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Abstract

Motivation: Interaction between the genotype and the environment (G � E) has a strong impact on

the yield of major crop plants. Although influential, taking G � E explicitly into account in plant

breeding has remained difficult. Recently G � E has been predicted from environmental and gen-

omic covariates, but existing works have not shown that generalization to new environments and

years without access to in-season data is possible and practical applicability remains unclear.

Using data from a Barley breeding programme in Finland, we construct an in silico experiment to

study the viability of G � E prediction under practical constraints.

Results: We show that the response to the environment of a new generation of untested Barley cul-

tivars can be predicted in new locations and years using genomic data, machine learning and his-

torical weather observations for the new locations. Our results highlight the need for models of

G � E: non-linear effects clearly dominate linear ones, and the interaction between the soil type

and daily rain is identified as the main driver for G � E for Barley in Finland. Our study implies that

genomic selection can be used to capture the yield potential in G � E effects for future growth sea-

sons, providing a possible means to achieve yield improvements, needed for feeding the growing

population.

Availability and implementation: The data accompanied by the method code (http://research.cs.

aalto.fi/pml/software/gxe/bioinformatics_codes.zip) is available in the form of kernels to allow

reproducing the results.

Contact: jussi.gillberg@aalto.fi or samuel.kaski@aalto.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Global yield improvements are needed to feed the growing popula-

tion (Tester and Langridge, 2010). One possibility is to breed vari-

eties for higher environmental adaptability, known as targeted

breeding (Braun et al., 1996). By improving the genetic fit of vari-

eties in their growth environments, yield potential in the interaction

between the genotype and environment could be realized. Although

the importance of G� E for agronomic performance is widely

accepted, utilization calls for methods that predict yields in new

environments, because actual experimental data, consisting of yields

of plant variety candidates from yield trials, will in practice be avail-

able only from a very limited number of environments. Importantly,
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prediction of a plant’s response to a new environment cannot be

based on weather data from the growth season, as those will never

be available at the time of prediction.

Predicting the yield of a new genotype in an untested environ-

ment is an instance of ‘cold start’ problems, where predictions are

needed for completely novel instances. Previously the machine learn-

ing community has developed methods for such problems, e.g. to de-

sign novel drugs for previously unseen cancers (Costello et al., 2014)

and to create recommendations in on-line shopping for new custom-

ers and/or products (Schein et al., 2002). These methods are based

on using external covariate data that describe properties of the novel

instances.

We develop a new method, an extension of Kernelized Bayesian

Matrix Factorization (KBMF; Gönen and Kaski, 2014), to account

for the uncertainty in the covariates, which allows the use of histor-

ical records to predict weather conditions for future growth seasons,

and eventually makes future G� E prediction for yield possible.

Therefore, our new method, unlike the existing alternatives (Heslot

et al., 2014; Jarquı́n et al., 2014; Lopez-Cruz et al., 2015; Malosetti

et al., 2016), does not rely on accurate weather information from

the growth season from the new location (Fig. 1). Although the most

relevant use case for our method is making predictions for the next

growing season, it could also be used to predict phenotype values in

any year. For the years further in the future, however, using climate

simulations instead of the historical sample of the microclimate

would likely be needed.

In genomic selection (GS) (Meuwissen et al., 2001), field trials

are replaced with genomic predictions to speed up plant breeding.

We formulate an in silico experimental setup for GS in targeted

breeding that, unlike existing works (Albrecht et al., 2014;

Burgue~no et al., 2012; Heslot et al., 2014; Jarquı́n et al., 2017;

Malosetti et al., 2016; Saint Pierre et al., 2016), strictly satisfies all

realistic constraints: test locations, years and genotypes are all genu-

inely new (not part of the training set) and yields are predicted for

the offspring of the training set. In this setup, we demonstrate the

feasibility of targeted breeding by investigating the accuracy of G�
E prediction using environmental data including historical weather

information but without in-season data (Model Mhist
GþEþGE). We com-

pare this with multiple competing settings, including the non-

realistic ideal situation having in-season data ðMGþEþGEÞ, a model

without the G� E interaction ðMGþEÞ, a previous implementation

with G� E interactions using in-season data (GE-BLUP) by

Malosetti et al. (2016), and the industry standard that does not in-

clude G� E (best linear unbiased prediction using genomic data by

de los Campos et al., 2013, GBLUP). Data from a barley breeding

programme in Finland from Boreal Plant Breeding Ltd, including

historical weather information for the target environments, are div-

ided into training, validation and test sets, and the prediction accur-

acy is measured as the average correlation between predicted and

observed yields in the test sets (Malosetti et al., 2016). A sensitivity

analysis is done to further explore the impact of model assumptions.

2 Materials and methods

2.1 Data
All data used in the experiment come from a barley breeding pro-

gramme in Finland, which is a part of a larger population of target

environments for barley as varieties used in Finland are also used in

other Nordic countries. The phenotype consists of (z-transformed)

yield measurements (kg/ha) for 2244 lines observed in trials at 11

locations across the 4 southernmost growth zones in Finland from

2008 to 2015. The total number of observed location � year combi-

nations is 35. In some locations, trials have been performed on sev-

eral years and several fields with varying soil properties, and a total

of 12 277 yield observations have been recorded. The number of

observations per genetic line ranges from 1 to 118 (median 4). The

lines were genotyped with the Illumina 9k iSelect SNP Chip, SNPs

with minor allele frequency < 0.05 or with > 5% values missing

were omitted. Also all genotypes with > 5% of SNPs missing were

omitted. The final proportion of missing genotype data is 0.002.

Fig. 1. Outline of our approach. (a) Targeted breeding aims at producing varieties that are optimal for a specific environment, i.e. combining traits that are optimal

for a particular environment in the same genotype. In the figure, traits that are optimal for each environment are illustrated as plants partially coloured according

to map segments. After breeding, all optimal traits are contained in the same new genotype. When compared with traditional breeding (b), targeted breeding

aims at higher environmental adaptation, corresponding to smaller target environments. Weather (microclimate) is a crucial driver for agronomic performance,

but as it is unknown for future growth seasons, we use historical weather records (c) to predict the environmental stresses. The growth locations differ with re-

spect to their estimated probabilities of growth conditions and our method can be used to manage location-specific risk: yield predictions take into account both

yield potential and the susceptibility to the stresses that are most likely to occur in the environmental condition distribution at each location
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The experiment-specific average yields range from 3700 to 8600 kg/

ha. Test fold -specific yields are summarised in Supplementary Table

S3. Soil types range from organic to clay soil; climatic variation is

summarized in Supplementary Figure S2.

The soil characteristics for each field block are measured in

terms of the proportions of sand, silt and clay (soil classification tri-

angle Shepard, 1954) and the proportion of organic content.

Meteorological information consists of daily averages of tempera-

ture and rainfall, and the distances to the closest meteorological sta-

tion range from 1 to 40 km (average 13.5 km). The baseline

approach (GE-BLUP Malosetti et al., 2016) requires summarizing

the weather information per crop stage: vegetative (from sowing to

visible awns), heading time (from visible awns to the end of anthesis)

and grain filling (from the end of anthesis to maturity). The times of

the crop stages are estimated using temperature sum accumulation;

the details are given in Section 2.7. In the weather observations, the

proportion of missing values in daily average temperature and rain-

fall measurements is < 0.0015 (max 3 missing values/environment)

and < 0.0032 (max 2 missing values/environment), respectively.

2.2 Experimental setup
To study prediction accuracy, we use a setup that strictly imposes

the realistic constraints related to modelling G� E in targeted

breeding for new locations. Predictions are required for new loca-

tions (not part of the experimental grid) and for years for which no

phenotype data are available (to mimic future growth seasons).

Additionally, predictions are needed for the offspring of the lines in

the training set, which have no phenotype data observations.

Different prediction tasks, distinguished by the availability of

different data types, are summarized in Figure 2. Setups 1–4 have

been studied by Jarquı́n et al. (2017) and Malosetti et al. (2016): in

Setup 1, phenotype measurements are available for the genotypes

and environments to be predicted, and both genotypes and environ-

mental covariates are fully observed. In Setups 2 and 3 phenotype

measurements are still available, but only for the genotypes or the

environments to be predicted, but not for both, and covariates are

fully observed. In Setup 4, no phenotype data are available for the

environments/genotypes to be predicted, but both genetic and envir-

onmental covariates are still fully observed.

We introduce two additional setups. In Setups 5 and 6 environ-

mental covariates from the environments of interest are only partial-

ly available: location and soil characteristics are known but

in-season weather measurements are not available for the year of

interest. However, historical observations for the same locations are

available and can be used to estimate the performance of each geno-

type. Setups 5 and 6 differ in whether phenotype measurements are

available from some other environment for the genotypes (5) or not

at all (6). The results in this article are for the most challenging

Setup 6, where no phenotype data are available for any of the lines

of interest. We emphasize that a further difference to earlier work

(Jarquı́n et al., 2017; Malosetti et al., 2016) is that we strictly

require the test environments to simultaneously be both from a loca-

tion and from a year not included among the training environments,

and that the genotypes in the test and validation sets are required to

be from the progeny of the training set. A summary of the differen-

ces between our setup and the earlier works is given in

Supplementary Table S2.

We measure prediction accuracy using cross-validation, where

the training, validation and test sets are selected to enforce the realis-

tic constraints (Fig. 3a). The pseudo code for the nested 3D (geno-

type, location and year) cross-validation is given in Supplementary

Section S4. In brief, 41 test sets were constructed corresponding to

different year, location and genotype sets. For each test fold, at max-

imum 10 training/validation set splits were further created.

Hyperparameters for each test fold were selected based on the aver-

age performance over the validation sets. The final predictions were

created by retraining the model with the selected hyperparameters

without omitting any validation set. To maximally exploit the data

in our experiment, we also used the past years as test sets (from

which all data were then similarly omitted). This is made possible by

the fact that the progeny genotypes were tested on several years.

To measure the prediction accuracy, we employ the commonly

used Pearson correlation between the predicted and observed yields

in the test set (see Albrecht et al., 2014; Burgue~no et al., 2012;

Malosetti et al., 2016; Saint Pierre et al., 2016). This correlation is

computed for each cross-validation fold in turn, and averaged over

Fig. 2. Summary of different prediction setups with respect to the availability of phenotype data and the genomic and environmental covariates as presented by

Jarquı́n et al. (2017) and Malosetti et al. (2016). White colour indicates missing value. In Setups 1, 3 and 5, ‘lines with phenotypes’, the lines to be predicted have

phenotype observations (from some environments). In Setups 1 and 2, ‘phenotypes from environment’, phenotypes have been measured from the prediction tar-

get environments (for some lines). In Setups 1–4 studied by Jarquı́n et al. (2017) and Malosetti et al. (2016), environmental covariates are available for all environ-

ments, whereas in the new Setups 5 and 6, environmental covariates from the trials of interest are missing and they are replaced by using several years of

historical data
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the test cases. Similarly to Malosetti et al. (2016), the test-case-spe-

cific correlations are transformed into Fisher’s z-scores before aver-

aging and back-transformed to obtain the final results. We regress

the G� E interactions on the average characteristics of the growing

season: for each yield trial, we use weather observations from the

typical growing season (from May 1 until the end of August) regard-

less of the sowing date. This indirect approach enables the use of his-

torical weather data. When predicting with historical data, the

prediction for each genotype is made for each year for which histor-

ical weather observations are available, and the median of those is

used as the final predicted value.

We also carry out a sensitivity analysis that allows studying the

impact of modelling assumptions, such as inclusion and the number

of G� E interaction components to the model. In detail, the sensi-

tivity analysis shows variability (median and 90% interval) in the

predictive performance in a given test environment (location-year

combination) when we vary (i) the hyperparameter values over their

specified ranges (see Section 2.4), (ii) the genotype sets that we are

predicting and (iii) the training set by removing any single training

environment for validation. For details of the sensitivity analysis, see

Supplementary Section S7.

2.3 Model
In the models MGþE; MGþEþGE and Mhist

GþEþGE we assume that (i) the

yield yij of genotype i in environment j is affected by the genotype,

the environmental conditions throughout the growing season, and

the interactions between the two, (ii) the response to the environ-

mental properties is non-linear and that (iii) it may involve interac-

tions between different environmental properties. For instance,

temperature/rainfall either too low or too high reduces yield, and

the response to rainfall is also affected by the soil type. We further

assume that (iv) the responses to the environmental conditions are

highly polygenic. Assumptions i-iv are encoded using the kernel trick

(see Shawe-Taylor and Cristianini, 2004), in which covariate data

are represented as similarities, or kernels, between different data

(a)

(b)

Fig. 3. (a) Outline of the in silico setup for comparing methods. The dataset is split into training, validation and test sets so that the years, locations and genotypes

in the validation and test sets are not included in the training set. (b) Sensitivity analysis: the difference in prediction accuracies (y-axis) between G � E prediction

with historical data (Mhist
GþEþGE) and the industry standard (GBLUP) are shown in 18 different test environments (x-axis); values above the horizontal line mean that

Mhist
GþEþGE is more accurate. Six vertical bars are shown for each environment, representing variability in results (median and 90% CIs) over hyperparameter

ranges, sets of genotypes that are predicted, and training-validation splits. Starting from the left, the bars correspond to models with 0, 1, 2, 3, 4 or 5 G � E inter-

action terms (0 corresponds to the MGþE model). The colour indicates the performance of GBLUP in the environment, measured as the Pearson correlation be-

tween predictions and observations and red meaning that GBLUP performed poorly (negative correlation). Results from Loc C, 2015 were omitted from the

comparison as all methods performed poorly there. Vertical lines divide the environments into three groups: left: one environment where including G � E terms

to the model decreased performance; middle: 11 environments where G � E terms had a neutral effect; and right: 6 environments where performance increased

by adding more G � E terms
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items. Kernel methods are a computationally effective way to model

non-linearities and interactions and they have been applied to breed-

ing data (Gianola et al., 2014). An additional complication in the

data is the low number of observed trials compared with the com-

plexity of the problem. To handle this, we constrain our model to

only learn the most prominent combinations of environmental con-

ditions affecting yield, by assuming a low-rank approximation for

the model parameters accounting for the G� E effects. Finally, we

follow the Bayesian statistical framework (Gelman et al., 2013), and

regularize the model by placing priors on all parameters, which alle-

viates overfitting to the training data and improves prediction accur-

acy in the test data.

Our method builds on KBMF (Gönen and Kaski, 2014). In brief,

KBMF is a matrix factorization method that incorporates informa-

tion about the dependencies between the rows and columns of the

data matrix in the form of side information. The side information

data sources are kernelized for efficient computation of non-linear

effects. Plant breeding literature typically considers locations as

static and years as a dynamic component of G� E, but we represent

each environment implicitly as a probability distribution of growing

conditions. We assume that a realization of that distribution fully

captures the environmental covariates and hence the location and

the year are not explicit factors in our regression model. These

assumptions provide a framework for predicting for new years with-

out observed weather data: an estimate for the location-specific en-

vironmental covariate distribution can be estimated using historical

data and predictions are obtained by integrating over this probabil-

ity distribution.

Mathematically, the model for yield is formulated as

yij ¼ gi þ ej þ nij þ �ij; i ¼ 1; . . . ;Ng; j ¼ 1; . . . ;Ne; (1)

where gi is the genetic main effect, ej is the environmental effect, nij

is the effect that arises from interaction between genotype i and en-

vironment j, �ij is noise distributed as Nð0; r2
j Þ, and Ng and Ne are

the numbers of genotypes and environments. The genetic main effect

gi is modelled as a linear function of the genomic covariates. In de-

tail, the model for the vector of genetic main effects g� ¼
ðg1; . . . ; gNg

ÞT is given in terms of a linear genomic kernel Kg by

g�

Ng�1

¼ Kg
Ng�Ng

� ag0
Ng�1

þ eg0
Ng�1

; (2)

where ag0 are kernel regression weights and eg0 is the noise vector

with elements distributed independently as Nð0;r2
g0Þ. The dimension

of each matrix is shown in Equation (2) below the corresponding

matrix symbol. The genomic kernel Kg is computed by first concate-

nating the genomic covariates gi as the rows of a matrix G and then

using the standard linear kernel, Kg ¼ GGT .

The environmental main effect ej in Equation (1) is modelled as a

random effect,

ej � Nð0;r2
e0Þ; j ¼ 1; . . . ;Ne:

The G� E terms nij are modelled as non-linear functions of the

genomic and environmental covariates, gi and ej. Each environment

and genotype is first represented by R latent variables. The interac-

tions nij are modelled as the inner product of the latent variable vec-

tors corresponding to genotype i and environment j, i.e.

nij ¼
XR

r¼1
hg

ir � he
jr; i ¼ 1; . . . ;Ng; j ¼ 1; . . . ;Ne: (3)

Here, hg
ik is the kth latent variable for the ith genotype, and he

jk is

the kth latent variable for the jth environment. Using matrix nota-

tion, Equation (3) can be written as

N
Ng�Ne

¼ Hg
Ng�R

� HT
e ;

R�Ne

(4)

where N ¼ ½nij� is the matrix of interaction terms, and Hg ¼ ½hg
ij� and

He ¼ ½he
ij� are matrices having as their rows the R-dimensional latent

variable representations for each genotype and environment,

respectively.

The latent variables Hg and He are obtained from genotype and

environment kernels Kg and Ke:

Hg
Ng�R

¼ Kg
Ng�Ng

� Ag
Ng�R

þ EHg

Ng�R

and

He
Ne�R

¼ Ke
Ne�Ne

� Ae
Ne�R

þ EHe

Ne�R

;

where Ag and Ae are kernel regression weights, and EHg
and EHe

are

matrices containing error terms distributed independently as

Nð0; r2
gÞ or Nð0; r2

e Þ, respectively. The environmental kernel Ke is

obtained by combining multiple kernels K1
e ; . . . ;KE

e , computed from

environmental data ej; j ¼ 1; . . . ;Ne, each kernel representing a dif-

ferent aspect of the environment (weather, soil etc). The process for

combining environmental kernels is described in Section 2.6.

Summarizing the model and introducing conjugate priors yields

the distributional assumptions

yijjHg;He; gi; ej; r
2
j � Nðgi þ ej þ ðhg

i Þ
The

j ; r
2
j Þ; 8ði; jÞ

r�2
j � Gðaj; bjÞ; 8ðjÞ

ag0
i jkg0 � Nð0; k�1

g0 Þ; 8ðiÞ

gijag0;Kg; r
2
g0 � NðaT

g0k
g
i ; r

2
g0Þ; 8ðiÞ

ag
ijjkg � Nð0; k�1

g Þ; 8ði; jÞ

hg
ijjAg;Kg;r

2
g � Nððk

g
i Þ

Ta
g
j ; r

2
gÞ; 8ði; jÞ

ejjr2
e0 � Nð0; r2

e0Þ; 8ðjÞ

ae
ijjke � Nð0; k�1

e Þ; 8ði; jÞ

he
ijjAe;Ke; r

2
e � Nððk

e
i Þ

Tae
j ; r

2
e Þ; 8ði; jÞ;

where k
g
i ; ke

j ; a
g
j , ae

j , denote columns of matrices Kg, Ke, Ag, Ae, with

subscripts i and j specifying the column index; h
g
i and he

j denote ith

and jth rows of Hg and He, represented as column vectors; ag0
i is the

ith element of vector ag0; ag
ij and ae

ij are the (i, j)th elements in matri-

ces Ag and Ae. N and G denote the Gaussian and Gamma distribu-

tions, respectively.

2.4 Specifying hyperparameter values
We use a combination of prior knowledge and cross-validation to

determine the hyperparameters: first prior knowledge to inform

about a grid of sensible values, then cross-validation to select a value

from the grid. To express the prior knowledge, we relate the sizes of

the different terms in Equation (1) to the total variation of the out-

put variables yij and to each other, and select hyperparameters such

that the expected proportion of total variance explained (PTVE)

scales reasonably with the total variance of the outputs; e.g. the

covariates obviously cannot explain >100% of the variance. In

practice, because the PTVE depends also on the data, its value corre-

sponding to a given hyperparameter combination is estimated using
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Monte Carlo simulation. This way, either a single fixed value or a

grid of values to be selected from by cross-validation is determined

for each hyperparameter (see below for details). Previously, a similar

approach has been used by Gillberg et al. (2016). The assumptions

about the relative sizes of different effects that were used to define

the numeric values of the hyperparameters are given below.

Parameters ðaj;bjÞ of the Gamma distribution for environment-

specific residual noise variances r2
j are set to (10, 1), corresponding

to an expected value of �0.1 for r2
j (recall that the variance of each

output is equal to unity). The variance of environment mean effects

r2
e0 is fixed to 0.25. To set the parameters kg0 and r2

g0 that determine

the amount of signal and noise in the genetic main effects, we find

values for them such that two conditions are satisfied. First, for

pragmatic purposes, 95% of the variance of the genetic effects g� is

assumed to be signal, i.e.

VarðKg � ag0Þ
VarðKg � ag0Þ þ r2

g0

¼ 0:95:

This large value maintains the identifiability of the different

terms in Equation (1), by assuming that noise comes mainly from

the last term �ij. However, the value cannot be made exactly equal to

unity, to have some flexibility in the variational inference algorithm.

The second condition is that the variance of the genetic main effects,

Vargenetic ¼ VarðKg � ag0Þ þ r2
g0, is either 0.2, 0.4 or 0.6, to be

selected by cross-validation.

The parameters kg; r2
g ; ke; and r2

e ; controlling the proportion of

signal and noise in the latent components Hg and He are selected

similarly: Hg and He model the G� E interactions and the values of

kg; r2
g ; ke and r2

e ; were determined by inspecting the proportion of

signal of the total variance of the latent factors and the relative con-

tribution of the interaction terms compared with the main genetic

effects. In detail, we first assume that

TrðVarðKg � AgÞÞ
TrðVarðKg � AgÞÞ þ Rr2

g

¼ 0:95; and

TrðVarðKe � AeÞÞ
TrðVarðKe � AeÞÞ þ Rr2

e

¼ 0:95;

where TrðÞ denotes the trace of a matrix. Second, we assume that

the total variance of the interactions is either the same or half of the

total variance from the genetic main effects, i.e.

TrðVarðHg �HT
e ÞÞ ¼ U� R� ½VarðKg � ag0Þ þ r2

g0�;

where U is either 0.5 or 1, to be selected by cross-validation.

2.5 Inference
For inference we use variational approximation (Beal, 2003), which

is a computationally feasible way to approximate posteriors of

parameters in complex models. The variational updates required

here can be derived similarly to Gönen and Kaski (2014), except

that we have extended their model and algorithm by including the

genotype and environment main effects, i.e. the terms gi and ej in

Equation (1). Further details are given in Supplementary Section S2.

2.6 Data pre-processing and kernels
A summary of different data source specific kernels, pre-processing

and transformations, is given in Supplementary Table S1. The band-

width parameter of the Gaussian kernels is set to the default value

equal to the number of covariates used to compute the kernel. All

kernels K are normalized to make them unit diagonal:

~K ¼ ðd�1=2 � d�1=2Þ � K; (5)

where d is a vector of the diagonal values of kernel K, � denotes the

outer product, and the d�1=2 denotes a vector with all elements of d

raised to the power of –1=2. The interaction kernel between the soil

type and rainfall is computed from other kernels as

Ksoil x rain ¼ ~Ksoil; Gaussian � ~Krain; Gaussian; (6)

where � denotes the Hadamard (elementwise) product. Finally, all

kernels are normalized with respect to their summed total variance

by multiplication with a constant c

~~K ¼ c � ~K (7)

where c ¼
PN

i¼1 Varð~kiÞ
h i�1=2

and ~ki is the ith column of ~K. This

normalization enforces the expectation that, when multiple kernels

are combined as described below, each kernel explains a priori the

same amount of variance.

The environmental kernel Ke is formulated as a weighted sum of

data source and transformation specific normalized kernels ( ~~K ), see

Supplementary Table S1. The weights reflect the importance of data

sources, and they are learned by fitting Bayesian Efficient Multiple

Kernel Learning (BEMKL; Gönen, 2012), a multiple kernel regres-

sion method, to the training data using experiment-specific yield

means as the target variable. For BEMKL, shape (a) and scale (b)

parameters of the Gamma priors are set to 1, except for the k param-

eter, whose scale is fixed to 10 to provide stronger regularization.

Regression bias term b is set to 0. For details of BEMKL, see Gönen

(2012). Before combining the kernels, the weights are normalized

such that their sum of squares is equal to 1 and the largest weight (in

absolute value) is positive. Results of the sensitivity analysis of the

kernel weights are presented in Supplementary Figure S1. Finally,

the composite kernel Ke is normalized according to Equation (7).

2.7 Comparison methods
The mixed model computations for the comparison methods

GBLUP and GE-BLUP are performed using the R library rrBLUP

(Endelman, 2011). For both methods, fixed effects were used to ac-

count for field block-specific effects, corresponding to the terms ej in

Mhist
GþEþGE; MGþEþGE and MGþE. For GBLUP, the genomic kernel

(see Section 2.3) was used as the covariance matrix R. For GE-

BLUP, the environmental kinship model (model GE-KE in Malosetti

et al., 2016), is used and the full covariance matrix R is generated

through the Kronecker product R ¼ RG 	 RE, where RG and RE are

the genetic and environmental covariance matrices, respectively.

The environmental covariance matrix RE is generated from the

available environmental data to describe soil properties and the

growth conditions during the vegetative, heading time and grain fill-

ing developmental stages. All soil data and growth zone information

are used as such whereas the daily average temperature and rainfall

measurements are summarized as the mean and the standard devi-

ation of the daily observations per crop stage. The growth periods

are estimated using the sowing date and temperature sum

accumulation-based estimates of heading and ripening times (440.2

and 905.9
C, respectively), which were estimated from external

breeding data. The vegetative stage is assumed to last 3 weeks start-

ing from sowing, the time of heading is assumed to start 2 weeks be-

fore and last 1 week after the estimated heading time and grain

filling was assumed to start after heading and to last 1 week longer

than the estimated time of ripening. Wide estimates for the growth

periods were used to account for varying growth speeds. The
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resulting set of environmental covariates is z-normalized and a linear

kernel is used, further normalized according to Equation (5).

3 Results

Table 1 shows a comparison of the different methods in the chal-

lenging setup where yield experiments are not available for either

the genotypes or the environment (i.e. location-year combination).

We see that modelling G� E with historical weather data,

Mhistorical
GþEþGE, improves prediction accuracy as compared with the in-

dustry standard, GBLUP (P ¼ 0.023, a two-sided paired Wilcoxon

signed rank test, df ¼ 17). The improvement is comparable to using

in-season data (MGþEþGE, P ¼ 0.011). The Bayesian methods in gen-

eral show a higher accuracy whereas GE-BLUP performs poorly

with the data available. Overall, the absolute prediction accuracy of

all methods is relatively low in this challenging setup, with Mhist
GþEþGE

having the highest correlation of 0.105. Nevertheless, the improve-

ment is considerable over the industry-standard with correlation

0.077, which corresponds to the proposed new method explaining

85% more of the variation of the phenotype on average.

In the less challenging setups CV1 and CV2, where measure-

ments are available for either the genotype or the environment, the

Bayesian methods that incorporate environmental information

achieve a minor improvement, which is not statistically significant

in prediction accuracy as compared with the comparison method

GBLUP (see Table 1). The improvement is not as dramatic as has

been reported earlier (Heslot et al., 2014; Jarquı́n et al., 2014;

Malosetti et al., 2016). The explanation for this may be our indirect

way of using the environmental data, by considering weather data

over the whole growing period regardless of the exact sowing date,

which may not be as effective for this problem as the models formu-

lated by others. This hypothesis could be studied by the means of a

direct comparison with the methods from e.g. Heslot et al. (2014);

Jarquı́n et al. (2014) on such a dataset, which contains more accur-

ate information about the growing stages of the varieties, as required

by the earlier methods.

Comparison of the results from the proposed new setup, CV1

and CV2 well quantifies the relative challenges related to the differ-

ent setups. Predicting the performance of a new genotype in a tested

environment is considerably more challenging (average correlation

between predictions and test data �0.16) than predicting the per-

formance of a line for which phenotype observations are already

available (average correlation �0.24), and simultaneously making

predictions for new environments and new genotypes is still substan-

tially more difficult (average correlation �0.08), as was also

observed by Jarquı́n et al. (2017) and Malosetti et al. (2016).

Clearly the used in silico experimental setup dominates the general

level of predictive performance and should be chosen carefully when

evaluating computational methods for plant breeding. Finally, the

needs for processing environmental data are different in the three

setups. In CV1 and CV2 methods have access to phenotype data

from all the environments and G� E effects can be modelled impli-

citly without explicitly taking into account environmental data. We

hypothesize that as a result, to gain significant performance

improvements, accurate data is needed. In the new setup, the envir-

onment is completely new and transfer of information about variety

performance under the conditions of the new environment calls for

explicit modelling of G� E.

The sensitivity analysis demonstrates considerable variability be-

tween test environments (Fig. 3b). Indeed, including G� E inter-

action terms into the model decreased accuracy in 1/18

environments, had little effect in 11/18 environments, but improved

the accuracy substantially in 6/18 environments. In the last group,

increasing model complexity by adding more G� E components

consistently improved performance, which highlights the potential

to increase accuracy through complex modelling of G� E.

Importance of different data sources to the predictions can be fur-

ther analysed by investigating the kernel weights that the method

has learned to summarise the contributions of the data sources

(Supplementary Fig. S1). We see that the two most influential ker-

nels were the ones representing (i) the non-linear interaction be-

tween soil type and daily rainfall, and (ii) the non-linear effect of

rain, matching well the biological understanding of the problem.

4 Discussion

Our experiments confirmed that prediction in new environments is a

challenging task, as reported earlier (Jarquı́n et al., 2017; Malosetti

et al., 2016), our new method reaching the highest correlation of

0.105 between predictions and observations. Nevertheless, the use-

fulness of including multiple G� E interaction terms and non-linear

interactions between environmental covariates became evident from

our results. We expect that gains from modelling G� E will increase

in the future as more data, representing further locations and years,

will allow more accurately distinguishing the interactions from the

main effects. Other ways to improve the predictions include using

more detailed genomic modelling, e.g. using Gaussian and other ker-

nels for summarizing the SNP data.

Besides targeted breeding, there are several other needs for G�
E prediction models. They could mitigate the problems of conven-

tional breeding: accounting for historical weather in the actual tar-

get population of environments can help prevent overfitting to the

conditions in the few field trials performed, as discussed in detail in

Supplementary Section S3. The assumption of the match between

field trials and actual growing locations is equally crucial for the of-

ficial variety trials for value of cultivation and use, required in most

Table 1. Comparison of prediction performance in different setups

New location, year and genotype CV1: new genotype, tested environment CV2: tested genotype, new environment

Model Mean SE P Mean SE P Mean SE P

MGþEþGE 0.104 0.04 0.011 0.173 0.040 0.16 0.251 0.034 0.22

Mhist
GþEþGE 0.105 0.03 0.023 0.158 0.042 0.64 0.244 0.034 0.81

GE-BLUB 0.004 0.03 0.109 0.123 0.04 0.458 0.191 0.036 0.10

GBLUB 0.077 0.03 N/A 0.156 0.038 N/A 0.240 0.034 N/A

MGþE 0.097 0.04 0.109 0.151 0.040 0.75 0.237 0.034 0.71

Note: The new prediction method outperforms the others in the most challenging setup and performs equally in the less demanding setups. Mean, correlation

between predicted and observed yields, averaged across test sets; SE, standard error of the mean; P, P-value compared with the industry standard (GBLUP).
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countries to evaluate new varieties. G� E models are also needed in

assessing the effects of climate change and to select for varieties that

react favourably to the altering conditions (Tester and Langridge,

2010). For this purpose, the historical weather observations in

Mhist
GþEþGE can be replaced with climate simulations to assess the per-

formance of varieties under various climate scenarios.

To summarize, we showed that G� E prediction in the setup

required by targeted breeding, where the environments are strictly

new and predictions are based on historical weather data available

at the time of prediction, significantly outperforms the current in-

dustry standard in prediction accuracy. Such improvements are es-

sential to accelerate the implementation of targeted breeding. Future

work includes comparing methods for G� E prediction on datasets

comprising all measurements required by the different methods,

facilitating a meaningful comparison. Adopting techniques that are

currently being studied in the wider context of G� E research, such

as marker � environment interactions (Cuevas et al., 2016; Lopez-

Cruz et al., 2015) and modelling multiple traits simultaneously

(Dias et al., 2017; Montesinos-López et al., 2016), could further im-

prove the usefulness of our approach.
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