breast tumor
is fundamental in the patient’s management: the tumor geno-
type is often predictive of outcome [4], it is used clinically for
the selection of the most appropriate therapy [5–7] and has
proved valuable for personalized treatments [8–10].

According to their gene expression, breast tumors can be
classified into four molecular subtypes: luminal A (lumA),
luminal B (lumB), human epidermal growth factor receptor
2- (HER2-) like, and basal-like [11]. This classification is

based on the expression of estrogen receptor (ER), proges-
terone receptor (PR), HER2, and ki67, a marker of cellular
proliferation. According to St. Gallen 2013 [12], the lumA
subtype, defined as positive ER (ER+), positive PR (PR+, with
a positive value larger than 20%), negative HER2 (HER2−),
and low levels of ki67 (with a cut off of 20% [13]), shows
the best survival and the highest probability of being long-
term disease-free [14]. LumB subtypes are characterized by
two different genotypes: ER+ combined with HER2− and
PR < 20% or high levels of ki67 (≥20) and ER+ together
with HER2+ with any value of PR and ki67. LumB has
higher proliferation and poorer prognosis than lumA [15].
HER2 (negative to ER and PR, positive to HER2) and
basal-like (negative for all three receptors and, consequently,
also known as triple negative, TN) subtypes have the worst
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prognosis and the latter is often associated with lymph node
involvement [16] and accounts for a large portion of breast
cancer deaths after diagnosis [17]. These receptors together
with ki67, providing direct observation on the molecular
underpinnings of the tumor, have been widely studied and
are at the basis of the choose for personalized treatments:
for example, patients with HER2+ cancer have been found
to be quite effectively treated with trastuzumab and lapatinib
[18]; ki67 has been identified as a prognostic and predictive
marker in hormone receptor positive breast cancer [19].
Breast cancers overexpressing ER, PR, and/or HER2 can
be specifically targeted with hormonal therapies, while TN
breast cancers currently have no targeted therapy available
and are limited to general cytotoxic chemotherapies [20].

Another important clinical variable for patients’ stratifi-
cation and treatment options is the tumor grade. For breast
cancer, it is defined by the Elston-Ellis modification of the
Scarff-Bloom-Richardson grading system and it is based on
duct structures, size, and shape of nucleus in the tumor cells,
and mitotic rate, leading to a final three-grade scale: G1 (low
grade), G2 (intermediate grade), and G3 (high grade), with
lower grade indicating a better prognosis [21].

The molecular receptor status, ki67 levels, and tumor
grade are obtained by immunohistochemical analyses on
tissue samples [22] from core needle biopsy (CNB). CNB
is widely used as a standard procedure for diagnosis of
breast cancer [23], but, although several studies have reported
the concordance between preoperative CNB and surgical
specimens for molecular determination [24, 25], it has two
main limits. CNB, in fact, is an invasive procedure and it
may not reflect completely the complexity and heterogeneity
of tumor lesion, since the information obtained may vary
depending on which part of the tumor is sampled [26].

In recent years, an increasing interest has been focused
on the identification of imaging surrogates and development
of noninvasive diagnostic tools for cancer characterization
and monitoring [27]. In fact, the imaging approach, besides
its noninvasiveness, can give in vivo information on the
entire tumor volume, reducing inaccuracy due to sampling
errors in histopathological analyses. In particular, radiomic
approaches have proved to be a key way to study the cancer
imaging phenotypes, reflecting underlying gene expression
patterns [28, 29]. Radiomics, in facts, refer to the extraction
of a large number of quantitative features from medical
images [30], revealing heterogeneous tumor metabolism
and anatomy [31, 32]. This high-throughput extraction is
preparatory to a process of data mining [33] for studies of
association with or prediction of different clinical outcomes
[34], giving important prognostic information about disease.
The potential of radiomics, to extensively characterize the
intratumoral heterogeneity, has shown promise in the pre-
diction of treatment response and outcome, differentiating
benign and malignant tumors and assessing the relationship
with genetics in many cancer types [35], such as non-small-
cell lung cancer [36], liver [37], prostate [38] and head
and neck [39] tumors, and glioblastoma [40]. In the last
years, the most widely used imaging modalities in radiomic
research have been positron emission tomography (PET)
and computed tomography (CT) [41]; however, an increasing

interest is emerging toward Magnetic Resonance Imaging
(MRI), which is an extremely versatile imaging technique,
as it can provide multiparametric information derived from
both morphologic and functional signals [42].

In particular, in breast cancer research, several radiomic
studies have been performed and are mainly based on
dynamic contrast-enhanced- (DCE-) MRI or combine MRI
with other imaging modalities, such as PET [43]. MRI,
in fact, is the most sensitive imaging modality for soft
tissue tumor detection, characterization, and accurate extent
definition [14, 44]; moreover, DCE-MRI is of great value in
the characterization of anatomic and functional properties
of breast cancer [45]. Previous radiomic studies of breast
cancer have been conducted for invasiveness evaluation [46,
47], treatment response [48–50] and recurrence [51, 52]
prediction, and genomic correlation [51], but the majority is
focused on the differentiation between molecular subtypes
[14, 16, 20, 34, 44, 52–58].

Although all of them are based on the extraction of mor-
phological features and enhancement features from DCE-
MRI, no one takes into account the radiomic evaluation of the
quantitative DCE pharmacokinetic parameters (𝑘trans, 𝑘ep,
iAUC, and V𝑒) that, in standard correlation analysis with
mean values, have shown a good agreement with prognostic
factors and TN subtypes [59]. To overcome this approach
and take into account lesion heterogeneity, Li et al. [60]
performed a histogram-based analysis for differentiating
benign and malignant tumors.

The aim of this study was to select radiomic features
extracted from a DCE-MRI protocol, including precontrast
images, pharmacokinetic parametric maps, the auxiliary 𝑅

1

map, and delayed postcontrast images, to evaluate their
prediction power in the differentiation of molecular receptor
status, ki67 levels, and tumor grade obtained by immunohis-
tochemical analyses in a dataset of invasive ductal carcinoma
patients.

2. Materials and Methods

2.1. Patient Cohort. The study was approved by the Institu-
tional Review Board. A group of 49 patients was enrolled.
Inclusion criteria were diagnosis of invasive ductal carci-
noma, availability of the core biopsy or mastectomy biopsy
reports of the primary breast cancer, and age older than 18
years at the time of the study. Exclusion criteria included
pregnancy and inadequate MR images.

2.2. MR Imaging. MR examinations were performed on a 3T
Biograph mMR (Siemens Healthcare, Erlangen, Germany)
with a dedicated 4-channel breast coil.The imaging protocols
included a Turbo inversion recovery magnitude (TIRM)
sequence (TR = 4200ms, TE = 60ms, TI = 230ms, FOV
= 380 × 380mm2, resolution = 1.48 × 1.48mm2, and slice
thickness = 4mm); 6 gradient echo volumetric interpolated
breath-hold examination (VIBE) sequences at variable flip
angle (FA) for T1 mapping (TR = 5.3ms, TE = 1.9ms,
FAs = [2∘, 5∘, 8∘, 12∘, 15∘, 20∘], FOV = 356 × 379mm2,
resolution = 1.98 × 1.98mm2, and slice thickness = 3.6mm);
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a dynamic scan with 60 consecutive phases with a VIBE
sequence (TR = 5.3ms, TE = 1.9ms, FA = 20∘, FOV = 356
× 379mm2, resolution = 1.98 × 1.98mm2, slice thickness =
3.6mm, and temporal resolution = 9 s/phase); and a delayed
3D postcontrast fat-suppressed T1-weighted gradient echo
sequences (TR = 8.4ms, TE = 2.5ms, FOV = 370 × 370mm2,
resolution = 0.82× 0.82mm2, and slice thickness = 0.89mm).
Intravenous contrast injection started at the end of the first
phase of dynamic scan at a dose of 0.1mmol/kg of body
weight and at the highest rate compatible with patient’s age
and compliance (up to 5mL/s)

2.3. Immunohistochemistry. Core needle biopsies were per-
formed under ultrasound guidance by a radiologist with
more than 15 years of experience. Biopsies were fixed in 10%
neutral buffered formalin at the time of biopsy. Mastectomy
specimens, obtained from patients who underwent mastec-
tomy, were sent to the department of pathology immediately
after resection. Expression of ER, PR, HER2, and Ki67 was
determined by immunohistochemical analysis. Each tumor
sample was classified as ER+, PR+, and/or HER2+, or being
TN. The cut-off values for receptor and ki67 expression were
chosen accordingly to the St Gallen Consensus Meeting 2013
[12].The histological grade was determined using themethod
of Elston and Ellis. All pathological diagnoses were rendered
by the Breast Pathology SubspecialtyDepartment atOspedale
Moscati (Avellino, Italy).

2.4. Tumor Segmentation. 3D segmentation of the lesion
was obtained semiautomatically from the dynamic VIBE
sequence. After motion correction of the single phases on
the first time point, an experienced radiologist was asked to
manually draw a rectangular bounding box containing the
tumor region. Successively, the dynamic motion-corrected
sequence and the bounding box were given as input to the
SegmentCAD module of 3DSlicer [61], which automatically
segmented the lesion on the basis of the temporal dynamic of
the signal. Voxels that reached a signal increase higher than
the 75%of the first time point were selected as tumor.The cut-
off of 75% was selected in accordance with a previous study
[62] that studied the concordance correlation coefficient
between the longest dimensions of the tumor measured on
the surgical specimen and on the DCE-MRI segmentation
when the cut-off value changed.

2.5. Pharmacokinetic Map Calculation. Pharmacokinetic
maps were obtained with the commercial software Tissue
4D (Siemens Healthcare, Erlangen, Germany). After an
automated step of motion correction of the VIBE sequences
at variable FAs with the dynamic VIBE sequence, the Toft
model [63] was chosen for the pharmacokinetic parameters
calculation. The arterial input function (AIF) used for the
analysis was set to “intermediate,” on the basis of population-
based AIFs built in Tissue 4D. Finally, 3D maps of 𝑘trans, 𝑘ep,
V𝑒, and iAUC were obtained.

In addition to these quantitative maps, from the fitting
of the VIBE signal at variable FAs also the relaxation rate
𝑅
1
(inverse of relaxation time 𝑇

1
, used in the generation of

pharmacokinetic parameters) was obtained, by an in-house
software developed in Matlab (The MathWorks Inc., Natick,
MA) and saved for feature extraction.

2.6. Image Preprocessing. Before feature extraction, some pre-
processing steps were performed: for each subject, in order
to avoid the presence of spurious points in the tumor masks,
possible voxels, disconnected from the biggest connected
component, were erased. Then, the TIRM and the delayed
3D postcontrast fat-suppressed 𝑇

1
-weighted (postC) images

were coregistered to the first time point of the dynamic
VIBE sequence in order to correct for possible patients’
movements and two resampled versions of the tumor mask
were generated, in order to match the resolution of TIRM
and postC images and to allow feature extraction in the
native space, for each acquisition. This step was not required
for 𝑅
1
map, since it shared the same geometry of dynamic

VIBE sequence, which was used for lesion segmentation, and
consequently of 𝑘trans, 𝑘ep, V𝑒, and iAUC maps.

2.7. Feature Extraction. Nine shape features (including num-
ber of voxels, maximum and minimum diameter, volume,
surface area, surface volume ratio, compactness, spherical
disproportion, and sphericity) were extracted from the tumor
segmentation.
𝑅
1
, 𝑘trans, 𝑘ep, V𝑒, and iAUC maps and TIRM and postC

were used for first- and second-order feature extraction.
They were normalized, limiting their dynamics within the
tumor mask to 𝜇 ± 3𝜎 [64]; then thirteen first-order features
were extracted from the intensity histogram computed on
256 bins: energy, entropy, kurtosis, maximum (Max), mean,
mean absolute deviation (Mad), median, minimum (Min),
rootmean square (Rms), skeweness, standard deviation (Std),
uniformity, and variance.

The second-order features chosen for this studywereGray
Level Cooccurrence Matrix (GLCM) [65], computed by a
3D analysis of the tumor region with 26-voxel connectivity
and simultaneously taking into account the neighboring
properties of voxels in all the 3D direction [66], after image
quantization on 32 grey levels. The obtained features were
energy, contrast, entropy, homogeneity, correlation, sum
average, variance, dissimilarity, and auto correlation.

Therefore, considering the first- and second-order fea-
tures computed for each of the seven images in addition to
the shape features, a total of 163 features were obtained.

2.8. Multivariable Analysis. Six classification tasks were cho-
sen: ER+/ER−, PR+/PR−, HER2+/HER2−, TN/NTN (non-
triple negative, that is, presence of at least one hormonal
receptor expression), ki67+/ki67− (using a cut-off of 20%),
and lowGrade/highGrade (low G1-G2 and high G3).

The multivariable predictive models were obtained fol-
lowing the method described by Vallières et al. [66], using
at each step an imbalance-adjusted bootstrap resampling
(IABR) on 1000 samples.

First, for each task, from the large initial set of 163
features, a reduced feature set of 25 features was computed
through a stepwise forward feature selection scheme. The



4 Contrast Media & Molecular Imaging

Table 1: Sample size and groups for each classification task.

Total number Positive Negative
ER+/ER− 48 40 8
PR+/PR− 48 38 10
HER2+/HER2− 48 12 36
TN(+)/NTN(−) 48 5 43
Ki67+/Ki67− 49 28 21
lowGrade(−)/highGrade(+) 42 14 28

first feature was chosen as the best one (i.e., the one that
maximized Spearman’s rank correlation with the outcome
under investigation).Then, one at a time, features were added
(up to 25) that maximized a gain equation, given by the
linear combination of Spearman’s rank correlation (between
the feature and the outcome) and the Maximal Information
Coefficient (between the feature that was tested and the ones
that were yet included in the reduced set) [67].

Then, from the reduced feature set, logistic regression
models of order 𝑖 from 1 to 10 that would best predict the
outcome under investigation were obtained with another
stepwise forward feature selection that, one by one, added to
the 𝑖thmodel the feature thatmaximized the 0.632+bootstrap
area under the receiver operating characteristic curve (AUC)
[68] of the models of order 𝑖.

Finally, for each classification task, the prediction model
was obtained choosing the order that maximize the AUC and
computing the final model logistic regression coefficients for
the aforementioned combination of feature using IABR.

Mann-Whitney 𝑈 test was used to study the association
between each classification task and both the single features
of the respective reduced feature sets and the computed
prediction models.

3. Results

For each of the six classification tasks, the study population,
based on the availability of the histological markers under
investigation, was reported in Table 1.

The reduced feature sets, one for each classification task,
computed according to the stepwise forward feature selection
scheme and each composed by the 25 top ranked features in
the gain equation, were reported in Table 2, together with the
𝑝 values of the Mann-Whitney𝑈 test for each feature. At this
univariate analysis only median, mean, and energy of 𝑘trans,
together with the mean of 𝑘ep, resulted to be significantly
associated (considering the Bonferroni adjusted 𝑝 value for
multiple comparison) with the ki67+/ki67− outcome.

For each reduced feature set, multivariable logistic regres-
sion models of order from 1 to 10 were obtained and their
prediction performance for the different classification tasks
was reported in terms of AUC in Figure 1.

By inspecting the curves in Figure 1, the best prediction
results were overall reached for classification of tumor grade.
Interestingly, for ki67 level discrimination task, which had
individually significant features at the Mann-Whitney 𝑈 test
(see Table 2), the AUC values did not show any improvement

ER
PR
HER2

TN
ki67
Grade

103 4 5 6 7 8 921
Model order

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
U

C

Figure 1: Area under the receiver operating characteristic curve
of the multivariable models for each classification task, for model
orders from 1 to 10.

after order 2. For each task, the best model was chosen using
as figure of merit the AUC and the selected features were
given as input to the logistic regression. The order of the
chosen models and the associated prediction performance
were reported in Table 3.

The final computation of the multivariable model coef-
ficients led to the following prediction models for ER, PR,
HER2+ expression, TN, ki67, and grade, respectively:

𝑔ER (𝑥𝑖) = 0.03 (𝑘ep GLCM AutoCorrelation)

− 261.80 (iAUC GLCM Variance)

− 18.07 (iAUC GLCM Correlation)

− 6.47 (postC GLCM Entropy)

+ 66.96,

𝑔PR (𝑥𝑖) = −1094 (𝑅1 Uniformity) − 0.07 (𝑅
1
Mad)

− 36.38 (𝑘ep GLCM Correlation)

+ 3480 (𝑘ep GLCM Sum Average)

− 0.14 (iAUC GLCM Autocorrelation)

− 16.30 (𝑅
1
Entropy)

+ 3837 (postC GLCM Energy)

+ 27.09 (𝑅
1
GLCM Correlation)

+ 122.10,

𝑔HER2 (𝑥𝑖) = −4.99 (TIRM Skeweness)

− 4.69 (V
𝑒
Skeweness)

+ 7.01 (𝑅
1
Skeweness)

+ 0.01 (V
𝑒
Max) − 16.66,
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Table 3: Results of multivariable analysis. For each classification task, the model with the higher AUC was chosen and its order, AUC,
sensitivity, specificity, and accuracy were reported together with the standard error on a 95% confidence interval over all bootstrap sample.

Order AUC Sensitivity Specificity Accuracy
ER+/ER− 4 0.826 ± 0.006 0.833 ± 0.004 0.587 ± 0.016 0.804 ± 0.003
PR+/PR− 8 0.875 ± 0.009 0.895 ± 0.005 0.730 ± 0.019 0.882 ± 0.005
HER2+/HER2− 4 0.838 ± 0.006 0.623 ± 0.014 0.825 ± 0.005 0.785 ± 0.004
TN/NTN 10 0.876 ± 0.007 0.660 ± 0.022 0.896 ± 0.004 0.881 ± 0.004
Ki67+/Ki67− 2 0.811 ± 0.005 0.641 ± 0.006 0.736 ± 0.007 0.677 ± 0.004
lowGrade/highGrade 5 0.895 ± 0.006 0.735 ± 0.012 0.865 ± 0.006 0.807 ± 0.004

𝑔TN (𝑥𝑖) = −0.88 (𝑅1 GLCM Autocorrelation)

− 31.79 (𝑅
1
Skeweness)

+ 31.44 (𝑘trans GLCM Entropy)

+ 22.98 (postC Skeweness)

− 5474 (postC GLCM Energy)

− 0.08 (TIRM Mean)

+ 18330 (𝑅
1
GLCM Sum Average)

+ 265 (𝑅
1
GLCM Homogeneity)

+ 1305 (iAUC Variance)

+ 4.343 (iAUC Kurtosis) − 423.20,

𝑔ki67 (𝑥𝑖) = (𝑘
trans Energy) + 0.03 (𝑘ep Median)

− 1.78,

𝑔Grade (𝑥𝑖) = 73.73 (𝑘
trans GLCM Homogeneity)

+ 20.38 (𝑘trans GLCM Entropy)

− 0.03 (TIRM Max)

+ 442.20 (iAUC GLCM Variance)

+ 1566 (TIRM GLCM Sum Average)

− 212.90.
(1)

The most recurrent features in the models were skeweness
and entropy and, to a lesser extent, auto correlation, variance,
correlation, sum average, and energy, while no shape feature
was included into the models. Looking at the source images,
a greater number of occurrences was found for 𝑅

1
map

than TIRM images, while the pharmacokinetic maps and
the postcontrast acquisition were equally frequent, with the
exception of V

𝑒
that appeared only once in the prediction

models.
The Mann-Whitney 𝑈 test revealed a higher discrimina-

tive power of the obtained multivariable models compared
to the most significant single feature (Table 2), for each
classification task (ER expression: 𝑝 value = 0.05 ⋅ 10−2,
PR expression: 𝑝 value = 0.09 ⋅ 10−4, HER2 expression:

𝑝 value = 0.02 ⋅ 10−3, TN 0.03 ⋅ 10−2, ki67 level: 𝑝 value =
0.04 ⋅ 10−3, and grade: 𝑝 value = 0.02 ⋅ 10−4). These results are
also visible in Figure 2, where, for each classification task, the
box plot of the multivariable model was reported.

4. Discussion

In this work a radiomic approach to predict different his-
tological outcomes was developed on the basis of a DCE-
MRI protocol including pharmacokinetic parametric maps.
Six classification tasks were tested, including the molecular
receptor status (ER+/ER−, PR+/PR−, HER2+/HER2−, and
TN/NTN), ki67 levels, and tumor grade. The molecular
receptors are an immunohistochemistry surrogate for breast
cancer subtyping and, together with ki67 levels, allow to dif-
ferentiate lumA, lumB, HER2, and basal-like. Moreover they
are fundamental when choosing personalized treatment or
the addition of adjuvant chemotherapy to hormone therapy
[15].

The obtained results show that radiomic approaches
based on pharmacokinetic maps lead to predictive models
with a high discriminative power, reachingAUC values above
the 80% and accuracy up to 88%.

In order to assess the added value of the radiomic
approach, the discriminative power of the single features of
the reduced set has been separately evaluated by means of
univariate analysis.When looking at these results (Table 2), 𝑝
values of theMann-Whitney𝑈 test show that several features
are associated with the tumor histological outcome under
investigation, but only mean, median, and energy of 𝑘trans,
together with mean of 𝑘ep, were found to be significantly
associated with the ki67+/ki67 discrimination task.This may
be due to the fact that 𝑘trans and 𝑘ep are indeed two quan-
titative pharmacokinetic parameters related to the tumor
permeability and vascularization and to medium contrast
wash-out; they are clinically used for the differentiation
of breast lesions with nonradiomic approaches, and also
previous works [59] demonstrated their utility, correlating
them with prognosis and TN subtype.

However, the results obtained with the radiomic
approach, which is the high-throughput extraction of
features, followed by a learning approach for the construction
of a predictive models, led to a higher discriminative power,
showing that such methods have a great potential to improve
quantitative MRI assessment of the tumors.
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Figure 2: Box plot of the multivariable models obtained for each classification task. From left to right and from top to bottom: (a) ER
expression, (b) PR expression, (c) HER2 expression, (d) TN type, (e) ki67 level, and (f) tumor grade.
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Other previous works performed radiomic studies on
breast cancer, above all to differentiate between subtypes [14,
16, 20, 34, 44, 52–58] with classification performance lower
or similar to our results. However, a direct comparison with
them was not directly applicable, considering the different
populations and imaging approaches.

Interestingly, in the predictive models obtained in this
work, the most recurrent features were skeweness and
entropy that were indices of randomness, showing the
importance of studying the heterogeneity of the tumors. In
particular, entropy, even if computed on the first postcontrast
image, was already found to be statistically associated to
tumor aggressiveness by Li et al. [34]. Skeweness, instead, was
found to be predictive for discriminating molecular subtypes
by Fan et al. [16] and Sutton et al. [44]. In particular, in this
last work, the authors found the skeweness to be significant at
three time points on postcontrast MR images, suggesting the
pharmacokinetics as a key component in differentiating the
subtype.

Interestingly, all these works found a significant associ-
ation between the outcome and at least one shape feature.
Instead, in our study, since the step of feature reduction,
they were excluded with the exception of minimum diameter
(in the ki67+/ki67 discrimination task) that, however, did
not survive in the predictive model. This may be due to a
different feature selection algorithm or to the presence of
pharmacokinetic-based feature that may be more strongly
associated to the outcome than shape features.

Our study propose, by first, the use of pharmacokinetic
and relaxometric maps for the radiomic analyses. In particu-
lar, in the obtained predictive models, the pharmacokinetic
maps, together with postC, were equally represented (with
the exception of V

𝑒
), proving the added value of multipara-

metric information. Interestingly, muchmore instances of 𝑅
1

features were found compared to the features from TIRM
images. 𝑅

1
is a parametric map that in DCE time resolved

studies is usually used as auxiliary to the computation of
pharmacokinetic parameters and is seldom studied by itself,
although it could give important information regarding
increased vascularity, presence of edema, or necrosis [69, 70].
Our approach, instead, dealing with this parametric map
referring to explicit physiological and structural conditions
without the use of contrast media, leads to the generation of
more discriminative features, compared to the conventional
TIRM sequence. This suggests that 𝑅

1
map is more suitable

to extract textural properties of the tissues.
This study has some limitations: first of all the sample

size. A larger study group need to be studied in the feature,
to better conduct a radiomic analysis. Moreover, in the
computation of pharmacokinetic maps, a population-based
AIF was used: this may be a limitation for a quantitative
analysis and further evaluation is needed to understand the
impact of different AIF on the prediction results. In addition,
the diffusion and testing of the obtainedmodels on other pop-
ulations is limited by the fact that time resolved DCE-MRI
protocols for the computation of pharmacokinetic models is
not always available in the clinical practice. However, this
study paves the way to the study of 𝑅

1
map as itself and not

necessarily related to the computation of 𝑘trans, 𝑘ep, V𝑒, and
iAUC

In conclusion, DCE-MRI pharmacokinetic-based analy-
sis along with 𝑅

1
leads to the creation of predictive model

that can help in differentiation between molecular receptor
status, ki67 levels, and tumor grade with high accuracy. In
this direction, further studies will be conducted on the devel-
opment of models that differentiates between subtypes and
including PET images or other MRI acquisition techniques,
such as Diffusion Weighted Imaging, and genomic data.
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