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ABSTRACT

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. The 
aim of this study was to identify underlying hub genes and dysregulated pathways 
associated with the development of HCC using bioinformatics analysis. Differentially 
expressed protein-coding genes were subjected to transcriptome sequencing in 
11 pairs of liver cancer tissue and matched adjacent non-cancerous tissue. Gene 
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses were performed, followed by protein-protein interaction (PPI) 
network construction. Hub genes were identified via centralities analysis and verified 
using published datasets. In total, 720 significantly differentially expressed protein-
coding genes were identified in the samples, including 335 upregulated genes and 
385 downregulated genes. The upregulated genes were significantly enriched in cell 
adhesion, biological adhesion and cell-cell adhesion GO terms under biological process 
(BP). Conversely, the downregulated genes were significantly enriched in embryonic 
organ morphogenesis, embryonic organ development and embryonic morphogenesis. 
The KEGG pathway analysis showed that the upregulated genes were enriched in ECM-
receptor interaction and focal adhesion pathways. Furthermore, the downregulated 
genes were enriched in the ErbB, VEGF and MAPK signaling pathways. The PPI 
network and centralities analysis suggested that ITGA2 and 12 alternate genes were 
significant hub genes. These findings improve current understanding of the molecular 
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mechanisms underlying HCC development and may be helpful in identifying candidate 
molecular biomarkers for use in diagnosing, treating and monitoring the prognosis 
of HCC.

INTRODUCTION

Liver cancer is a leading cause of malignancy and 
mortality worldwide. Hepatocellular carcinoma (HCC), 
the most common malignancy in the liver, accounts for 
85-90% of tumors derived from liver tissue [1]. Despite 
significant advances in early diagnosis and interventional 
therapies, there remains a need for novel management 
methods for advanced HCC [2].

HCC develops through a complicated biological 
process that involves several genomic changes and 
various pathogenic molecular mechanisms [3]. The 
process is slow and involves genomic alterations 
gradually changing the phenotype of liver cells to produce 
cellular intermediates that evolve to become cancer cells. 
Studies of the regulation of gene expression are helpful 
for understanding the pathogenesis of HCC [4]. RNA 
sequencing (RNA-Seq) has become useful for examining 
genetic changes on the whole-genome scale and produces 
large quantities of data [5]. A comprehensive systematic 
study of differentially expressed pathways and protein-
coding gene interactions can more accurately identify the 
biological changes that occur during HCC carcinogenesis. 
In addition, protein-protein interaction (PPI) networks 
can be used to identify highly connected hub genes that 
play a key role in maintaining network structure [6]. 
Consequently, analyzing RNA-Seq data using these 
bioinformatics methodologies can help predict molecular 
pathogenesis and identify effective biomarkers of cancer.

HCC is a highly heterogeneous disease, and diverse 
changes in gene expression contribute to the progression 
of this cancer [7]. To obtain complete understanding of 
the alterations in gene expression that occur during HCC, 
RNA-Seq has been used to identify many key genes 
involved in disease progression. However, knowledge 
of the genetic changes that lead to HCC initiation and 
progression remains fragmented, and key drivers of 
carcinogenesis are still unknown, limiting the development 
of targeted therapy for HCC [8]. Furthermore, the overlap 
of the most significantly dysregulated genes among 
multiple studies is very low. Inconsistencies in results are 
caused by various factors, including measurement errors, 
small sample sizes and different statistical methods [9]. 
Therefore, understanding the pathogenesis of this disease 
remains a major challenge, and many hub genes must still 
be identified.

In the present study, we identified differentially 
expressed protein-coding genes from RNA transcriptional 
profiling performed on 11 paired cancer tissues and 
adjacent non-cancerous tissues. Then, we conducted GO, 
KEGG, PPI network and centralities analyses to study 
and identify changes in pathways and hub genes. The 

aim of this study was to improve understanding of HCC 
carcinogenesis by providing information concerning the 
genetic changes that occur during disease progression and 
to uncover the expression of biomarkers with potential use 
for clinical diagnosis, treatment, and monitoring of disease 
progression.

RESULTS

Identification of differentially expressed 
protein-coding genes in HCC and adjacent non-
cancerous tissues

Fifteen pairs of samples from tumor and adjacent 
tissues were collected from patients enrolled in Peking 
Union Medical College Hospital from May 2015 to April 
2016. All patients provided consent. RNA transcriptional 
profiling was performed on the tissue samples. 
Approximately 542.8 million reads were mapped to the 
human hg38 genome, with a mean of 15.7 M reads per 
sample (range 4.2-23.5 M) (Supplementary Table 1). 
Paired samples A2 and T2 were filtered out because of the 
small amount of data obtained. Multidimensional scaling 
analysis (MDS) was performed to show that the tumor 
samples were distinct from the adjacent non-cancerous 
tissue samples [10]. Four samples (A5, T5, T6, and T14) 
were found to be potentially misidentified and were 
excluded from further analysis (Supplementary Figure 
1). Hence, transcriptome data from 11 paired samples 
was used to identify differentially expressed genes. 
We identified 720 significantly differentially expressed 
protein-coding genes, including 335 upregulated genes 
and 385 downregulated genes; a heatmap showing these 
genes can be found in Figure 1.

Functional characterization of differentially 
expressed protein-coding genes

To gain insight into the functional characteristics 
of the identified protein-coding genes, we conducted GO 
and KEGG pathway enrichment analyses [11]. The GO 
analysis results showed that the upregulated protein-coding 
genes were significantly enriched in the cell adhesion, 
biological adhesion and cell-cell adhesion categories 
under biological process (BP). Under molecular function 
(MF), the genes were enriched in glycosaminoglycan 
binding, polysaccharide binding and pattern binding. 
Additionally, GO cellular component (CC) analysis 
revealed genes significantly enriched in extracellular 
region part, extracellular region, and extracellular space. 
For the downregulated protein-coding genes, for BP, 
there was significant enrichment in embryonic organ 
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morphogenesis, embryonic organ development and 
embryonic morphogenesis. For MF, there was enrichment 
in sequence-specific DNA binding, transcription regulator 
activity and transcription factor activity. In addition, GO 
CC analysis revealed genes significantly enriched in cell-
cell junction, apical junction complex and apicolateral 
plasma membrane (Figure 2 and Supplementary Table 2). 
Moreover, we found upregulated protein-coding genes 
that were significantly enriched in the ECM-receptor 
interaction and focal adhesion pathways using KEGG 
pathway enrichment analysis (Figure 2 and Supplementary 
Table 3). Meanwhile, downregulated protein-coding genes 
were enriched in the ErbB, VEGF, and MAPK signaling 
pathways (Figure 2 and Supplementary Table 3). We then 
compared these enriched genes with potential HCC driver 
genes from the Driver DB 2.0 database and identified 15 
protein-coding genes that were recorded as HCC driver 
genes (triangle node) (Figure 2).

PPI network construction and centralities 
analysis

PPI network analysis is a powerful tool for 
recognizing critical hub members among a cluster of 
molecules. Thus, we conducted PPI network analysis 
using the STRING database to identify critical 

members among our protein-coding genes. The PPI 
networks for the upregulated and downregulated genes 
are shown in Figure 3 and Supplementary Figure 2, 
respectively.

Centralities represent the possibility that a gene is 
functionally able to keep communicating nodes together in 
a biological network. There are five types of centralities: 
degree centrality, betweenness centrality, stress centrality, 
closeness centrality and clustering coefficient. The five 
types of centralities were calculated based on the complex 
network, and we found that the distribution of the top 
10 genes was not completely consistent among various 
centralities analyses. Therefore, the genes that were among 
the top 10 identified and that were shared more than twice 
among the five types of centralities were defined as hub 
genes. Using these criteria, 6 hub genes were obtained 
for the upregulated protein-coding genes, with the alpha 
2 integrin gene (ITGA2), bone morphogenetic protein 4 
(BMP4), PLCB1 and PRKG2 identified as the common hub 
genes across the degree, betweenness and stress centrality 
analyses. Moreover, SPINK6 and POU3F4 detected in two 
of the five types of analysis. In addition, 7 hub genes were 
identified for the downregulated protein-coding genes, 
with lysine (K)-specific demethylase 6B (KDM6B), GLI1, 
MYC, CSNK2A1 and POTEF identified as common hub 
genes across the degree, betweenness and stress centrality 

Figure 1: Heatmap showing significantly differentially expressed protein-coding genes among 11 paired HCC and 
adjacent non-cancerous tissue.  Rows represent genes, and columns represent samples.
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analyses, and HSF1 and SCNN1A were commonly obtained 
in the degree and stress centrality analyses (Figure 4).

The role of hub genes in the development of 
HCC

To further explore the functional roles of the 
identified critical hub molecules in the development of 
HCC, we evaluated changes in the expression spectra 
of the 13 hub genes using one-way ANOVA (Kruskal-
Wallis test) in HBV-related HCC (GSE25097) and HCV-
related HCC datasets (GSE6764). We did not identify 
SCNN1A and PLCB1 in the HBV-related HCC dataset 
or POTEF and MYC in the HCV-related HCC dataset. 
The transcriptome profiling data in the GSE25097 
dataset contain 557 samples, including 6 healthy livers, 
40 cirrhotic tissue samples, 243 adjacent non-tumor 
samples, and 268 early-to-advanced stage HCC samples. 
Moreover, the GSE6764 dataset contains a total of 75 
tissue samples, including 10 healthy liver samples, 13 
cirrhosis samples, 17 dysplastic nodules, 18 early HCC 
samples and 17 advanced HCC samples. Consistent 
with our results, ITGA2, BMP4 and PLCB1 were 
significantly upregulated, and KDM6B and MYC were 
significantly downregulated during HCC oncogenesis 

(Figure 5 and Supplementary Figure 4). In contrast to 
our findings, GLI1, CSNK2A1, POTEF and HSF1 were 
upregulated and SPINK6 downregulated in the HCC 
cohort (Supplementary Figures 3 and 4). No significant 
differences were found in the expression of the other 3 
genes (Supplementary Figures 3 and 4). Based on these 
results, the expression of ITGA2, BMP4 and PLCB1 
may contribute to cancer development. ITGA2, BMP4, 
PLCB1, KDM6B and MYC represent the most likely 
diagnostic or therapeutic biomarkers associated with 
HCC.

DISCUSSION

HCC is a common malignant tumor with a 
heterogeneous molecular pathogenesis that has not been 
fully elucidated. Identifying significantly dysregulated 
genes and pathways associated with HCC carcinogenesis 
may improve understanding of the molecular pathogenesis 
underlying HCC development and could identify potential 
biomarkers for treatment [4]. In this study, GO and 
KEGG pathway enrichment analysis showed that cell 
adhesion, biological adhesion and cell-cell adhesion were 
significant GO terms in upregulated protein-coding genes 

Figure 2: Functional enrichment analysis of significantly upregulated and downregulated protein-coding genes. 
GOcluster plot showing a circular dendrogram of the clustering of the expression spectrum. The inner ring indicates the color-coded logFC. 
Red represents significantly upregulated (A) and blue represents significantly downregulated (B) protein-coding genes. The outer ring 
displays the assigned functional terms. KEGG pathway enrichment of significantly upregulated (C) and downregulated (D) protein-coding 
genes. The red node represents significantly upregulated protein-coding genes. The green node represents significantly downregulated 
protein-coding gene. The yellow node represents enriched pathway symbols. The triangular node represents HCC driver genes from the 
Driver DB V2 database. The size of the node represents the number of genes.
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and that embryonic organ morphogenesis, embryonic 
organ development and embryonic morphogenesis were 
significant GO terms in downregulated protein-coding 
genes. Moreover, ECM-receptor interactions and focal 
adhesion pathways were the relevant pathways associated 
with the upregulated protein-coding genes, and the ErbB, 
VEGF, and MAPK signaling pathways were the relevant 
pathways associated with the downregulated protein-
coding genes.

Hub genes were identified based on degree 
centrality, betweenness centrality, stress centrality, 
closeness centrality and clustering coefficients in the 
PPI network. The outcomes across these five centralities 
were integrated to address inconsistent results provided 

by the different methods of analysis. A total of 6 hub 
genes were identified among the upregulated protein-
coding genes, and 7 hub genes were obtained among the 
downregulated protein-coding genes. ITGA2, BMP4, 
PLCB1, PRKG2, KDM6B, GLI1, MYC, CSNK2A1 and 
POTEF were common hub genes across three centrality 
methods. In addition, the expression spectra of the 13 
hub genes were verified in HCC tumorigenesis using 
GEO datasets GSE25097 and GSE6764. ITGA2, BMP4, 
and PLCB1 were significantly upregulated, and KDM6B 
and MYC were significantly downregulated during HCC 
oncogenesis, consistent with our results. In contrast, 
GLI1, CSNK2A1, POTEF and HSF1 were upregulated 
and SPINK6 downregulated in the HCC cohort. No 

Figure 3: PPI network of significantly upregulated protein-coding genes. The nodes represent the significantly 
upregulated protein-coding genes. The edges represent the interaction of significantly upregulated protein-coding genes. The red 
triangles represent the significantly upregulated hub genes.
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significant differences were found in the expression of 
the other 3 genes. BMP4 and ITGA2 were identified 
as critical hub molecules among the upregulated 
protein-coding genes and had many interactions with 
their neighbors. KMD6B was considered to be a hub 
molecule due to its high degree of downregulation 
when compared to all protein coding genes. Therefore, 

we mainly discuss the function of these top degree 
centrality genes.

KDM6B is a demethylase that acts on histone 
H3 at lysine 27 (H3K27), which specifically catalyzes 
the demethylation of H3 lysine-27 tri/di methylation 
(H3K27me3/2) [12]. KDM6B has been shown to play a 
key role in promoting transcription elongation associated 
with related elongation factors and RNA polymerase II 

Figure 4: Distribution of hub genes among the significantly upregulated and downregulated protein-coding genes 
identified by five types of centrality. (A) Degree centrality; (B) betweenness centrality; (C) stress centrality; (D) closeness centrality; 
and (E) clustering coefficient.

Figure 5: Dynamic expression of ITGA2, BMP4 and KDM6B in HBV-related HCC (up) and HCV-related HCC 
(down); p < 0. 01 (*), p < 0.001 (**), and p < 0.0001 (***).
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to activate gene transcription [13, 14]. Growing evidence 
suggests that KDM6B regulates cancer development. 
However, the effect of KDM6B on tumorigenesis is not 
consistent among different human cancers. Compared 
with adjacent normal tissues, KDM6B expression was 
significantly increased in renal cell carcinoma [15]. 
Overexpression of KDM6B has also been shown to 
promote invasion-metastasis cascades and induce the 
expression of mesenchymal genes in breast cancer [16]. 
In contrast, KDM6B knockdown promotes tumor sphere 
formation, increases hepatic metastasis and peritoneal 
dissemination in pancreatic adenocarcinoma, and enhances 
epithelial-mesenchymal transition and invasiveness in 
colon cancer cells [17, 18]. Similarly, the knockdown of 
KDM6B inhibits cell apoptosis and promotes cell growth 
by reducing the nuclear translocation of FOXO1 in non-
small cell lung cancer cells [19]. However, literature 
focused on KDM6B expression in HCC is lacking. In this 
study, KDM6B was identified as a hub gene among the  
downregulated protein-coding genes differentially 
expressed throughout HCC development.

The integrin family of α/β heterodimeric transme-
mbrane receptors mediates the binding of cells to the 
extracellular matrix (ECM) and the intracellular signaling 
events that occur within the ECM [20]. ITGA2 encodes 
the integrin α2 subunit of the α2β1 integrin receptor, which 
is a cell adhesion molecule [20]. Previous studies have 
shown that the ITGA2 gene is associated with various 
types of cancer, including colorectal cancer, prostate 
cancer, hepatocellular carcinoma, pancreatic cancer, 
breast cancer, melanoma and ovarian carcinoma. ITGA2 
is expressed in colon cancer cell lines and is involved 
in the proliferation and migration of these cells [21]. 
Slambrouk et al. reported that integrin α2 subunits interact 
with the ECM protein collagen I, increasing prostate 
cancer cell adhesion and cellular invasion [22]. Integrin 
α2 subunits also downregulate E-cadherin-mediated cell-
cell adhesion architecture, enhancing pancreatic cancer 
cell invasiveness, migration and proliferation [23]. In 
addition, integrin α2β1 inhibits mammalian sterile 20-like 
kinase 1 kinase (MST1) phosphorylation and activates 
Yes-associated protein (YAP) oncogenic signaling in 
HCC [24]. It has been previously shown that ITGA2 is 
enriched in ECM-receptor interactions and pathways in 
cancer. However, the impact of ITGA2 on the progression 
of HCC is still unknown. Therefore, it seems necessary to 
investigate and clarify the basic biological links between 
ITGA2 and HCC.

BMP4 belongs to the transforming growth factor 
(TGF-β) superfamily of extracellular signaling molecules, 
which is of great relevance both during development and in 
adult tissues [25, 26]. BMP signaling regulates early liver 
development and promotes liver bud morphogenesis as well 
as the migration, proliferation and survival of hepatoblasts 

[27, 28]. Interestingly, BMP4 has been shown to participate 
in human carcinogenesis. Recent findings have revealed that 
BMP4 is overexpressed in breast cancer and may promote 
cell invasion and migration by modulating TGF-β factor 
signaling [29]. In addition, BMP4 signaling causes direct 
overexpression of ID3, a proto-oncogene that contributes 
to the pathogenesis of human ovarian cancer [30]. BMP4 
is upregulated in HCC, and the overexpression of BMP4 
promotes the metastasis and proliferation of HCC cells by 
activating the mitogen-activated protein/extracellular signal-
regulated kinase (MEK)/extracellular signal-regulated 
kinase (ERK) signaling pathway [31]. BMP4 was enriched 
in KEGG pathways associated with pathways in cancer and 
basal cell carcinoma in this study. Therefore, BMP4 and its 
associated pathways may be used as a biological indicator 
for the development of various types of cancers, including 
HCC.

Although we identified and verified hub 
genes important for the development of HCC using 
comprehensive bioinformatics technology, there are some 
limitations to the present study. First, this study lacked 
experimental validation of genes and their functions 
in HCC carcinogenesis. Second, we cannot rule out the 
possibility that these key genes may be involved in non-
developmental aspects of HCC. Finally, the sample size 
for the RNA-Seq was small, which may have led to a high 
rate of false-positive outcomes. Hence, a larger sample 
size is needed for further bioinformatics analysis, and 
experimental studies are necessary to validate our results.

In conclusion, we identified several hub genes and 
systematically presented the biological processes and 
signaling pathways associated with the development of 
HCC. Many of these genes were not previously reported 
but could play important roles in HCC. Further research is 
required to focus on the clinical application of these genes 
and pathways for diagnosing, treating and monitoring the 
prognosis of HCC.

MATERIALS AND METHODS

Ethics

This study was approved by the Clinical Research 
Ethics Committee of Peking Union Medical College 
Hospital. Written informed consent with a signature was 
obtained from each patient.

Clinical samples

We collected tissue samples from patients with 
liver cancer undergoing surgery at Peking Union Medical 
College Hospital, Beijing. The samples were collected in 
pairs, i.e., cancer tissue and adjacent non-cancerous tissue. 
The collected tissue samples were stored in liquid nitrogen.
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RNA preparation and sequencing

First, 50 mg of tissue was lysed in TRIzol (Invitrogen) 
to extract RNA following the manufacturer’s instructions. 
Next, ribosomal RNA was depleted using a RiboZero 
Gold kit (Epicentre Bio-technologies). RNA integrity was 
assessed with an Agilent Bioanalyzer 2100. An RNA-Seq 
library was generated with the rRNA-depleted samples 
using an Illumina standard RNA Sample Prep kit according 
to the manufacturer’s instructions. The library was 
subsequently sequenced on an Illumina HiSeq2500 as 125-
bp paired-ends with approximately 300-bp size selection.

Published dataset and database

Liver cancer-related RNA-Seq data are available 
from the NCBI GEO database, including two independent 
microarray datasets: HBV-related HCC (GSE25097) and 
HCV-related HCC (GSE6764). HCC-related driver genes 
were obtained from the Driver DB 2.0 database [32].

Transcriptome sequencing analysis

Sequencing quality was assessed with FASTQC [33]. 
After removing adaptor and low-quality reads using cutadapt 
[34] (-q 10--quality-base=32 -e 0.1 -O 10 -m 50), the clean 
reads were aligned to human (hg38) GRCh38.p5 (http://
www.ncbi.nlm.nih.gov/assembly/GCF_000001405.31) 
genome reference sequences using Tophat2 [35] (-a 6 
--microexon-search -m 2); bam files were generated and 
sorted, and duplicate reads were then removed using 
Samtools [36]. Read counts were tabulated with HT-Seq [37] 
using “union” mode and the Gencode human v24 GTF file as 
a reference. edgeR was used to identify the small library size, 
make MDS plots of the samples, and check reproducibility 
from replicates to remove small sample sizes and outliers and 
check for batch effects [38]. Significantly differential gene 
expression between tumor and adjacent non-cancerous tissue 
was estimated, with a minimum twofold change and FDR 
less than 0.01, using the edgeR package from Bioconductor. 
A heatmap was plotted using the pheatmap package. 
Cufflinks [39] (v2.21) was also used to estimate the total 
transcriptional output based on the Gencode gene annotation 
for human HG38 (version 24) [40].

Gene ontology and KEGG pathway enrichment 
analysis

We performed Gene Ontology and KEGG pathway 
enrichment analysis using The Database for Annotation, 
Visualization and Integrated Discovery (DAVID) version 
6.7 (https://david-d.ncifcrf.gov/home.jsp) [11]. Unique 
lists of significantly differentially expressed protein-coding 
genes and all the expressed genes (FPKM >0 in any sample) 
were submitted to the web interface as the gene list and 
background, respectively. Enrichment results were visualized 
using R and Cytoscape 3.5.0 software [41]. In addition, we 

compared these enriched genes with potential HCC driver 
genes from the Driver DB 2.0 database [32].

PPI network analysis

Proteins rarely perform their functions independently, 
and it is therefore important to investigate protein 
interactions by studying larger functional groups [42]. 
Genes that were identified as significantly upregulated or 
downregulated were mapped to the STRING (Search Tool 
for the Retrieval of Interacting Genes) version 10.0 database 
(http://www.string-db.org/) and used to evaluate PPI 
information and construct a PPI network [6]. The STRING 
database covers 9.6 million proteins from 2031 organisms. 
In the PPI network, each node represents a gene, and the 
edges stand for interactions between nodes.

Centralities analysis of the PPI network

Researchers have revealed strong correlations 
between PPI networks and the functions of protein/gene 
components [43]. Topological centrality is effective for 
identifying molecules that may play important roles in 
significantly perturbed networks [44]. The PPI data were 
downloaded from the STRING database. Centralities 
analysis was performed using Cytoscape 3.5.0 software. 
We presented the centralities of the PPI network on a 
local (degree and clustering coefficient) and global scale 
(betweenness, closeness and stress). Genes identified in the 
top 10 genes and that were shared more than twice among 
the five types of centralities were defined as hub genes.

Data submission

Sequence data has been deposited at the European 
Genome-phenome Archive (EGA) (https://ega-archive.
org), which is hosted by European Bioinformatics Institute 
(EBI) and the Centre for Genomic Regulation (CRG), under 
accession number EGAS00001002526.
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