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Abstract

Objective

Total tau (T-tau), phosphorylated tau (p-Tau) and Beta-Amyloid 1-42 (AB42) in Cerebrospi-
nal Fluid (CSF) are useful biomarkers in neurodegenerative diseases. The aim of the study

was to investigate the role of these and other CSF biomarkers (T-tau, p-Tau, AB42, S100B

and NSE), during hypoxia-reoxygenation in a newborn pig model.

Design

Thirty newborn pigs were included in a study of moderate or severe hypoxia. The moderate
hypoxia group (n = 12) was exposed to global hypoxia (8% O.) until Base excess (BE)
reached -15 mmol/l. The pigs in the group exposed to severe hypoxia (n = 12) received 8%
O, until BE reached -20 mmol/l or mean Blood Pressure fell below 20 mm Hg, The control
group (n = 6) was kept at room air. For all treatments, the CSF was collected at 9.5 hours
after the intervention.

Results

The level of AB42 in CSF was significantly lower in the pigs exposed to severe hypoxia
compared with the control group, 922(SD +/-445)pg/ml versus. 1290(SD +/-143) pg/mi
(p<0.05), respectively. Further, a non-significant reduction of AB42 was observed in the
group exposed to moderate hypoxia T-tau and p-Tau revealed no significant differences
between the intervention groups and the control group, however a significantly higher level
of S100B was seen in the CSF of pigs receiving hypoxia in comparison to the level in the
control group. Further on, there was a moderate negative correlation between the levels of
AB42 and S100B in CSF, as well as a moderate negative correlation between Lactate in
blood at end of hypoxia and AB42 in CSF.
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Interpretation

This is the first study to our knowledge that demonstrated a significant drop in AB42 in CSF
after neonatal hypoxia. Whether or not this has an etiological basis for adult neurodegenera-
tive disorders needs to be studied with additional experiments and epidemiological studies.
AB42 and S100B are significantly changed in neonatal pigs subjected to hypoxia compared
to controls and thus may be valuable biomarkers of perinatal asphyxia.

Introduction

Intrapartum events are among the most common causes of neonatal death with more than
800,000 annual cases worldwide [1].

Even though the majority of the children exposed to severe perinatal asphyxia will survive,
many of them will suffer from long-term sequelae, such as cerebral palsy and cognitive deficits.
In severe cases, perinatal asphyxia may lead to Hypoxic-Ischemic Encephalopathy (HIE),

which may cause permanent neurological damage.

Proteins, such as S100B and Neuron specific Enolase (NSE), released into the cerebrospinal
fluid (CSF) during neuronal injury, might be useful as biomarkers in reflecting disease severity
and predicting the clinical outcome after perinatal asphyxia [2].

We addressed the question whether total-tau (T-tau), phospho-Tau (p-Tau) and Beta-Amy-
loid 1-42 (AB42), biomarkers of adult neurodegenerative disorders, could serve as markers of
perinatal asphyxia [3,4,5].

In pediatric populations altered T-tau levels in CSF have been found in patients with brain
tumors [6] and West syndrome (Infantile spasms) [7]. Magnoni et al.(2012) found that T-tau
in the brain extracellular space was increased and negatively correlated with Beta-Amyloid lev-
els in the extracellular space after traumatic brain injury and that T-tau may be helpful when
predicting the clinical outcome [8].

In two retrospective studies Rondell et al. and Zetterberg et al. showed increased serum lev-
els of Tau-protein and AB42, respectively, after hypoxia due to Cardiac arrest [9, 10]

Few, if any, experiments have been conducted to investigate if there is an association
between asphyxia in the neonates and the levels of these markers.

In addition to T-tau, p-Tau and AB42, we also addressed the question of how NSE and
S100B were affected in our model of neonatal hypoxia-reoxygenation.

Objective

The objective was to determine a possible correlation between the levels of CSF T-tau, p-Tau,
AB42, S100B and NSE after hypoxia-reoxygenation in the newborn pig and establish a possible
association between perinatal hypoxia-reoxygenation and any of these markers.

Materials and Methods
Study design

Thirty newborn pigs, age12-36 hours, Hb > 5g/dl and in good general condition were included
in the study.

The pigs were given fentanyl 25microg/kg, midazolam 1.0mg/kg and pentobarbitone 20mg/
kg intravenously as bolus injections for induction of anaesthesia before they were intubated
and placed on their backs and washed for sterile procedures. Anaesthesia was maintained by a

PLOS ONE | DOI:10.1371/journal.pone.0140966 October 26, 2015 2/12



@’PLOS ‘ ONE

Perinatal Asphyxia May Influence Beta-Amyloid(1-42) in CSF

continuous infusion of fentanyl (50 microg/kg/h) and midazolam (0.25 mg/kg/h; IVAC P2000
infusion pump). When necessary, a bolus of fentanyl (10 microg/kg) and midazolam (1 mg/kg)
were administered (need for medication being defined as shivering, increase in blood pressure
and/or pulse and increased tone assessed by passive movements of the limbs). Pentobarbitone
(2.5 mg/kg) was a few times added if there was increased muscular tone that did not respond to
fentanyl or midazolam. A continuous iv. infusion, Salidex: saline 0.3% and glucose 3.5%, 10
ml/kg/h was given until start of hypoxia. From 15 min after end of hypoxia the infusion was
continued at 5 ml/kg/h.

The pigs were ventilated with a pressure-controlled ventilator (Babylog 8000+; Drigerwerk,
Liibeck, Germany) IMV mode, humidification by Fisher and Paykel MR730, 39°C. Normoven-
tilation (arterial carbon dioxide tension (PaCO,) 4.5-6.0 kPa) was achieved by adjusting the
peak inspiratory pressure or ventilatory rate.

Surgical preparation

The left jugular vein was cannulated with an arterial canula with FloSwitch (20G/1,10mm x
45mm. B.D. Faraday Road, Swindon, UK), and the right carotic artery was cannulated using a
venflon (BD Venflon Pro, 22GA, 0,9mm x 25mm. Becton Dickinson Infusion Therapy AB,
Helsingborg, Sweden). Both procedures were conducted under sterile conditions, and the can-
nulas were sutured to the skin. The animals were thereafter placed in a prone position for the
rest of the experiment. Rectal temperature was maintained between 38.5 and 39.5°C with a
heating blanket and a radiant heating lamp. Mean arterial blood pressure (MABP) was mea-
sured continuously in the right carotic artery using BioPac systems MP150-CE.

Experimental protocol

Twelve pigs were included in each experimental group and six pigs were in the control group.
After 1 hour of stabilization the pigs in the intervention groups went through global hypoxia
and reoxygenation with air.

The pigs in the first experimental group were exposed to global hypoxia (8% O2 in Nitro-
gen) until Base Excess (BE) reached -15 mmol/l (moderate hypoxia). The animals in the second
experimental group (severe hypoxia) were exposed to 8% O2 until BE reached -20 mmol/l and/
or mean blood pressure fell below 20 mmHg. During hypoxia, CO2 was added, aiming at a
PaCO2 8.0-9.5 kPa, to imitate perinatal asphyxia. After the hypoxic challenge the pigs were
reoxygenated with air and observed for 9.5 hours. The pigs in the control group were not
exposed to hypoxia. Invasive blood pressure, EEG and ECG were measured continuously. The
experiments were performed under Midazolam and Fentanyl anaesthesia, and all efforts were
made to minimize suffering. Between 0.5 and 1.0 ml of CSF was collected via lumbar puncture
with a 22G spinal needle from each pig at the end of the study and frozen at -70°C for further
analysis (Fig 1). Blood for measuring Hb and S100B was collected before hypoxia and at the
end of the study and frozen at -70°C. In addition arterial blood gases were collected at several
time points throughout the experiment

Method of sacrifice

After 9.5 hours of reoxygenation the pigs were subjected to euthanasia with an overdose of
Pentobarbitone (150mg/kg).
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Fig 1. Study design. Twelve pigs were included in each experimental group and six pigs in the control group. The pigs in the first experimental group were
exposed to global hypoxia (8% O2 in Nitrogen) until Base Excess (BE) reached -15 mmol/l (moderate hypoxia). The animals in the second experimental
group (severe hypoxia) were exposed to 8% O2 until BE reached -20 mmol/l and/ or mean blood pressure fell below 20 mmHg. Thereafter the pigs were
reoxygenated with air for 9.5 hours. CSF was collected 9.5 hours after end of hypoxia.

doi:10.1371/journal.pone.0140966.9001

Approval

The Norwegian Council for Animal Research approved the experimental protocol (approval
number 4630). The animals were cared for and handled in accordance with the European
Guidelines for the use of experimental animals by researchers who have been certified by the
Federation of European Laboratory Animals Science Association (FELASA).

Sampling

CSF was sampled from 30 pigs via lumbar puncture. The quality of the CSF of three pigs was
insufficient; therefore these were not included in the study. The samples were stored at -70°C
until further analyzes. Then they were thawed, mixed and diluted and analyzed according to
the manufacturers' instructions. For T-tau, p-Tau and AB42 ELISA kits were applied. (Innotest
hTau Ag, Innotest Phospho-Tau (181P) and Innotest Beta-Amyloid; all Innogenetics, Gent,
Belgium). S100B was measured using an electrochemiluminescent immunometric assay
(ECLIA) on Cobas e 601 immunoassay platform (Roche Diagnostics,Mannheim,Germany).
S100B cannot be assayed in EDTA-plasma, and thus serum was derived from the originally col-
lected EDTA-plasma by adding 20 microL 2M CaCl, to 1 mL sample. The samples were left to
clot for 1 hour and centrifuged at 2500¢g for 15 minutes prior to assay of S100B. Neuron-spe-
cific Enolase was measured using the Kryptor NSE assay (Thermo Fischer Scientific B.R. A.H.
M.S, Asnieres, France), an automated homogenous immunometric assay based on the Time
Resolved Amplified Cryptate Emission (TRACE) technology [11].

Brain tissue from hippocampus was homogenized in 5M guanidine HCI buffer with prote-
ase inhibitor and PMSF using Omnitip (Omni International USA). Homogenate was diluted
with sample dilution buffer to 1:50 and 1:200. Final guanidine HCI concentrations were below
0.1 m. Sample duplicates were run on AB42 specific sandwich colorimetric ELISAs following
the protocol of the manufacturer (BioSource, Camarillo, CA, USA). Optical densities at 450
nm of each well were read on a Multiscan Ascent (Thermo Scientific, MA, USA) and sample
APB42 concentrations were determined by comparison with the AB42 standard curves.

Immunohistochemistry

Four microm thick sections, which had been stored in 4% formaldehyde, were deparaffinized
and rehydrated. The sections kept in citrate buffer, were heated in microwave for 15 min. The
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sections were then incubated with Formic acid 80% for 10 minutes, prior to blocking in a Per-
oxidase Block, 3% H202 for 10 minutes.

Following brief washes with Blocking buffer (5% goat serum, 5% BSA) for 30 minutes, the
sections were incubated with Primary Antibody 6E10 (1:1000), a mouse monoclonal antibody,
APP (Biolegend, MA, USA), and incubated over night at -4°C. The next day the slices were
incubated with ImmPRESS (anti-mouse IgG, Vector Laboratories, CA, USA) for 30 minutes.
For visualization DAB plus Peroxidase Substrate (Vector Laboratories, CA, USA) Kit were
used.

Expression analysis of Amyloid Protein Precursor (APP) from
Hippocampus

Total RNA was extracted from tissue samples using the EZNA Total RNA Kit IT (Omega Bio-
Tek, Inc, Norcross GA, USA) according to manufacturers’ instructions.

Purified RNA was quantified using NanoDrop ND-1000 (NanoDrop Technologies, Dela-
ware, USA) and 2 microg were reverse transcribed into cDNA with the High capacity cDNA
Reverse Transcription kit (Applied Biosystems, Life Tech, CA, USA).

Primers were designed using Primer Express 3.0 Software (Applied Biosystems, USA).

Primer sequence: Forward: 5-° CAGATCCGATCCCAGGTTATGA-3".

Primer sequence: Reverse: 5— " AGCAGGAACGTTGTAGAGCAGG-3".

A tenfold dilution of each primer showed efficiency of between 90% and 110%.

Amplification was performed for both target genes and reference gene P0 in a ViiA 7 Real
Time PCR System, universal settings (Applied Biosystems, Life Tech, CA, USA).

An amount of 50 ng of each sample was run in duplicate with 400 nmol/l primers and
Power SYBR Green Master Mix (Applied Biosystems, Warrington, UK).

Data were analyzed by the comparative Ct method (Delta-delta Ct method).

Statistics

The data were statistically analyzed using the Kruskal-Wallis test and Mann-Whitney U test
for variables with non-normal distributions, and independent samples t test when the distribu-
tion was normal. Levene s test for equality of variance was performed before performing the t-
test. If Levene s test documented a significant variance difference between the compared
groups, a t-test assuming different variances was performed. Otherwise, a t-test assuming equal
variance was performed.

The biomarkers S100B and NSE were log-transformed to obtain a normal distribution.

Pearson’s correlation was used for calculation of the correlation between the log-values of
NSE and S100B and between Lactate andAB42. The statistical analyses were performed by
SPSS Statistics 19.0 (SPSS Inc., Chicago, IL, USA).

Results

Comparing the two treatment groups of either moderate or severe hypoxia and the control
group, there were no significant differences in weight, hemoglobin level, age, BE, PaCO2 or
glucose level at start (Table 1). Table 2 describes the arterial blood gases, lactate and glucose
taken at 5 different time points during the experiment. For one of the pigs in the group exposed
to moderate hypoxia the BP fell below 20mmHg before reaching the predestined value of BE =
-15mmol/l, (BE = -11mmol/l).

At the end of hypoxia and 30 minutes after end of hypoxia there were significant differences
between both intervention groups and the control group regarding the levels of BE, pH, lactate
and glucose (p<0.05). Until 90 minutes after end of hypoxia there were still significant
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Table 1. Physiological parameters in the animals of the different groups at start.

GROUP

Weight (g)

Haemoglobin g/dI
Gender (male/female)
Duration of Hypoxia (min)
Age (h)

BE (mmol/l) Start

Lactate (mmol/l)Start
Arterial pH Start

PaCO2 (kPa) Start
Glucose (mmol/l)

SEVERE HYPOXIA N = 12

1924 (124)
7.0 (1.0)
6/6

33(12)
28.6 (3.5)
-0.3 (3.6)
2.8 (1.0)
7.45 (0.04)
5.0 (1.1)
6.7 (2.3)

MODERATE HYPOXIA N = 12

1982 (140)
7.8(0.9)
6/6

32 (9)
26.3 (4.6)
1.6 (5.5)
1.8 (0.5)
7,45 (0.07)
5.7 (1.4)
6.0 (0.9)

CONTROL N =6

1923 (76)
7.7(1.8)
3/3

0

22.5 (1.5)
43 (2.9)
2,3(1,1)
7,44 (0,12)
5.0 (1.1)
5,0 (1,2)

Between the different groups of the study cohort, there were no significant differences in weight, Hb level, age, BE, PaCO2 or glucose at start. Values are
presented as mean (+/- SD) BE: base excess.

doi:10.1371/journal.pone.0140966.t001

differences in all 4 parameters between the group exposed to severe hypoxia and the control

group and BE and lactate remained significantly different until 120 minutes after end of hyp-
oxia (p<0.05). Blood gases taken at later time points of recovery showed no significant differ-

ences between the groups.

Table 2. BE, pH, PaCO2, Lactate and Glucose at 5 different time points after hypoxia.

BE, mmol/L

Sev.Hypoxia
Mod.Hypoxia
Control

Arterial pH

Sev. Hypoxia
Mod. Hypoxia
Control

PaCO2, kPa
Sev.Hypoxia
Mod.Hypoxia
Control

Lactate, mmol/L
Sev.Hypoxia
Mod.Hypoxia
Control
Glucose, mmol/L
Sev.Hypoxia
Mod.Hypoxia
Control

End hypoxia

-19.0 (3.9)
-15.8 (1.9)
4.1 (3.6)

6.92 (0.11)
6.99 (0.05)
7.43 (0.05)

7.7 (1.1)
8.0 (1.7)
5.7 (0.3)

13.2 (3.1)
11.9 (3.0)
2.4 (2.1)

9.1(3.7)
8.9 (3.4)
5.0 (1.5)

30 min reox

-15.1 (3.5)
-10.4 (2.8)
4.4(1.9)

7.18 (0.07)
7.24 (0.06)
7.46 (0.04)

4.4 (0.6)
5.1(0.7)
5.4 (0.6)

11.2 (0.6)
9.4 (2.7)
1.8 (1.1)

7.5 (3.6)
7.0 (3.1)
47 (0.8)

90 min reox 270 min reox
-5.7 (4.6) -1.4 (5.0)
-1.3(6.2) -0.8 (5.7)
4.2 (2.3) 2.9 (4.5)
7.35 (0.08) 7.39 (0.10)
7.39 (0.10) 7.38 (0.06)
7.45 (0.06) 7.42 (0.12)
4.6 (0.7) 5.2 (0.5)
5.1 (0.8) 5.4 (0.5)
5.5(0.7) 5.5 (0.6)
6.3 (2.1) 2.3(2.2)
3.9 (1.8) 1.7 (1.0)
1.5 (0.6) 1.3(0.4)
6.7 (2.3) 4.9 (0.9)
5.2 (1.6) 4.4(1.2)
4.9 (0.6) 4.3 (0.6)

570 min reox

3.7 (5.4)
-4.0 (5.6)
0.5 (3.4)

7.39 (0.09)
7.32 (0.10)
7.38 (0.06)

4.5 (0.6)
5.6 (1,3)
5.9 (0.8)

2.1(2.0)
2.3 (2.1)
1.7 (1.0)

4.7 (1.6)
4.8 (1.4)
4.3 (1.5)

Mean and (SD) for arterial blood gases (BE, pH, PaCO2, Lactate and Glucose) at end of hypoxia, 30, 90, 270 and 570 minutes after end of hypoxia. For
the Control group the arterial blood gases stayed stable throughout the experiment. For the control group the described time points are corresponding time

points.

doi:10.1371/journal.pone.0140966.1002
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Cerebrospinal fluid

Because of insufficient quality of CSF from 3 pigs, there were 5 pigs in the control group, 10
pigs in the group exposed to moderate hypoxia and 12 pigs in the group exposed to severe hyp-
oxia. Fig 2 describes the level of AB42 in CSF for each group.

There was a slight correlation between AB42 and LogS100B in CSF as well as AB42 in CSF
and arterial Lactate (Fig 3A and 3B).

We measured the levels of S100B in CSF and serum and the concentration of NSE in CSF
(Fig 4A and 4B).

In spite of no significant difference of NSE in CSF between the hypoxia and control groups,
p =0.11, we found a strong correlation between the levels of NSE and S100B in CSF, (Fig 5).

(S1 and S2 Files are captions for supporting information files "correlations_LogNSE--
Logs100b and Lactate-S100b.pzfx")

There were no differences between the intervention groups and the control group for T-tau
and p-Tau in CSF.

Brain tissue

AB42 could not be detected by ELISA in brain tissue homogenates and aggregated AB42 were
not observed in any part of the brains by immunohistochemistry or in any of the slices and any
of the animals examined.

The groups revealed no differences the gene expression of Amyloidal Precursor Protein in
Hippocampus or Cortex.

CSF AB42

=0.023
2000+ P

15004 *

AB42 pg/mi

Fig 2. Mean values of the concentrations of AB42 with standard deviations (SD). AB42 was significantly
lower in the group exposed to severe hypoxia * compared with the control group, 922 (SD +/-445) pg/ml vs.
1290 (SD +/-143) pg/ml, p<0.05. Mean difference was 368 (95% CI: 61—675). The concentration of AB42 in
the group exposed to moderate asphyxia was 1059 (SD+/-75) pg/mg, p = 0.07, when compared with the
control group.

doi:10.1371/journal.pone.0140966.9002
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Fig 3. (A): Correlation between Log S100B and AB42 in CSF. There was a moderate negative correlation between LogS100B and AB42 in CSF, R =-0.418,
p<0.05. (B): Correlation between Arterial Lactate and AB42 in CSF. Arterial Lactate at end of Hypoxia had a moderate negative correlation with AB42, R =
-0.419,p=0.03

doi:10.1371/journal.pone.0140966.9003
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Fig 4. S100B in CSF and serum. (A) shows the Log-values of S100B in CSF for both intervention groups and the Control group, Log-S100B was
significantly higher in the group exposed to hypoxia than in the control group, 1.0 (SD +/-0.3) pg/ml vs. 1.4 (SD +/-0.4) pg/ml, p<0.05. Mean difference was
0.4 (95% CI: 0.2-0.9). (B) depicts the Delta-Value from End of Hypoxia to End of experiment, p = 0.05. There was no difference between the group exposed
to moderate vs. severe hypoxia regarding the levels of S100B, neither in CSF nor in blood, therefore we decided to combine both hypoxia groups into one
intervention group.

doi:10.1371/journal.pone.0140966.9004
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Fig 5. Correlation between NSE and S100B in CSF. Fig 5 describes the correlation between the
logarithmic values of NSE and S100B in CSF. It was a high correlation between logNSE and logS100B
measured in CSF at the end of the experiment, R = 0.86, p<0.001. The values are depicted as log-values
because there was a relatively wide range in the concentration of NSE and S100B.

doi:10.1371/journal.pone.0140966.9005

Discussion

The newborn pigs exposed to severe hypoxia revealed significantly lower levels of AB42 in CSF
compared to the control group. To our knowledge the present study is the first to report a sig-
nificant reduction in the level of AB42 in CSF and hypoxia-reoxygenation in a neonatal model.

A similar tendency was observed, although not significant, for those exposed to moderate
hypoxia.

In accordance with the amyloid hypothesis decreased AB42 in CSF is supposed to be the
first biomarker change to occur in AD [12,13]. A possible explanation for the absent T-tau and
p-Tau changes in our experiment might be that the available limited time of 9.5 hours in our
model is too short to develop tau changes. With longer observation time one might expect
increased T-tau, an unspecific marker of neuronal injury.

AB42 and its protein precursor, Amyloid Beta protein precursor (B-APP) have played a cen-
tral role in research on AD. However, the function of B-APP and AB in the nervous system is
controversial.

B-APP-knockout mice show severe behavioral deficits, possibly indicating that B-APP has
important physiological functions in the nervous system.
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In the prodromal and preclinical stages of AD the level of AB42 in CSF is reduced [14] and
we found a similar pattern in the present neonatal hypoxia-reoxygenation model. In AD, the
level of soluble AB42 correlates with synaptic changes and disease severity [15], indicating an
imbalance between production and clearance of AB42.

B, resulting in accumulation of toxic AB aggregates, neuroinflammation and neuronal cell
death [16].

AB are known to self-assemble into oligomers, which are thought to be an important source
of toxicity by damaging the neurons [17].

Lambert et al.(1998) presented in a mouse model that neurotoxins comprising oligomers of
AB42 could kill neurons in hippocampus [18]. AB induces liposome fusion in vitro, which may
suggest that AB in a non-fibrillar form may play a role in the progression of AD by directly dis-
turbing the plasma membrane of neurons and altering its property [19]. Pillot. et al (1999)
were able to show that in a primary culture from cortical neurons, AB could induce neurotoxic-
ity via an apoptotic pathway [20].

In accordance to other studies we found that S100B in CSF was significantly higher for
those exposed to hypoxia [21, 22]. However, a significant moderate negative correlation
between AB42 and S100B in CSF was also observed.

We did not detect any signs of AB42 in the brain homogenate with ELISA, possibly due to a
low concentration of AB42 in the brain of the newborn pigs.

Neither did we detect any signs of aggregation of AB42 in the brain tissue with the optical
microscope, however a possible presence of small aggregates of AB42, below the detection limit
of an optical microscope, cannot be excluded.

Taking these points into consideration, it is tempting to speculate that the reduction of
AB42 in CSF and the negative correlation with S100B after neonatal hypoxia-reoxygenation,
could be a sign of aggregation of AB42, which in turn attacks the neurons, triggering a long-
lasting process.

In addition, it is an interesting observation that the same cognitive skills which are very
often reduced for relatively well-functioning children after perinatal asphyxia are similar to the
skills which are influenced in the earliest phases of AD, such as attention and visuospatial skills
[23-25].

The moderate negative correlation between AB42 and lactate at end of hypoxia could
strengthen the speculation that perinatal asphyxia might inflict neurodegenerative changes, as
a study on newborn lambs from 2014 showed a high correlation between lactate 4 hours after
asphyxia and histological degeneration of hippocampus 72 hours after asphyxia [26].

Could the neurons injured after neonatal hypoxia-reoxygenation be more prone to
increased oxidative stress in late adulthood than their peers and could this make them more
prone to neurodegenerative disorders such as AD?

It would be worthwhile to study whether AB42 and S100B in CSF could represent useful
biomarkers at an early stage of brain damage after perinatal hypoxia-reoxygenation.

Limitations of the study

We are aware that a relatively small number of animals were investigated. The pigs were sacri-
ficed 9.5 hours after end of hypoxia, thus there were no long term follow-up.

It would have been highly interesting examining the brain of the pigs with electron micro-
scope and search for possible changes in the neurons. However, to find the regions of interest,
when we could not discover any changes in the optical microscope would have been very
difficult.

As this is an animal study caution should be taken interpreting it on humans.
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Conclusion

To our knowledge, this study is the first to show an association between AB42 in CSF and peri-
natal hypoxia. Whether or not the reduction of AB42 in CSF after perinatal hypoxia has an eti-
ological basis for adult neurodegenerative disorders needs to be studied with additional
experiments and epidemiological studies.

AB42 and S100b are significantly changed in neonatal pigs subjected to severe hypoxia com-
pared to controls, thus they may be valuable biomarkers of perinatal asphyxia.
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