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A B S T R A C T

Objective: MRI measures of network integrity may be useful disease markers in cerebral small vessel disease
(SVD). We compared the sensitivity and reproducibility of MRI derived structural and functional network
measures in healthy controls and SVD subjects.
Methods: Diffusion tractography and resting state fMRI were used to create connectivity matrices from 26
subjects with symptomatic MRI confirmed lacunar stroke and 19 controls. Matrices were constructed at multiple
scales based on a multi-resolution cortical atlas and at multiple thresholds for the matrix density. Network
parameters were calculated over the multiple resolutions and thresholds. In addition the reproducibility of
structural and functional network parameters was determined in a subset of the subjects (15 SVD, 10 controls)
who were scanned twice.
Results: Structural networks showed a highly significant loss of network integrity in SVD cases compared to
controls, for all network measures. In contrast functional networks showed no difference between SVD and
controls. Structural network measures were highly reproducible in both cases and controls, with ICC values
consistently over 0.8. In contrast functional network measures showed much poorer reproducibility with ICC
values in the range 0.4–0.6 overall, and even lower in SVD cases.
Conclusions: Structural networks identify impaired network integrity, and are highly reproducible, in SVD,
supporting their use as markers of SVD disease severity. In contrast, functional networks showed low re-
producibility, particularly in SVD cases, and were unable to detect differences between SVD cases and controls
with this sample size.

1. Introduction

Cerebral Small Vessel Disease (SVD) is the most common pathology
underlying vascular cognitive decline and dementia (Pantoni, 2010). A
number of features can be seen on MRI imaging including lacunar in-
farcts, T2-white matter hyperintensities, cerebral microbleeds, and
more diffuse white matter changes seen on Diffusion Tensor Imaging
(DTI) (Schmidt et al., 2010). It has been suggested that damage to white
matter tracts leads to disruption of complex networks connecting cor-
tical and sub-cortical regions (Lo et al., 2010; Reijmer et al., 2013).
Recently it has become possible to estimate the disruption of such
networks using MRI techniques. Structural networks can be constructed
via tractography using DTI datasets and these have been shown to be
abnormal in patients with SVD, with the extent of disruption correlating

with cognitive decline (Lawrence et al., 2014). Mediation analysis has
suggested conventional MRI markers of SVD cause cognitive decline via
structural network disruption, and recently the degree of network dis-
ruption was found to be a significant predicator of future dementia risk
(Lawrence et al., 2014). Network integrity can also be assessed using
functional connectivity, which utilises resting-state blood oxygen level
dependent (BOLD) MRI. Temporal correlations of signal fluctuations in
different cortical regions are assessed, and provide an estimate of brain
connectivity of these regions (Biswal et al., 1995). Abnormalities of
functional connectivity have been reported in SVD, and it has been
suggested they may correlate with cognitive impairment (Farràs-
Permanyer et al., 2015).

In this study we compared functional and structural connectivity
measures in SVD compared with age matched controls, and re-scanned
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both patients and controls on a further occasion to determine re-
producibility of both measures.

2. Methods

2.1. Participants

The study was approved by East of England - Cambridge East re-
search ethics committee (reference: 14/EE/0014). All participants
provided written, informed consent. Twenty-six participants with
symptomatic SVD were recruited from acute and outpatient stroke
services at a single teaching hospital. Inclusion criteria were: 1) history
of clinical lacunar stroke syndrome (Bamford et al., 1991) with MRI
evidence of an anatomically appropriate lacunar infarct, 2) presence of
confluent White Matter Hyperintensities (Fazekas scale≥ 2) (Fazekas
et al., 1987). Exclusion criteria were any cause of stroke other than
small vessel disease specifically: 1) evidence of larger subcortical in-
farctions (> 1.5 cm) on MRI as these are often embolic; 2) cortical in-
farction on MRI; 3) large artery disease - carotid, vertebral or in-
tracranial stenosis > 50%; 4) cardioembolic source for embolism
(moderate or higher risk according to the Trial of Org 10172 in Acute
Stroke Treatment criteria (Adams Jr et al., 1993). In addition patients
with any major central nervous system disease other than SVD. In ad-
dition 19 stroke-free control subjects were recruited, for these the ex-
clusion criteria were: 1) a medical history of stroke; 2) any major
central nervous system disease.

2.2. MRI acquisition

Participants were imaged on a 3 T Verio MRI system (Siemens AG,
Erlangen, Germany) employing a 32-channel receive-only head coil. In
addition to conventional sequences (1 mm volumetric T1 weighted
MPRAGE, 0.9375×0.9375× 2mm T2 weighted FLAIR,
0.86×0.86×5mm T2* weighted gradient echo) for SVD marker
identification and brain volume estimation, the following whole brain
sequences were acquired:

1. Axial single shot T2*-weighted EPI sequence with diffusion-
weighted images (b= 1000 s·mm−2) obtained in 63 non-collinear
directions on the whole sphere. Eight non-diffusion weighted images
(b=0 s·mm−2) were acquired. TE/TR: 106/11700ms, GRAPPA: 2,
acquisition matrix 128×128, FOV: 256×256mm, 63 contiguous
2mm slices. Acquisition time 14.5min.

2. Gradient recalled echo fieldmap, TR: 688ms, TE1: 5.19ms, TE2:
7.65ms, flip angle: 60°. Geometry, slice order and phase encoding
identical to 1.

3. Eleven minute axial multi-echo EPI resting state acquisition during
which subjects were instructed to attend to a fixation cross. TR:
2430ms, TE1/2/3: 13/31/48ms, Flip angle: 90°, GRAPPA: 2, ac-
quisition matrix: 64× 64, FOV: 240× 240mm, 34 slices of 3.8 mm
thickness, 10% slice gap. Reconstructed voxel dimensions:
3.75×3.75×4.18mm. 269 volumes were acquired.

2.3. Test-retest reproducibility

To investigate the reproducibility of our MRI measures we acquired
a second set of MRI data for a subset of participants. Fifteen SVD and 10
control participants were rescanned within 6months of the original
scan.

2.4. MRI processing

2.4.1. Cortical segmentation
Cortical reconstruction and volumetric segmentation of the T1-

weighted images was performed using the Freesurfer suite (http://
surfer.nmr.mgh.harvard.edu; version 5.3 (Fischl and Dale, 2000; Fischl

et al., 2002)). Subcortical structures are segmented and the grey-white
matter boundary estimated and refined. The cortical surface is parcel-
lated into 33 regions per hemisphere on the basis of cortical folding
patterns (Desikan et al., 2006).

2.4.2. Diffusion and rs-fMRI pre-processing
The diffusion data was pre-processed to produce a diffusion tensor

for each voxel using FSL (Jenkinson et al., 2012) and other algorithms
implemented in Python, details can be found in Appendix A.

The rs-fMRI data was analysed using the methods proposed by
Kundu et al. (2012), this was followed by a pipeline involving steps
from SPM (Friston et al., 1995) and CONN (Whitfield-Gabrieli and
Nieto-Castanon, 2012) to remove residual effects of noise, movement
and the confounding effects of CSF and WM signal, a signal time-course
can then be obtained; see Appendix A for more details.

2.5. Network construction

2.5.1. Network nodes definition
Network nodes were defined from the Desikan-Killiany parcellation

of cerebral cortex (Desikan et al., 2006). For the structural analysis the
nodes are based on the white-grey matter surface, the ROIs were single
voxel dilated with 26-connectivity to capture connectivity where
streamlines terminated close to grey matter. For functional connectivity
the measure of interest is the signal from the cortical region volume
itself, so this is the ROI.

To investigate the effects of atlas resolution we employed a hier-
archical multiresolution atlas (Daducci et al., 2012). The atlas was
created according to Cammoun et al. (2012), the original Desikan-
Killiany 68 GM-WM ROIs were partitioned to create a fine resolution
atlas of approximately equal area regions (1.5 cm2, n=998). Then
successive merges of neighbouring regions were employed to produce
multiple atlas resolutions. Due to the low functional imaging resolution
we omit the finest resolution atlas and investigate networks constructed
at four atlas resolutions: 68, 114, 219 and 448 nodes.

2.5.2. Network connection definition
For the structural data whole brain deterministic tractography was

conducted on the principal directions of the tensors. Streamlines were
generated and two cortical regions A, B were connected where one or
more streamlines terminating in region A also terminated in region B.
The strength of this connection was weighted by the number and length
of streamlines between the two regions. Details of the tractography
processing and weighting are found in Appendix A.

The corresponding measure for the functional data is simply the
correlation coefficient between the signal time-courses over the 269
volumes for any 2 regions.

2.6. Brain network analysis

Network analysis produces a number of measures of network in-
tegrity. We focussed on weighted global efficiency (EGlobal), weighted
clustering coefficient (Cw) and the total network strength (TNS) as these
have previously been shown to be sensitive to structural network dif-
ferences between SVD cases and controls in (Lawrence et al., 2014).
Details on how these parameters are derived is in Appendix A.

2.7. Thresholding of connectivity matrices

There is a correlation coefficient between every pair of nodes in
functional analysis and a threshold is required to distinguish connec-
tions from statistical noise. In contrast, structural networks are sparse
with most pairs of nodes having no connection. Further, for structural
data the distribution of connection weights decays exponentially such
that the number of streamlines is very low for most connections
(Hagmann et al., 2007). Thresholding is also commonly carried out in
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structural networks to reduce the impact of low-weight false positives
resulting from the effects of noise on the tractography algorithm.

In both cases there is no optimal threshold and commonly a range of
thresholds are considered. In this study we adopt common thresholding
schemes across functional and structural modalities and the different
resolutions, for the functional data a fixed edge density is chosen, and
the correlation coefficient value varied between subjects to achieve
this. For the structural data a fixed edge weight is chosen, and the edge
density will differ between subjects. At each resolution for each mod-
ality the most restrictive threshold (based on edge density for the rs-
fMRI data and edge weight for the diffusion data) was chosen such that
50% of subjects had 95% connectivity of their network. In other words
it was possible to access 95% of nodes using the supra-threshold con-
nections. The least restrictive threshold was chosen such that 95% of
subjects had 95% connectivity of their network. Twelve thresholds
(including these end points) were then equally distributed between the
extremes. An additional summary statistic was calculated as the area
under the curve (AUC) across all thresholds.

2.8. Statistical analysis

Analyses were conducted in R v3.3.2 (https://www.r-project.org/)
using additional functions from the psych package (http://personality-
project.org/r/psych, v1.69).

We assess the effects of SVD on the network measures of interest
across thresholds and atlas resolutions using ordinary least squares
linear regression and Hedge's g, a measure of standardised effect size for
the effect of group. These analyses allow the inclusion of confounding
variables in addition to the effect of interest (group). The Hedge's g
analysis achieves this by attributing the maximum amount of variance
to the confounding variables before testing for the effect of group.

Spearman's Rho rank correlation coefficient was calculated to assess
whether functional and structural connectivity data was correlated. To
reduce dimensionality of the analysis only the AUC data was used in
this analysis across each network parameter and atlas.

We assessed test-retest reproducibility for our network measures
(EGlobal, Cw, and TNS) using the Intra-class correlation coefficient (ICC),
specifically ICC(2,1) according to the definition of Shrout and Fleiss
(1979).

For the reproducibility analyses variability in the interval between
the scans and variability in the time of day for each scan might act as
confounds. These quantities were compared between the SVD and
control groups using the Student's unpaired t-test. The Pearson corre-
lation coefficient was used to test the relationship between them and
the difference between the network parameters at the two time points.

3. Results

The demographics for the entire group of participants and those
who had test/retest scanning are shown in Table 1. The groups were
matched for age and gender. The distribution of radiological markers of
small vessel disease in the cases and controls is shown in Table 2.

For the functional data the range of edge densities associated with
the thresholds was 0.142–0.355 for the lowest resolution atlas and
0.04–0.1 for the highest. The equivalent ranges for the structural data
were 0.074–0.221 and 0.011–0.036.

3.1. Comparison of structural and network measures between cases and
controls

Although it was found that there were no significant differences in
any of the demographic variables between groups, gender and hy-
pertension approached difference. It was decided to include these in the
linear regression and Hedge's g analysis as potential confounds. For the
structural network data there was a significant difference between SVD
cases and controls across the vast majority of atlas, threshold and

parameter combinations for network parameters EGlobal and TNS, and
those non-significant combinations approached significance (maximum
p-value 0.083). Cw showed a different pattern where only a few of the
atlas/threshold combinations showed a significant difference between
the groups. In contrast the functional network analysis showed no dif-
ference between groups for any network parameter, threshold or
parameter combination as evidenced by the large p-values associated
with all thresholds and atlases. Table 3 shows means and p-values for
the three network parameters across all atlas resolutions and thresh-
olds. p-Values are uncorrected for multiple comparisons and were se-
lected to provide best and worst case scenarios for each of the para-
meters and imaging modalities across the range of atlas resolutions and
thresholds. The relative ability of the structural and functional net-
works to differentiate between SVD and controls is illustrated in Fig. 1.
This shows the effect size for the difference between SVD cases and
controls for the functional and structural data for each of the three
network measures.

The magnitude of the difference between SVD cases and controls for
both global efficiency and TNS showed no resolution or threshold de-
pendence; however for the weighted clustering coefficient there was a
slight dependence on threshold for both functional and structural net-
works as shown in Fig. 1.

3.2. Relationship between functional and structural connectivity parameters

There was no significant correlation between the structural and
functional data for the three network parameters across any atlas re-
solution. Analysis was performed for all subjects and the control and
SVD groups separately; the maximum Spearman's Rho across all ana-
lyses was 0.31, with an associated minimum p-value (uncorrected) of
0.11, this data is shown in Appendix B, Fig. B1.

3.3. Test/retest data

This was first examined in all subjects. The structural data was
highly reproducible with ICC values consistently over 0.8. In contrast
the functional data showed much poorer reproducibility with ICC va-
lues in the range 0.4–0.6 for most analyses. Fig. 2 shows a comparison
of the ICC obtained from the test/retest data for the structural and
functional data for the three network parameters (EGlobal, Cw, and TNS)
and for the four atlas resolutions. The bottom row in Fig. 2 shows the
AUC data and that the ICC was largely independent of the threshold
used. Appendix B Table B1a shows the ICC and 95% confidence inter-
vals for the structural data over the range of atlas sizes and network
parameters, B1b shows the same for the functional data.

We then evaluated reproducibility separately in cases and controls
(Fig. 3). For the structural network measures reproducibility was si-
milarly high in cases and controls. In contrast for functional networks
reproducibility was higher in controls than cases, although even in
controls it was much lower than with structural networks. In SVD cases
reproducibility of functional networks was very poor, with ICCs tending
towards zero. A tabular representation of this data can be found in
Appendix B in Tables B2a–d and ICC values for all thresholds and re-
solutions are shown in Fig. B2.

The difference in time of day between the scans for retest data was
177 (SD ± 84) minutes for controls and 128 (± 109) for the SVD
group (p=0.21). There was a longer delay between scans in the control
group than in SVD subjects (12 ± 4weeks vs. 5 ± 10weeks,
p=0.003). Neither of these parameters showed any significant corre-
lation with the variation between the repeated measures for any net-
work parameter.

4. Discussion

Growing evidence suggests MRI markers may offer useful surrogate
markers to predict risk of dementia in individual patients, and also as a
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surrogate disease marker to test potential therapeutic interventions
with sample sizes much smaller than those needed for phase 3 trials
with clinical endpoints such as stroke and dementia (Gregoire et al.,
2012; Lambert et al., 2017). Recent data suggest a number of these MRI
markers of SVD cause cognitive impairment via network disruption

(Lawrence et al., 2014), and therefore MRI network analysis may re-
present a useful method to integrate information from these different
markers into a single measure which can be used in risk prediction.
Both structural and functional networks have been suggested as
methods to obtain this network data, but to date no studies have

Table 1
Demographics for the two groups, and for the subgroups who had repeat scanning.

Values given are either mean (SD) or number (%). In the group test column T indicates the t-test was used, X indicates the chi-squared test was used, the number in brackets is the
degrees of freedom in the test.

Whole group Test-retest subgroup

Controls (n=19) SVD (n=26) Group test Controls (n=10) SVD (n=15) Group test

Age (years) 67.81 (2.71) 65.86 (11.71) T(28.6)= 0.82, p=0.4 67.67 (2.92) 65.33 (13.22) T(16)= 0.66, p=0.5
Male gender 16 (84.21%) 15 (57.69%) X(1)=2.47, p=0.12 9 (90.00%) 10 (66.67%) X(1)= 0.74, p=0.4
Hypercholesterolemia 7 (36.84%) 15 (57.69%) X(1)=1.17, p=0.3 5 (50.00%) 8 (53.33%) X(1)= 0.00, p=1
Diabetes mellitus 1 (5.26%) 3 (11.54%) X(1)=0.04, p=0.8 0 (0.00%) 2 (13.33%) X(1)= 0.20, p=0.7
Hypertension 9 (47.37%) 18 (69.23%) X(1)=1.37, p=0.2 3 (30.00%) 11 (73.33%) X(1)= 2.98, p=0.084
Body mass index (kg/m2) 27.64 (4.19) 27.48 (5.07) T(33.9)= 0.10, p=0.9 25.30 (2.74) 28.61 (4.14) T(14.4)=−2.07, p=0.057
Smoking: current 1 (5.26%) 3 (11.54%) X(2)=2.17, p=0.3 1 (10.00%) 3 (20.00%) X(2)= 0.60, p=0.7
Smoking: ex 9 (47.37%) 7 (26.92%) – 3 (30.00%) 5 (33.33%) –
Modified Rankin scale
0 19 (100.00%) 5 (19.23%) X(3)=28.77,< 0.0001 10 (100.00%) 5 (33.33%) X(3)= 11.11, p=0.011
1 0 (0.00%) 9 (34.62%) – 0 (0.00%) 5 (33.33%) –
2 0 (0.00%) 5 (19.23%) – 0 (0.00%) 1 (6.67%) –
3 0 (0.00%) 7 (26.92%) – 0 (0.00%) 4 (26.67%) –

Table 2
MRI markers determined from the conventional images, these are Fazekas scale white matter hyperintensity visual rating scale, number of microbleeds, number of lacunes and white
matter hyperintensity volume. These indicate the level of damage to the brain of the SVD subjects. The one SVD patient with Fazekas score 0 had multiple lacunar infarcts.

Group Fazekas scale (score, number) No. microbleeds (range, median) No. lacunes (range, median) White matter hyperintensity volume (mean ± SD) ml

SVD 0, 1
1, 0
2, 10
3, 15

0–84, 0.5 1–17, 6 33 ± 34

Controls 0, 6
1, 7
2, 6
3, 0

0–1, 0 0–3, 0 3 ± 3

Table 3
Network parameters in cases and controls for both structural and functional networks.

The table shows the means (± SD) of the three network parameters used in this study along with the p-value from the regression model network measure ~ gender+ hyperten-
sion+ group. The best (lowest p) and worst (highest p) case scenarios for each parameter are shown. The p-values given are not corrected for multiple comparisons.

Structural networks Atlas Threshold Controls SVD p-Value

E(Global)
Best-case N68 Th8 19.61 (± 2.63) 16.87 (± 3.03) 0.026
Worst-case N114 Th11 10.29 (± 1.24) 8.92 (±1.92) 0.083

Cw

Best-case N68 Th3 15.51 (± 1.51) 13.52 (± 2.10) 0.021
Worst-case N219 Th11 3.37 (± 0.93) 5.71 (±1.41) 0.559

TNS
Best-case N68 Th0 10,743 (±1148) 9261 (± 1571) 0.017
Worst-case N114 Th11 10,897 (±1503) 9265 (± 1981) 0.064

Functional networks Atlas Threshold Controls SVD p-Value

E(Global)
Best-case N68 Th11 0.342 (±0.030) 0.347 (± 0.030) 0.49
Worst-case N114 Th0 0.453 (±0.038) 0.450 (± 0.036) 0.988

Cw

Best-case N68 Th9 0.487 (±0.047) 0.470 (± 0.045) 0.383
Worst-case N114 Th4 0.502 (±0.052) 0.495 (± 0.047) 0.993

TNS
Best-case N114 Th0 10,484 (± 849) 10,455 (± 763) 0.817
Worst-case N68 Th11 275 (± 19) 274 (± 18) 0.9
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compared structural and functional connectivity measures in patients
with SVD. Furthermore their comparative reproducibility in SVD has
not been determined.

The work investigated the effect of differing atlas scales and
thresholds on the results, as can be seen from Figs. 1–3 these variations
have, if anything, a very small effect on the results obtained. Certainly
in all cases the uncertainty in the parameter estimates is greater than
any variation caused by changes in either the atlas scale or threshold
used. Although there are hints (for example the reproducibility of
E(Global) for the SVD patients and functional networks) that there may be
an effect of atlas scale there is no consistent pattern and no statistical
evidence that this effect is other than chance. There is more variation in
the results with the threshold used, however, again there is no

consistent pattern seen. In general it appears that, in this data, the effect
of atlas size and threshold used is small and does not affect either the
ability of the techniques to separate the groups or their reproducibility.

Using structural networks we found significant differences in net-
work integrity between patients with SVD and normal controls for both
EGlobal and TNS, as reported previously (Lawrence et al., 2014). It
should be noted that the gender and hypertension proportions in the
two groups approach significance for difference and that these were
included in the analysis models, compared to models without these
variables the group effect size seen was reduced and the p-values as-
sociated with the group comparisons were increased, particularly for Cw

which lost most of its discriminatory power when the confounds were
included (range of p-values without confounds 0.001–0.101). However,

Fig. 1. Differences between SVD and controls for functional and structural network data.
The three columns represent global efficiency (E(Global)), weighted clustering coefficient (Cw) and total network strength (TNS) respectively. Part A shows a row for each of the atlas
resolutions and in each graph the x-axis overs the range of thresholds used. B summarises area under the curve data, across all density thresholds for each parameter. Structural data is
shown in black and functional data n in grey. The y-axis shows the size of the differences between SVD cases and controls. The functional data has a g close to zero, whereas the value for
the structural data is much higher. If sample size were increased the p-values from a group comparison and the confidence intervals shown here may reduce, however the effect size will
show little change.
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overall the structural data are able to distinguish the two groups. In
contrast we were unable to show any difference in network integrity
when estimated using functional connectivity measures. Furthermore
our study indicated while structural network measures were very re-
producible over time in both controls and cases, functional connectivity
measures were much less reproducible and, particularly, reproduci-
bility in SVD cases was poor. These results demonstrate that structural
networks are a better marker of the extent of white matter damage in
patients with SVD.

A recent review of the reproducibility of structural networks in
healthy controls (Welton et al., 2015) reported excellent or good re-
producibility with ICC values for E(Global) ranging from 0.37 to 0.94 and
for Cw from 0.48–0.93. However, the reproducibility of structural net-
work measures in SVD has not been reported. The results presented
here show that structural networks are highly reproducible in SVD,

with ICC comparable with others seen in work on controls. Although
there are methodological variations between the various studies, the
results here show that for structural networks the atlas resolution and
threshold used have little effect on reproducibility. That this pattern of
high reproducibility is seen in both cases and controls suggests that the
disease does not affect the precision of the measurements.

Several papers have also investigated the reproducibility of rs-fMRI
data in controls, but no previous studies have looked at this in SVD.
Termenon et al. (2016) investigated graph theory analysis reproduci-
bility in data from the human connectome project. They varied the atlas
resolution, network density and number of subjects in the analysis to
produce a number of network parameters. Looking at global efficiency
specifically these variations had a maximum ICC value of approxi-
mately 0.45, it was also found that 40 subjects are needed to give an
ICC significantly different from zero.

Fig. 2. Comparison of reproducibility of structural and functional network measures.
Structural (red) and functional (blue) data at various thresholds and atlas resolutions. The error bars represent the 95% confidence interval. The three columns represent global efficiency
(E(Global)), weighted clustering coefficient (Cw) and total network strength (TNS), the four rows in A represent the four atlas scales. B shows the ICC represented across the range of density
thresholds as the area under the curve as a function of atlas resolution used. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Welton et al. (2015) also investigated rs-fMRI as well as diffusion
based structural connectivity. Two rs-fMRI studies are quoted using
different atlases and thresholding techniques with 26 and 33 subjects
respectively. The following ICC values were reported from the two
studies: Global efficiency: 0.60, 0.67; Clustering coefficient: 0.27, 0.59;
Characteristic path length: 0.54, 0.61. These results from control data
are similar to the results presented here, suggesting that the poor re-
producibility in the SVD data is due to the disease rather than the
methods used.

Possible explanations for the poor reproducibility of functional
connectivity in the SVD group are that the standard pathways for
functional connectivity are being destroyed in the disease and replaced
by a more ad hoc system and that the vascular pathology effects the
BOLD haemodynamic response to reduce its reproducibility, reducing
the correlations seen between brain regions (Williams et al., 2017; Mark
et al., 2015), or that the processing techniques used are less appropriate
for the diseased brain due to atrophy and the presence of lesions re-
ducing the quality of registrations and the atlas definitions between
scans; however no systematic differences in image quality or registra-
tion quality were seen.

The analysis methods chosen may also have an effect on the results,
for example the use of probabilistic tractography may change the net-
works seen, however, deterministic tractography is a well-used method
in network analysis and has been used in our previous work in similar
groups (Lawrence et al., 2014). Probabilistic tractography or spherical
deconvolution methods may be applied in future work on this dataset to
assess their impact on the results. In practise the use of the magnitude
of the correlations seen had no effect on the results as no negative
correlations were large enough to survive the thresholding. The
weighting scheme used will also have an effect on the results, again we
chose one that removes a known bias in our methods and is compatible
with previous work. There is a difference in the methodology used for
choosing the thresholds, for the structural data the edge weight is
thresholded, whereas for the functional data the threshold is the edge
density. This methodological approach could be responsible for the
differences seen in reproducibility. However, there is no equivalency
between edge weight thresholds between the techniques. In addition, it
is important to preserve the relative sizes of the largest connected
components for the structural and functional connectivity matrices at
the various thresholds to ensure compatibility of analysis with regard to
breakdown of brain connectivity. As a result the edge densities of the
two techniques will differ due to the structure of the connectivity ma-
trices. Lastly the use of full correlations rather than partial will have an
effect, however recent work has suggested that full correlations are

appropriate in data of this type (Kim et al., 2015).
Our results have important implications for the use of network

measures in SVD. Previous work has shown network disruption corre-
lates with the degree of cognitive impairment and predicts those in-
dividuals who progress to dementia (Tuladhar et al., 2016). This has led
to the suggestion that MRI measures of network disruption may be
useful in identifying those individuals who are likely to progress to
dementia; this is important as previous studies have shown that only a
subgroup of those with lacunar stroke and confluent WMH will show
rapid progressive cognitive decline. Our results confirm that structural
networks can identify differences between SVD cases and controls, and
provide new data demonstrating the high reproducibility of the tech-
nique, which is important if it is to be used in risk prediction. In con-
trast, functional networks, which have also been suggested as disease
markers in SVD, showed low reproducibility and were unable to detect
differences between SVD cases and controls, demonstrating that they
are unlikely to be a useful disease marker in SVD.
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