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a b s t r a c t

To effectively combat emerging infectious diseases like COVID-19, it is crucial to adopt
strict prevention and control measures promptly to effectively contain the spread of the
epidemic. In this paper, we propose a transmission model to investigate the influence of
two control strategies: reducing contact numbers and improving medical resources. We
examine these strategies in terms of constant control and time-varying control. Through
sensitivity analysis on two reproduction numbers of the model with constant control, we
demonstrate that reducing contact numbers is more effective than improving medical
resources. Furthermore, these two constant controls significantly influence the peak values
and timing of infections. Specifically, intensifying control measures can reduce peak values,
albeit at the expense of delaying the peak time. In the model with time-varying control, we
initially explore the corresponding optimal control problem and derive the characteristic
expression of optimal control. Subsequently, we utilize real data from January 10th to April
12th, 2020, in Wuhan city as a case study to perform parameter estimation by using our
proposed improved algorithm. Our findings illustrate that implementing optimal control
measures can effectively reduce infections and deaths, and shorten the duration of the
epidemic. Then, we numerically explore that implementing control measures promptly
and increasing intensity to reduce contact numbers can make actual control be more closer
to optimized control. Finally, we utilize the real data from October 31st to November 18th,
2021, in Hebei province as a second case study to validate the feasibility of our proposed
suggestions.

© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Emerging infectious diseases are characterized by their occurrence in the human population for the first time or rapidly
increasing incidence (Jones et al., 2008). There have been 335 reported emergences, including multi-drug-resistant
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tuberculosis and chloroquine-resistant malaria caused by newly evolved pathogen strains, as well as SARS, COVID-19, Lyme
disease, and Ebola, caused by novel or historically existing pathogens (Jones et al., 2008). The continuous emergence and
spread of these diseases impose a significant burden on global economies and public health. Therefore, it is imperative to
develop suitable theories to deepen our understanding of transmission mechanism and devise effective control strategies to
mitigate their prevalence.

When faced with an emerging infectious disease, a critical question for decision-makers is how to formulate and
implement effective control measures to contain its prevalence. Early adoption of stringent prevention and control measures
is typically crucial in curbing the epidemic's spread. However, due to the lack of effective treatments or vaccines against
emerging infectious diseases, combined with their high infectiousness, there is often a shortage of medical resources,
potentially leading to their collapse. Consequently, incomplete isolation of infected individuals or delayed medical assistance
leads the disease to continue spreading in the society, hindering efforts to control its widespread prevalence. The shortage of
medical resources, particularly hospital beds, has been described by Zhou et al. using a piecewise smoothmodel applied to the
actual problem of Wuhan, where it was demonstrated that the rapid construction of emergency hospitals prevented 22,786
infections and saved 6524 lives (Zhou et al., 2020). Wang et al. utilized multiple data sources and cross-validation of a COVID-
19 epidemic model to assess the impact of improved medical resources in several countries, revealing that a 50% reduction in
resources would result in over 590,000 confirmed cases and 60,000 deaths in mainland China byMarch 27, 2020 (Wang et al.,
2021). Further research on medical resources can be found in references (Gupta et al., 2021; KhudaBukhsh et al., 2023;
Shreffler et al., 2020; Sun et al., 2020; Wang et al., 2021) and related references. Notably, the aforementioned studies
employed piecewise smooth models to describe the shortage of medical resources. However, understanding the dynamic
behavior of these models using related theories can be challenging. Thus, if medical resources are described using a smooth
function, it is of interest to investigate the resulting model changes and their implications for actual control strategies.

Mathematical epidemiology plays a crucial role in describing and modeling the transmission dynamics of epidemics,
providing valuable guidance for policymakers, a fact acknowledged by the World Health Organization (WHO) (Egger et al.,
2017). COVID-19, as a classical example of an emerging infectious disease, has garnered global attention, and the
numerous studies employ mathematical models to investigate various control strategies (Hao et al., 2020; Maier &
Brockmann, 2020; Taboe et al., 2023; Tang, Wang, et al., 2020; Wu et al., 2020). Wu et al. formulated an SEIR-type model
to estimate the infection size inWuhan city and forecast the global spread of COVID-19 (Wu et al., 2020). Tang et al. developed
amathematical model to estimate the transmission risk ofWuhan city in 2020 year, revealing a high disease's transmissibility
and offering insights for public health interventions (Tang, Wang, et al., 2020). Aforementioned research plays a significant
role in guiding the prevention and control of the epidemic's spread.

To better control the epidemic's situation, policymakers and public health authorities need to comprehensively consider
how to carry out optimized control strategies to achieve the best control effects. The most popular way to model epidemic
control strategies with optimal control is the so-called Lenhart's approach (Lenhart & Workman, 2007), which provides the
objective function(al) and constraint conditions. Usually, the goal of optimal control is to minimize the infections or deaths
with the lowest intervention cost, where the widely used theory for ordinary differential equations is Pontryagins Maximum
Principle (Pontryagin, 1987). Manuel et al. formulated an optimal control problem with mixed constraints to compare the
different vaccination schedules and answered the importance of how andwhen to vaccinate to reduce the infection size. They
showed that it is extremely important for the response regarding vaccine-induced immunity and reinfection periods in
alleviating the epidemic (Acu~na-Zegarra et al., 2021). Another control theory is the bang-bang control, that is, control
measures are switched, either off or maximal, at a given constant level in time (Hansen & Day, 2011). Plank used a highly
idealized branching processmodel and bang-bang control theory to address the optimal way tomaintain an elimination state.
The results showed that the optimal threshold of introducing controls was negatively correlated with the effective repro-
duction number and positively correlated with overdispersion of the offspring distribution and the effectiveness of control
measures (Plank, 2022). It should be noted that bang-bang control concerns the optimal trigger condition of introducing
control to eliminate the break, while Lenhart's optimal approach focuses on the optimal way to reach a herd immunity state.
Based on the transmission characteristics of emerging infectious diseases, when it comes, policymakers are more concerned
about how to carry out actual control to achieve optimal effects. That is, here, we are concerned with the optimal way in
practice. In addition, since the insufficient experience in coping with emerging infectious diseases, there usually exists a
significant gap between actual control and optimal control (Penn & Donnelly, 2023). Therefore, this paper will utilize Len-
hart's approach to investigate methods of reducing the disparity between actual and optimal control.

This paper's main contributions can be summarized in three aspects. Firstly, we propose a new function to characterize the
shortage of medical resources, which can cover bilinear, saturated incidence, and B-D functional response forms. The bilinear
incidence function signifies ample medical resources, the saturated incidence function represents an upper bound of medical
resources, while the B-D function reflects the interaction between symptomatic and hospitalized infections. Secondly, we
propose a improved algorithm to deal with the parameter estimation. The traditional estimation method is the least squares,
Markov chain Monte Carlo et al., which typically require strict initial value selection. Hence, the improved algorithm will
strive to solve this difficulty. Finally, we focus on how tominimize the gap between actual and optimal control. Specifically, we
investigate how constant control measures influence peak infection values and timing, characterize optimal control for time-
varying measures, and compare actual and optimal control strategies. The aim of this paper is to determine if actual control
can be adjusted and how to optimize it in practice to approach the optimal control level.
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The paper is structured as follows: In Section 2, we provide an overview of the methods used, including the formulation of
two basic models with constant and time-varying control measures, respectively, as well as details on the data and the
method for parameter estimation employed. For themodel with constant control, we derive the control reproduction number
and perform a corresponding sensitivity analysis. For the model with time-varying control, we analyze optimal control and
introduce two actual control indexes. Section 3 presents the results, including the estimation results for two cases, a dis-
cussion on sensitivity analysis and the effects of constant control measures, an illustration of the effects of time-varying
controls, and an examination of how actual control approaches the optimal control level. Finally, the paper concludes with
a discussion and a summary of the findings.
2. Methods

2.1. Model with constant control

Based on the basic SEIR-type compartmental structure, we formulate a mathematical transmission model describing the
early stage of COVID-19 transmission, which incorporates the two infection statuses (asymptomatic and symptomatic) and
further consider two constant control measures (reducing contact numbers and improving medical resources).

2.1.1. Model formulation
The total population (N) is divided into several epidemiological statuses, namely, susceptible (S), exposed (E), asymp-

tomatic (A), symptomatic (I), hospitalized (H), and recovered (R). Given the brevity of the early stage of natural transmission,
we do not take into account the birth or immigration of susceptible classes, nor the natural death rate of all classes. It is
assumed that the susceptible individuals can be infected by not only the symptomatic infections at a rate b, but also the
asymptotic infections at a rate bs, where s denotes the modification factor of the transmissibility of asymptomatic infections.
After infection, it takes a duration of the exposed period, 1/a, to become infectious, where infected individuals with a pro-
portion p enter into the asymptomatic infected class and with a proportion 1 � p become symptomatic infections. Both
asymptomatic and symptomatic infections can recover at rates rA and rI, respectively. Due to the assumption that asymp-
tomatic infections own stronger immunity, we omit the disease-induced death rate of asymptomatic infections and only
consider the disease-induced death of symptomatic infections with the rate dI. Along with disease progress, asymptomatic
infections can convert to symptomatic infections at a rate d. The symptomatic infections need to be diagnosed and treated in
the hospital at a baseline rate ofm. To describe the effect of medical resources’ shortage on the transmission of COVID-19, we
take a new type function f(I, H) ¼ mI/(k þ aIx þ bHy), where k, a and b denote the saturated parameters of medical resources,
and x and y denote the degree of constraint on medical resources. It should be noted that this type f(I, H) can cover several
different incidence forms, such as mI, mI/(k þ aI), mI/(k þ aI2), mI/(k þ bH), mI/(k þ bH2), mI/(k þ aI þ bH) et al. Hence, this
function is more general. After being treated in a hospital, the infections can recover or die at rates rH or dH. All recovered
individuals enter the recovered class and are assumed to have full immunization and can not be infected again for a short
time. It is assumed that both asymptomatic infections (A) and symptomatic infections (I) are infectious and can cause the
transmission of emerging infectious diseases in society. In contrast, due to the good isolation measures, the hospitalized
infection (H) can not be transmitted to others. The schematic diagram of the transmission model is shown in Fig. 1.

To model two control measures: reducing contact numbers and improving medical resources, we first introduce two
controls, denoted by u1 and u2, where 0 � u1, u2 � 1. Note that in the subsequent sections, we will discuss the effects of two
controls from two aspects, constant and time-varying. Since reducing contact numbers can effectively reduce the trans-
mission probability, the transmission rate b is modified as (1 � u1)b. Improving medical resources includes increasing the
diagnosis rate and the number of hospital beds (ICU and isolated hospital beds, etc.), thus can admit more infected individuals
into hospital to be treated. The improving hospitalization rate is modeled as (1þ u2)f(I,H). All parameters are considered non-
negative constants, and their biological meanings are summarized in Table 1.Based on the above assumptions, we formulate
the following transmission dynamic model with two control measures, which is described by the following ordinary dif-
ferential equations
Fig. 1. The schematic diagram of the proposed model.
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Table 1
Descriptions of parameters in system (2.1).

Variables Descriptions

b Transmission rate
s Modification factor of transmission rate
p Proportion of asymptomatic infection
a Progression rate of exposed individuals to infections
d Transition rate from asymptomatic to infected class
rA Recovery rate of asymptomatic infections
rI Recovery rate of symptomatic infections
rH Recovery rate of hospitalized infections
dI Disease-induced death rate of infected individuals
dH Disease-induced death rate of hospitalized infections
m Hospitalization rate
k, a, b, x, y Dimensionless parameters
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8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

dS
dt

¼ �ð1� u1ÞbSðsAþ IÞ
N

;

dE
dt

¼ ð1� u1ÞbSðsAþ IÞ
N

� aE;

dA
dt

¼ paE � ðdþ rAÞA;

dI
dt

¼ ð1� pÞaE þ dA� ðrI þ dIÞI � ð1þ u2Þf ðI;HÞ;

dH
dt

¼ ð1þ u2Þf ðI;HÞ � ðrH þ dHÞH;

dR
dt

¼ rAAþ rII þ rHH:

(2.1)
2.1.2. The control reproduction number
It is clear that system (2.1) always has a disease-free equilibrium E0¼ (N0, 0, 0, 0, 0, 0), where N0 denotes the initial number

of population. Following the method given by Diekmann and Dreessche (Diekmann et al., 1990; Dreessche & Watmough,
2002), we denote two matrixes F and V as follows

F ¼

0
BBBB@

ð1� u1ÞbSðsAþ IÞ
N
0

0

1
CCCCA and V ¼

0
@ aE

�paE þ ðdþ rAÞA
�ð1� pÞaE � dAþ ðrI þ dIÞI þ ð1þ u2Þf ðI;HÞ

1
A:

Linearizing system (2.1) at E0 yields two sensitivity matrixes of F and V , that is

F ¼
0
@0 ð1� u1Þsb ð1� u1Þb

0 0 0
0 0 0

1
A and V ¼

0
@ a 0 0

�pa dþ rA 0
�ð1� pÞa �d D1

1
A;

where D1 ¼ rI þ dI þ (1 þ u2)m. Thus, we can derive the conrol reproduction numberRcðu1;u2Þ as the spectrum radius of the
next generation matrix (FV�1), denoted by

Rcðu1; u2Þ ¼ rðFV�1Þ ¼ ð1�u1Þ
�
psb
dþ rA

þ ð1� pÞb
D1

þ pdb
D1ðdþ rAÞ

�
: (2.2)

It should be noted that if we discard the control measures, i.e., u1 ¼ 0 and u2 ¼ 0, the control reproduction numberRcðu1;u2Þ
will reduce to be the basic reproduction number with the following form

R0 ¼ Rcð0;0Þ ¼ psb
dþ rA

þ ð1� pÞb
rI þ dI þm

þ pdb
ðdþ rAÞðrI þ dI þmÞ; (2.3)

which implies the number of new infected individuals produced by one infected individual entering an entire susceptible
population. The biological meaning of R0 is clear. There are three items in the expression of R0, which means that three
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routines can spread disease in the population. The first item denotes the new infection caused by asymptomatic infections.
The second item is the new infection caused by a asymptomatic infections, which are directly from the exposed individuals,
while the third item is the new infection produced by a symptomatic infection, which first undergo asymptomatic infected
(pdb/(d þ rA)) and then survive into symptomatic infected class (1/(rI þ dI þ m)).

2.1.3. Sensitivity analysis
Sensitivity analysis is performed to explore the impact of constant controls and other parameters on two reproduction

numbers. Here, we use the normalized forward sensitivity index, also called the local sensitivity index (Chitnis et al., 2008)

and has the form g
Rj

q
¼ vRj=vq� q=Rj ðj¼ 0; cÞ judging the sensitivity of Rj to parameter q. If gRj

q
is larger than zero, then Rj

will increase with the increase of parameter q, and otherwise it will decrease with the increase of parameter q. It should be
noted that local sensitivity index is obtained by changing one parameter q at a time, while all the other parameters are fixed at
their baseline values. This text explores the dependence of the basic reproduction number R0 in (2.3) on other parameters
and verifies the reasonableness of control measures. To do this, we need to compute the analytical expression for sensitivity
indices of R0 with respect to each parameter shown in the following

gR 0
b

¼ 1; gR 0
s ¼ psQ1

Q3
; gR 0

p ¼ pðsQ1 � rAÞ
Q3

; gR 0
d

¼ pdð�sQ2 þ rAÞ
Q2Q3

; gR 0
rA ¼ �prAðsQ1 þ dÞ

Q2Q3
;

gR 0
rI ¼ �rI ½ð1� pÞQ2 þ pd�

Q1Q3
; gR 0

dI
¼ �dI ½ð1� pÞQ2 þ pd�

Q1Q3
; gR 0

m ¼ �m½ð1� pÞQ2 þ pd�
Q2Q3

;

where Q1 ¼ rI þ dI þ m, Q2 ¼ d þ rA and Q3 ¼ psQ1 þ (1 � p)Q2 þ pd.
Furthermore, we show the sensitivity results of Rc to constant controls u1 and u2. From the expression of Rc in (2.2), we

can easily have that

gRc
u1

¼ � u1
1� u1

; gRc
u2

¼ � mu2D2

D1ðpsD1 þ D2Þ
;

where D2 ¼ (1 � p)(d þ rA) þ pd. Clearly, gRc
u1

<0 and gRc
u2

<0, which implies that increasing the constant controls can decrease

the value ofRc, thus contributes to the remission of COVID-19. Because vjgRc
u1
j=vu1 >0 and vjgRc

u2
j=vu2 >0, the larger u1 and u2

are, the stronger the correlation between Rc and them is.

2.2. Model with time-varying control

In practice, the intensity of control measures will change with the current epidemic situation. That is to say, the control
parameters change over time. Hence, in this subsection, we focus on the model with time-varying control, referring to
optimal control and actual control.

2.2.1. Model formulation
Changing the constant controls u1 and u2 in system (2.1) to time-varying forms, denoted by u1(t) and u2(t), we obtain the

following time-varying system8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

dS
dt

¼ �ð1� u1ðtÞÞbSðsAþ IÞ
N

;

dE
dt

¼ ð1� u1ðtÞÞbSðsAþ IÞ
N

� aE;

dA
dt

¼ paE � ðdþ rAÞA;

dI
dt

¼ ð1� pÞaE þ dA� ðrI þ dIÞI � ð1þ u2ðtÞÞf ðI;HÞ;

dH
dt

¼ ð1þ u2ðtÞÞf ðI;HÞ � ðrH þ dHÞH;

dR
dt

¼ rAAþ rII þ rHH:

(2.4)
2.2.2. Optimal control
Denote two control measures as U(t)¼ (u1(t), u2(t)) and the control set asQ¼ {U2 (L∞(0, T), L∞(0, T))|0� ui(t)� 1, i¼ 1, 2}.

Then, we define the objective functional as
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JðUÞ ¼
Z tf

0
LðAðtÞ; IðtÞ;u1ðtÞ;u2ðtÞÞdt;

where tf denotes the end time of control and the integrand function is given by

LðAðtÞ; IðtÞ;u1ðtÞ;u2ðtÞÞ ¼ A1AðtÞ þ A2IðtÞ þ
1
2
ðB1u21ðtÞþB2u

2
2ðtÞÞ:

The objective of optimal control is to find the optimal control u*1 and u*2 such that the number of nonhospitalized infections
(asymptomatic and symptomatic) is minimized with the lowest cost of the control measures. Here, A1 and A2 represent the
weight coefficients of the asymptomatic and symptomatic infected individuals, respectively. B1 and B2 denote the weight
coefficients for the costs associated with the control variables u1(t) and u2(t), respectively.

The existence and characteristics expression of optimal control is shown in the following two theorems, respectively, and
the proofs are shown in Appendix B and Appendix C.

Theorem 2.1. There exists an optimal control U* ¼ ðu*1;u*2Þ2Q such that JðU*Þ ¼ min
U2Q

JðUÞ:
Theorem 2.2. For any optimal control U* 2 Q and solution (S, E, A, I, H, R) of system (2.4), the optimal control solution of
optimal control problem can be obtained as

u*1 ¼ minf1;maxf0;uc1gg; u*2 ¼ minf1;maxf0;uc2gg;

where

uc1 ¼ bSðsAþ IÞ
N

l2 � l1
B1

; uc2 ¼ mIðl4 � l5Þ
B2ðkþ aIx þ bHyÞ (2.5)

and li(i ¼ 1, …, 6) denotes the adjoint funtions which are defined in Appendix C.

2.2.3. Actual control
In this section, we concern on the actual control, described by two time-varying control indexes. Once the disease

outbreak occurs, strict measures, such as wearing masks, reducing aggregation and lockdown, etc., are implemented
immediately to lessen the contact numbers. At the same time, the capability of nucleic acid detecting is quickly improved, and
the number of hospital beds is drastically increased along with the occupation of specialized hospitals. Those actual controls
effectively inhibited the epidemic's spread. Based on the research of Zhou (Zhou et al., 2020), we define two time-varying
control indexes, reflecting the control intensity of reducing contact numbers and improving medical resources, with the
following form.

U1ðtÞ ¼ 1� cðtÞ
c0

; U2ðtÞ ¼ 1� q0
qðtÞ; (2.6)

where c0 is the basic contact numbers without any control measures, and q0 is the basic diagnosis and hospitalization rate of
infected individuals at the initial stage of the disease. c(t) denotes the time-varying contact numbers, reflecting the control
measure of the restriction on social distance. q(t)2 [0, 1] reflects the improvement rate of medical resources. Under different
epidemic stages, the forms of the two non-negative functions c(t) and q(t) are also different. Wewill provide specific forms of
c(t) and q(t) based on the actual data collected in Section 2.3. Clearly, two control indexes satisfy U1, U2 2 [0, 1] so that we can
compare the control effects with the optimal control.

2.3. Data and parameter estimation

2.3.1. Data collection
The data includes mainly two parts: the COVID-19 epidemic in Wuhan city from January 10 to April 12, 2020, and in Hebei

province from October 31 to November 18, 2021 (See Fig. 2. Data sources (Hebei Provincial Health Commission, 2022; Hubei
Provincial Health Commission, 2022):). It should be noted that there is no death related to COVID-19 during the considered
period in Hebei province.
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Based on the reported data of Wuhan city, the specific forms of c(t) and q(t) in (2.6) are taken as follows

cðtÞ ¼
�
c0; t < t1;
ðc0 � c1Þe�rcðt�t1Þ þ c1; t � t1;

1
qðtÞ ¼

8>>>>>>>>><
>>>>>>>>>:

1
q0

; t < t1;�
1
q0

� 1
q1

�
e�rqðt�t1Þ þ 1

q1
; t1 � t < t2;

1
q1

; t � t2;

where c1 is the minimum contact number with the awareness of the disease and reducing contact numbers, rc is the
decreasing rate of the contact numbers. The control measure of reducing contact numbers was carried out from 23 January
2020 (Day 13), thus, taking t1¼13. Before 23 January, the infected individuals can be diagnosed and hospitalized at a basic rate
q0 at the initial stage; along with improving detecting capability and hospital beds, the waiting time from being diagnosed to
hospitalized is decreased at a rate rq. The maximum rate of improving medical resources is q1. Due to the sharp increase of
confirmed cases on 12 February 2020 (Day 33), the capacity of diagnosed and hospitalized reaches its maximum at t2¼ 33 and
keeps it going.

Based on the reported data of Hebei province, we can observe that the epidemic sustained about 16 days from the
beginning to the end. This implies the controls are taken timely and effectively. Thus, we assume that two controls, reducing
contact numbers and improving medical resources, were implemented on the first day of the disease outbreak. Furthermore,
the medical resources can reach the maximum level, which is reasonable since the capability of nucleic acid detection,
diagnosis, mobile cabin hospital, and centralized isolation places in most districts is significantly promoted after the 2020
year. Hence, the specific forms of c(t) and q(t) in (2.6) are defined as

cðtÞ ¼ ðc0 � c1Þe�rcðt�t1Þ þ c1; qðtÞ ¼ q1; t � t1:

Here, t1 ¼ 1 represents the first day to implement two control measures.

2.3.2. Parameter estimation
Considering the influence of the data randomness on parameter estimation, we assume that the daily numbers of new

confirmed and new deaths follow a Poisson distributionwith a mean value of the actual data. Here, we take 1000 iterations to
randomly generate samples of datasets for fitting. According to computations, the mean values, standard deviations, and 95%

Let X̂ðtiÞ and X(ti, j) be the reported numbers and simulation numbers at date ti, respectively, and j is the vector of parameters
to be estimated. Based on the classical nonlinear least-square (LS) method, we propose the improved Particle Swarm Opti-
mization (IPSO) algorithm in Matlab to find the parameter value to minimize the objective function with the following form

f ðjÞ ¼ k
Xn
i¼1

ðX̂ðtiÞ � Xðti;jÞÞ2; (2.7)

where k is the weight coefficient to stress the importance of fitting data, n is the size of the epidemic data period. By
implementing the IPSO in Matlab, we obtain the values of unknown parameters. It should be noted that the IPSO, which
integrates two operations, crossover and acceptance operations, into the classical PSO, is first proposed and can better
improve the speed for searching the optimal solution. More details on IPSO algorithm are referred to Appendix A.
Fig. 2. The reported data. (a) Wuhan City from 10 January to 12 April 2020. (b) Hebei Province from 31 October to 18 November 2021.
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3. Results

3.1. Parameter estimation

For the data of Wuhan city, according to the method in Section 2.3.2, we set X̂1ðtiÞ, X̂2ðtiÞ be the reported cumulative
numbers of confirmed cases and deaths at date ti, and X1(ti, j), X2(ti, j) be the simulation cumulative numbers of confirmed
cases and deaths at date ti, respectively. Furthermore, we define the objective function with the following form

f ðjÞ ¼ k1
Xn
i¼1

ðX̂1ðtiÞ � X1ðti;jÞÞ2 þ k2
Xn
i¼1

ðX̂2ðtiÞ � X2ðti;jÞÞ2; (3.1)

where k1 ¼ 3/5, k2 ¼ 2/5 and n ¼ 94. It should be pointed out that the weight values of k1 and k2 represent the importance of
fitting data. The estimation values of parameters are summarized in Table 2. Moreover, the fitting curve with 95% confidence
intervals is shown in Fig. 3.

Furthermore, using parameter values in Table 2., we gain the estimated cumulative numbers of hospitalized cases and
deaths with 50869 and 2471, respectively, while the reported cumulative numbers of hospitalized cases and deaths are 50008
and 2580, which are shown in Fig. 3. It can be seen that the margin of error between the estimated values and the actual
values is only 1.72% and 4.22%. Therefore, model (2.1) is credible.

For the data of Hebei province, we set X̂ðtiÞ, ŶðtiÞ be the reported new confirmed number and its cumulative numbers at
date ti, and X(ti, j), Y(ti, j) be the simulation new confirmed numbers and its cumulative numbers at date ti, respectively. It
should be noted that there is no death related to COVID-19 during the considered period in Hebei province. Hence, we define
the objective function with the following form

f ðjÞ ¼ k1
Xn
i¼1

ðX̂ðtiÞ � Xðti;jÞÞ2 þ k2
Xn
i¼1

ðŶðtiÞ � Yðti;jÞÞ2; (3.2)
Table 2
Initial values of state variables and parameters in system (2.1).

Variables Initial value (Std.) Resource

Wuhan city Hebei province

S 11081000 74610235 Data
E 87(2) 47(9) Estimated
A 48(3) 45(3) Estimated
I 57(1) 4.8(1) Estimated
H 38 1 Data
R 2 0 Data

Parameters Mean value (Std.) Resource

Wuhan city Hebei province

b 1.7746(0.0156) 1.6746(0.5684) Estimated
s 0.3123(0.0284) 0.8990(0.0060) Estimated
p 0.13166 (Tang, Bragazzi, et al., 2020) 0.3001(0.0005) Estimated
a 1/5 (Tang, Bragazzi, et al., 2020) 1/3 (Zhang et al., 2021)
d 0.5348(0.0210) 0.4122(0.0326) Estimated
rA 0.2605(0.0183) 0.2851(0.1194) Estimated
rI 0.2745(0.0054) 0.0737(0.0117) Estimated
rH 0.2480(0.0112) 0.5000(0.0000) Estimated
dI 0.0003(0.0003) 0 (Data) Estimated
dH 0.0126(0.0007) 0 (Data) Estimated
m 0.3956(0.0096) 1.9972(0.0275) Estimated
k 1.3226(0.0184) 1 Estimated
a 0.1438(0.0084) 0.2084(0.0624) Estimated
b 0.1268(0.0063) 0.3500(0.000) Estimated
x 0.1530(0.0075) 0.8731(0.0569) Estimated
y 0.0172(0.0049) 0.6000(0.0000) Estimated
c(t) c0 23.8325(0.3320) 30(0.0000) Estimated
q(t) c1 0.5688(0.0797) 0.1000(0.0000) Estimated

rc 0.0810(0.0031) 0.4997(Assumed) Estimated
q0 0.0510(0.0024) e Estimated
q1 0.8313(0.0101) 0.9956(0.0313) Estimated
rq 0.0114(0.0018) e Estimated
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Fig. 3. Fitting result for the number of cumulative confirmed cases and deaths from 10 January to 12 April 2020 in Wuhan city. Note: CIeconfidence interval;
CNecumulative numbers; CCeconfirmed cases.
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where k1 ¼ 9/10, k2 ¼ 1/10 and n ¼ 19. Here, k1 is larger than k2, which shows that we pay more attention to fitting daily data.
Thus, the estimation values of parameters are summarized in Table 2, and the fitting curve with 95% confidence intervals is
shown in Fig. 4.
3.2. The effect of constant control

Based on the parameter values in Table 2, and based on Section 2.1.3, we can get the absolute sensitivity of the basic
reproduction number R0 to each parameter which is shown in Fig. 5(a), where a clear observation is that the transmission
probability (b) has the most important effect onR0 and the hospitalized rate of symptomatic infections (m) takes the second
place. To better control the spread of COVID-19, the most suitable control measures are reducing contact numbers (u1) and
improving medical resources (u2), which should be adopted. From Fig. 5(b), one can see that constant controls u1 and u2 are
negatively correlated with the control reproduction number Rc. Comparing the influence of u1 with u2 on Rc, one can find
that u1 is more sensitive than u2. Moreover, single improving u2 can not reduce the value ofRc to below 1, which implies that
reducing contact numbers and providing ample medical resources are both vital.

To understand how the constant controls influence the peak values and peak time of symptomatic infections (I(t)) and
hospitalized infections (H(t)), we simulate the contour plots of the peak value and peak time of I(t) and H(t) with respect to
constant controls u1 and u2 (see Fig. 6). From Fig. 6(a)e(b), one can observe that increasing the intensity of two control
measures contributes to a decrease in the peak values of I(t) and H(t), and the larger u2 is, the better the control effect on the
peak value is, but when the intensity of u1 is increased to 0.6, two controls will have little or no effect on the peak value of I(t)
and H(t). For instance, if u2 is fixed, increasing u1 will initially favor reducing the peak value of infections, but if u1 exceeds
about 0.6, there have little effects. For the peak time of I(t) and H(t), If u1 exceeds 0.7, u2 has little effect on shortening the
length of the epidemic, while it takes nearly 200 days to reach the peak value for I(t) and H(t), which will further make people
more burdensome. Thus, only two controls simultaneously being adopted could effectively mitigate the epidemic's spread.
3.3. The effect of time-varying control

3.3.1. Case1: Wuhan city
In this section, we will verify the proposed model's reliability, compare the results of the optimal control with the actual

case, and offer related suggestions so that the actual control can better approach the optimal control level.
Fig. 4. Fitting result for the number of daily confirmed and cumulative confirmed cases from 31 October to 18 November 2021 in Hebei province. Note:
CIeconfidence interval; DRedaily reported; CNecumulative numbers.

362



Fig. 5. The influence of parameters and constant controls on reproduction number. (a) Absolute sensitivity indices ofR0 in (2.3); (b) The influence of u1 and u2 on
Rc in (2.2).

Fig. 6. Contour plots on the peak value and peak time of I(t) and H(t).
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Simulations are used to compare the effects of two different control strategies, optimal control, and actual control, on the
spread of COVID-19 from 10 January to 12 April 2020 inWuhan city. Fig. 7 shows the time series of two different time-varying
control indexes. Following Fig. 7(a), one can observe that the way of optimal control is that controls are immediately
implemented once the epidemic occurs. The control intensity reaches the maximum and maintains about 34 and 8 days for
reducing contact numbers and improving medical resources, respectively, and then gradually decreases to zero at day 50.
Following Fig. 7(b), it takes 13 days to realize the severity of the epidemic, and then two controls are implemented. Whereas,
for optimal control case, one can observe from Fig. 7(c) that the duration of epidemic can be shortened to 21 days, we can
calculate the cumulative numbers of hospitalized infections and deaths re 3595 and 64 cases. This can prevent 46,413 people
from being infected and save 2516 lives, compared with the actual values, 50008 and 2580. Compare Fig. 7(c) with Fig. 7(d),
we can find that the peak values of I(t) and H(t) will be reduced to 60 and 50 cases, respectively, which is different from the
situation of actual control with 7028 and 7621 cases. Moreover, the peak time can also be sharply shortened compared with
the actual control. Optimal control is an effective strategy for combating emerging infectious disease.

Next, we discuss how the actual control can approach the optimal control level. It follows from the above comparison that
implementing optimal control can significantly reduce the size and duration of an epidemic comparedwith the actual control.
We focus on how to achieve the possible effect of actual control can approach the optimal control level. From two different
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Fig. 7. Time series diagram of time-varing control indexes and infections. (a) Control indexes of optimal control case; (b) Control indexes of actual control case for
Wuhan city; (c) Infections of optimal control case; (d) Infections of actual control case for Wuhan city.
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time-varying control curves in Fig. 7(a)e(b), we can realize that the beginning time of controls has a direct impact on the
spread of the epidemic, including the peak value and peak time of I(t) and H(t), even the duration of the epidemic. To explore
the influence of controls' start time, we set three comparison groups for the combinations of two controls’ start time, whose
impacts on the spread of COVID-19 are shown in Fig. 8 and Table 3. Fig. 8(a)e(b) shows the impact of the control start time on
the control indexes U1(t) and U2(t). From Fig. 8(c)e(d), a precise observation is that the peak value of infections is decreased,
and the peak time is advanced along with the advance of control implementation time. Specifically, it follows from Table 3
that if the implementation time of two controls is brought forward to day 10 (20 January) and day 20 (31 January),
respectively, then the peak value of I(t) and H(t) will decrease by 63.85% and 55.51%, respectively. If the implementation time
of two controls can be further advanced to the first day, then therewill be 98.14% and 97.33% decrease in the peak value. At the
same time, the peak time also can be advanced, and the epidemic can be ended at day 54, which is closer to the optimal
control level, though there is still a particular gap.

How to adjust the actual control to narrow the gap with the optimal control level? To deal with this question, we try to
change the decreasing rate of contact numbers (rc) under the case that t1 ¼ t2 ¼ 1. Here two scenarios rc ¼ 0.1810 and
rc ¼ 0.4997 are considered. Fig. 8(e)e(f) and Table 3 shows the impacts of rc on the spread of COVID-19, and it is clear that the
peak value of I(t) and H(t) decreases with the increase of rc. Primarily, following Table 3, we can obtain that when rc ¼ 0.1810,
the peak value of I(t) and H(t) can be fallen by 55.64% and 62.56%, respectively. When rc is promoted to 0.4997, the results of
actual control, including the peak value, peak time of infections, and the length of the epidemic, are closer to the optimal
control level.

Actually, after two years development, medical resources, including nucleic acid detection capability, hospital beds and
establishment of Fangcang shelters, have been greatly improved. As a result, medical resources were able to reach amaximum
improvement level of 0.8313, which is close to 1 at the beginning of the COVID-19 epidemic, which is consistent with the
actual situation. Consequently, we can conclude that the ideal actual control in practice is that controls are implemented from
the beginning time and the decreasing rate of contact numbers can reach 0.4997 shown in Table 2.

3.3.2. Case 2: Hebei province
Whether the adjustment in Section 3.3.1 can be adopted in practice? To verify the suggestion on the start time and in-

tensity of controls, we take the reported data from 31 October to 18 November 2021 in Hebei province as a second case.
Simulations are performed to verify whether the actual control in Hebei province can approach the optimal control level

under the above suggestions. Using the parameter values in Table 2, we plot the time series of two different time-varying
control indexes shown in Fig. 9. It follows from Fig. 9(a)e(b) that both the time-varying control indexes are different.
Under optimal control (see Fig. 9(a)), the maximum control intensity is reached and lasts for 7 days and 13 days for two
controls, respectively, and then gradually decreases to 0 till the end of the epidemic. It is important to note that when the
control intensity of reducing contact numbers drops to day 13.5, the control intensity of improving medical resources has a
slight rise to ensure that the epidemic does not rebound. This phenomenon is reasonable and identical to the reality. Under
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Fig. 8. The impact of the start time and decreasing rate for reducing contact numbers on the spread of COVID-19 in Wuhan city.

Table 3
The impact of controls’ start time and intensity on the spread of COVID-19 in Wuhan city.

Control I(t) H(t) Duration

PVs PT PVs PT

Actual control 7027 29 7621 29 89
t1 ¼ 10, t2 ¼ 20 2540 20 3391 20 80

rc ¼ 0.0810 t1 ¼ 5, t2 ¼ 10 528 18 784 18 66
t1 ¼ 1, t2 ¼ 1 131 14 203 14 54

t1 ¼ t2 ¼ 1 rc ¼ 0.1810 73 7 111 11 38
rc ¼ 0.4997 59 2 76 6 28

Optimal control 60 2 50 4 21

Note: PVs e Peak values; PT e Peak time.
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actual control for Hebei province (see Fig. 9(b)), based on the rich experience of resistance to COVID-19, at the beginning of
the epidemic, themedical resources can reach themaximal improving level about 0.9956. Concurrently, individuals are aware
of the need to reduce contact with others, for example by wearing masks and avoiding large gatherings. When an epidemic
occurs and government starts to implement more strict control, people can promptly respond at a rate 0.4997 to decrease the
contact numbers.

To verify the suggestion on adjusting the decreasing rate (rc), we set rc ¼ 0.4997, which is the same as the value of rc in the
last simulation forWuhan city. From Fig. 9(c)e(d) and Table 4, we can find that the peak value of I(t), the peak time of H(t) and
duration of the epidemic under actual control are 28, 6, and 14, respectively, which are very close to the corresponding
optimal control level. This illustrates that the actual control taken in 2021 year for Hebei province can better approach the
optimal control level. However, comparing the actual control with optimal control in the aspects of peak time of I(t) and peak
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Fig. 9. Time series diagram of time-varying control indexes and infections. (a) Control indexes of optimal control case; (b) control indexes of actual control case
for Hebei province; (c) infections of optimal control case; (d) infections of actual control case for Hebei province.
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value of H(t), there is still a certain gap to be researched, which deserves us to explore some more unknown mechanisms for
controlling epidemic.
4. Discussion and conclusion

The outbreak of COVID-19 quickly spread around on a global scale and caused a “pandemic” announced by the WHO,
which brought serious harm and social burden to the world. In the absence of effective vaccines to battle this emerging
infectious disease, the timely adoption of strict prevention and control measures was crucial in controlling the spread of
disease. For instance, the related departments in China took urgent measures to control the epidemic's prevenlance, including
lockdown cities to decrease the contact numbers of individuals, promoting the ability to be diagnosed, constructing desig-
nated hospitals and shelters to improve the hospitalized rate, being aided by other provinces and countries, etc. Thus, the
epidemic in Wuhan city was controlled effectively, and the adopted control has been highly praised.
4.1. Summary of findings

In this paper, we formulate a COVID-19 transmission model with two control measures, reducing contact numbers and
improving medical resources. To model the serious shortage of medical resources at the initial stage of the epidemic, we
propose a new type of function f(I, H) ¼ mI/(k þ aIx þ bHy) to describe that not all individuals can be timely diagnosed and
treated in hospital. Two different forms (constant control and time-varying control) of two control measures are applied to
the proposed model. Theoretically, the control reproduction number and the basic reproduction number are calculated, and
the sensitivity of the reproduction number to various parameters is analyzed, as well as the existence and formal charac-
teristics of the optimal control. In terms of numerical simulation, we propose the ISPO algorithm to conduct the parameter
estimation. Based on the actual data ofWuhan city from January 10 to April 12 in 2020 year, and the rationality of themodel is
verified by comparing the difference between the estimated cumulative number of confirmed cases and the actual value.
Table 4
The comparison on the spread of COVID-19 in Hebei province.

Control I(t) H(t) Duration

PVs PT PVs PT

Actual control 28 4 27 6 14
Optimal control 23 2 16 4 12
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Then, the effects of constant control and time-varying control are discussed separately. In particular, the path to make the
actual control as close as possible to the optimal control level is discussed, and the effectiveness of the proposed path is
verified with the actual data of Hebei Province from October 31 to November 18 in 2021 year. To sum up, the main results of
this article are as follows.

(1) In the model with constant control, the transmission probability (b) has the most important effect on the basic reproduction number ðR0Þ, and the
hospitalized rate of symptomatic infections (m) takes the second place. u1 and u2 are negatively correlated with the control reproduction number
ðRcÞ. Furthermore, u1 is more sensitive than u2, and a single improvement of u2 can not reduce the value of Rc to below 1.

(2) For the constant control, as the control intensity increases, the peak values of I(t) and H(t) decrease, and the peak time will be delayed. Regardless of
the intensity of u2, if the intensity of u1 is increased to 0.6, two controls will have little effect on the peak values of I(t) and H(t); if the intensity of u1 is
increased to 0.7, two controls will have little effect on the peak time of I(t) and H(t).

(3) For the time-varying control, we have the following findings:

(3.1) Based on the data of Wuhan city, one can observe that optimal control has the best effect in suppressing COVID-19. Moreover, in practice, as

implementation time of the actual control advances, the peak value is reduced and peak time is delayed. Thus, the more timely the imple-
mentation of control is, the better the effect is. Finally, when the decreasing rate of the contact numbers (rc) is promoted to 0.4997, the control
results, including the peak value, peak time and the duration of the epidemic, are closer to the optimal control level.

(3.2) Based on the data of Hebei Province, we validate the feasibility of adjusting (rc) to make the actual control effect closer to the optimal control
level.
4.2. Revelation gained

Based on the conclusions obtained in this paper, we have the following insights. Firstly, simply expanding medical re-
sources cannot effectively control the diseases that spread quickly in practice. Instead, it is necessary to find ways to reduce
the number of contacts as much as possible. Only through the joint implementation of twomeasures can the disease be better
controlled. Secondly, when constant control is adopted, the stronger the control force is at the beginning, the better the
control effects are, but this intensity does not need to be increased to the maximum. Because when the contact number is
decreased to a certain extent, the speed and intensity of disease transmission will significantly decrease, and with the
effective allocation of medical resources, the disease can be completely suppressed. Even if the control intensity is continued
to be increased, the control effect will not be further improved. Of course, from the perspective of ease of operation and cost
savings in control implementation, relevant departments also do not want to take the maximum control measures. Thirdly, in
practice, we always hope to take optimal control measures. However, when implementing them, it is difficult for the actual
control to be completely consistent with the optimal control, and we can only try to be as close as possible to it. In situations
where various prevention and control measures are relatively complete, the earlier the control is implemented, the smaller
the peak value of the epidemic is, the shorter the peak time is, and the shorter the epidemic time lasts, which indicates that
timely analysis and prevention and control of the epidemic are crucial. Furthermore, increasing the decreasing rate of the
contact numbers (rc) is another method to make actual control closer to the optimal control. This reminds us to effectively
educate the public to wear masks, maintain social distance, and isolate after infection, which is beneficial for reducing the
contact numbers.
4.3. Limitations and further work

The results presented in this paper have valuable implications for practical applications, particularly providing insights for
other countries in dealing with emerging infectious diseases in the future. However, there are several areas that could be
further improved and addressed. Firstly, when an emerging infectious disease occurs, the related policy-makers are hard to
promptly identify the infectivity and harmfulness, and whether the related control intensity can reach the maximum is still
challenging. Thus, there exists a delay from occurring epidemic to implementing the control measures. Secondly, the current
model utilizes ordinary differential equations to capture the transmission dynamics of the epidemic and evaluate the
effectiveness of control measures. Actually, the deaths mainly focus on older individuals with some underlying diseases. The
infections originate from South China Seafood City in the Jianghan region of Wuhan city and then diffuse to the related re-
gions. Hence, the infections depend on the individuals’ age and geographical distribution. The heterogeneity model, taking
age and space into consideration, would be more realistic to predict or assess the effectiveness of related control strategies.
Finally, along with the use of vaccines, variations of virus strains, and the adjustment of control strategies, more practical
models should be developed to describe the complex phenomena, such as multiple waves and scatterer bursts in many
countries. Although this paper can show how the actual control approaches the optimal control, unfortunately, it can not
absolutely reach, which implies that more potential mechanisms should be explored so as to achieve accurate control by the
theoretical optimal control level. These aspects will be the focus of future research endeavors.
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Appendix A. IPSO algorithm

Particle swarm optimization (PSO) algorithm is a Swarm Intelligence Algorithm developed by Kennedy and Eberhart based
on the social behavior of birds (Kennedy & Eberhart, 1995). This paper integrates two operations, crossover and acceptance,
into the classical PSO algorithm to search for better local optimal solutions, and then apply this improve PSO (IPSO) algorithm
to implement the parameter estimation of our epidemic model. To better understand the IPSO, we first introduce some
parameters and variables in the classical PSO algorithm, which is summerized in Table A1.

Now, we will introduce the IPSO algorithm in detail from the following two parts.

Table A1
The basic variables and parameters in the classical PSO algorithm
Variables
 Description
368
Type
Iteration
 Iteration
 Integer

Position
 The position of all particles
 Three-axis matrix

Velocities
 Velocities of all particles
 Three-axis matrix

IndividualBestPosition
 Individual best position of a particle
 Martix

GobalBestPosition
 Best position of all particles
 Vector

Value
 Value of the particle in this iteration
 Vector

Individual
 Individual best value of the particle
 Vector

Parameters

w
 A scaling factor influencing old velocity
 Constant

cSelf
 “Cognitive” coefficient
 Constant

cSocial
 “Social” coefficient
 Constant

rand1
 Random number in the range [0,1]
 Scalar

rand2
 Random number in the range [0,1]
 Scalar

Pc
 Probability of crossover
 Constant

d
 Number of variables
 Constant

C
 A Parameters of Accpet Function
 Constant

MaxIreration
 Max Iteration
 Constant

random
 Random number in the range [0,1]
 Scalar
Part 1. Crossover operation.
The idea introducing crossover operation is inspired by genetic algorithms. Specifically, for all numparticle particles, they

will take place intersection with a probability Pc, that is, there is numparticle � Pc particles performing the crossing operation
in each iteration. For the selected particles A and B, system will randomly choose two components i and j from their d vari-
ables, which satisfy i< j, and perform crossover operation. After crossover operation, partial velocities of two randomparticles
can exchanging (Algorithm 1). Thus, the particles can deviate from their original trajectories and explore new positions that
would not have been searched otherwise, which allows for an overall search of solution space.
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Part 2. Acceptance operation.
The idea of acceptance function is inspired by the simulated annealing algorithm. To avoid situations where convergence is

difficult, we adjust the temperature of particles to be a variable denoted as D(number) ¼ MaxIteration � Iteration þ C, where
MaxIteration represents the maximum number of iterations, Iteration is the current iteration count, and C is a factor adjusting
the probability. If the new solution is worse than the old, we perform the acceptance function according to the formula p ¼ 1=

ð1 þ e
D

DðnumberÞÞ, where p represents the acceptance probability, and D ¼ jNewFval� OldFvalj denotes the difference between
new and old solutions (Algorithm 2), where the worse solution is referred that its fitness value is greater than its value of
Individual. The optimization principle of acceptance function that it can influence the search method of particles in the next
iteration by accepting a worse solution with a certain probability, thus searching for the solution space more
comprehensively.

After introducing crossover and acceptance operations into the classical PSO algorithm, we formulate the IPSO algorithm
(see Algorithm 3). For parameter estimation, the IPSO algorithm has the advantage in determining initial values: one is that it
can simultaneously generate multiple initial values allows for a faster exploration of the solution space. The other is that by
optimizing the initial values based on their positions using update formulas, it is more rational compared to blindly searching
for initial values. Moreover, the IPSO algorithm also has the advantage in searching for the suboptimal solution, which is
ample for the parameter estimations of epidemic models. If we intend to further search for the optimal solution, one can use
the suboptimal solution as the initial value and conduct a next estimation by using least squares method.
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Appendix B. The proof of Theorem 2.1

Proof. We apply the results in (Lukes, 1982) to prove this theorem. Note that (i) The state variables and control variables are
non-negative. (ii) The control setQ is closed and convex. (iii) The optimal system is bounded, which implies the compactness
of the optimal control. (iv) The integrand of the objective functional J(U) is convex onQ. (v) There exist constants a1 > 0, a2 > 0
and q > 1 such that the integrand of the objective functional J(U) satisfies

JðUÞ � a1ðju1j2 þ ju2j2Þq þ a2:

Therefore, there exists an optimal control U* ¼ ðu*1;u*2Þ2Q such that JðU*Þ ¼ min
U2Q

JðUÞ.
Appendix C. The proof of Theorem 2.2

Proof. We will apply the Pontryagin's Maximum Principle (Pontryagin, 1987) to find the characteristic express of optimal
control. To do so, we define the Hamiltonian function as follows

GðS; E;A; I;H;R; l1; l2; l3; l4; l5; l6Þ ¼ Lþ
X6
i¼1

liðtÞ
dX
dt

; (C.1)

for i¼ 1, 2…, 6 and X¼ S, E, A, I, H, R. Here li(t) are adjoint functions and can be derived by _liðtÞ ¼ �vG=vX for i¼ 1, 2…, 6 and
X ¼ S, E, A, I, H, R. Combining system (2.4) with Hamiltonian function (C.1), we can obtain the adjoint system satisfying the
follows differential equations
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_l1ðtÞ ¼ l1ðtÞ
��

1� u1ðtÞÞbðsAþ IÞ
�
1
N
� S
N2

��
� l2ðtÞ

��
1� u1ðtÞÞbðsAþ IÞ

�
1
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� S
N2

��
;

_l2ðtÞ ¼ �l1ðtÞð1� u1ðtÞÞ
bSðsAþ IÞ

N2 þ l2ðtÞ
��

1� u1ðtÞÞ
bSðsAþ IÞ

N2 þ a

�
� l3ðtÞpa

�l4ðtÞð1� pÞa;
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þl3ðtÞðdþ rAÞ � l4ðtÞd� l6ðtÞrA;
_l4ðtÞ ¼ �A2 þ l1ðtÞð1� u1ðtÞÞbS

�
1
N
� sAþ I

N2

�
� l2ðtÞbSð1� u1ðtÞÞ

�
1
N
� sAþ I

N2

�

þl4ðtÞ
"
rI þ dI þ ð1þ u2ðtÞÞ

mðkþ aIx þ bHxÞ �maxIx

ðkþ aIx þ bHyÞ2
#

�l5ðtÞð1þ u2ðtÞÞ
mðkþ aIx þ bHxÞ �maxIx

ðkþ aIx þ bHyÞ2
� l6ðtÞrI;

(C.2)

_l5ðtÞ ¼ �l1ðtÞð1� u1ðtÞÞ
bSðsAþ IÞ

N2 þ l2ðtÞð1� u1ðtÞÞ
bSðsAþ IÞ

N2

�l4ðtÞð1þ u2ðtÞÞ
mbyIHy�1

ðkþ aIx þ bHyÞ2
þ l5ðtÞ

" 
1þ u2ðtÞÞ

mbyIHy�1

ðkþ aIx þ bHyÞ2
þ rH þ dH

#

�l6ðtÞrH;
_l6ðtÞ ¼ �l1ðtÞð1� u1ðtÞÞ

bSðsAþ IÞ
N2 þ l2ðtÞð1� u1ðtÞÞ

bSðsAþ IÞ
N2 :

The transversality conditions are

liðtf Þ ¼ 0; i ¼ 1;…;6: (C.3)

State system (2.4), adjoint system (C.2) and transversality conditions (C.3) forms an optimal control problem. Thus, one can
have the following theorem. The optimal control can be obtain by solving the following equations

vG
vu1

¼ B1u1ðtÞ þ l1
bSðsAþ IÞ

N
� l2

bSðsAþ IÞ
N

¼ 0;

vG
vu2

¼ B2u2ðtÞ � l4
mI

kþ aIx þ bHy þ l5
mI

kþ aIx þ bHy ¼ 0:

Thus, one has

uc1 ¼ bSðsAþ IÞ
N

l2 � l1
B1

; uc2 ¼ mIðl4 � l5Þ
ðkþ aIx þ bHyÞB2

;

which together with the upper and the lower bounds of u1(t) and u2(t), derive the characteristic express of optimal control.
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