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Abstract

The ketogenic diet (KD) has been successfully used for a century for treating refractory epilepsy and is cur-
rently seen as one of the few viable approaches to the treatment of a plethora of metabolic and neurodegener-
ative diseases. Empirical evidence notwithstanding, there is still no universal understanding of KD mechanism
(s). An important fact is that the brain is capable of using ketone bodies for fuel. Another critical point is that
glucose’s functions span beyond its role as an energy substrate, and in most of these functions, glucose is ir-
replaceable. By acting as a supplementary fuel, ketone bodies may free up glucose for its other crucial and
exclusive function. We propose that this glucose-sparing effect of ketone bodies may underlie the effective-
ness of KD in epilepsy and major neurodegenerative diseases, which are all characterized by brain glucose
hypometabolism.
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Significance Statement

The ketogenic diet (KD) was created in the 1920s as a therapy for refractory epilepsy. Since then, evidence
accumulated showing its potential for other major neurodegenerative disorders. The exact mechanism of
KD’s protective activity still remains unknown, nonetheless. In the brain, ketone bodies can be used for cel-
lular energy, at least partially substituting glucose as brain fuel. However, glucose has essential functions
beyond those of just energy supply that cannot be provided by alternative substrates. We propose that the
glucose-sparing effect of ketone bodies may underlie the effectiveness of KD in epilepsy and other major
neurodegenerative diseases which are all characterized by brain glucose hypometabolism.

Introduction
There is no universally accepted definition of ketogenic

diets (KDs). Moreover, there is a tendency to relax previous

quantitative criteria (Zilberter and Zilberter, 2018) intro-
duced almost a century ago (Wilder and Winter, 1922)
that were based on macronutrient composition. Perhaps
the most practical notion of whether a diet can be consid-
ered to be ketogenic is made by Seyfried (2012): it is “as
long as the individual has reduced blood glucose and is
producing ketones.” Although protein is included in the
ketogenic ratio equation (Shaffer, 1921), glucose, ketone
bodies, and their interplay determine the dominating met-
abolic mode: whether the predominant energy supply is
glucose or ketone bodies (Westman et al., 2003). The cur-
rent data allow us to conclude that the functional interac-
tion between glucose and ketone bodies is not a binary
winner-take-all process. Here, we attempt to describe
more intricate relationships between them.
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Glycolytic ATP Production
In the case of acute energy demand such as during in-

tense network activity, the brain is able to intensify glyco-
lytic ATP production for rapid supply. Aerobic glycolysis
(when glucose is partially converted to lactate in the pres-
ence of oxygen, producing two ATP molecules) is dispro-
portionate to the oxygen consumption of glucose utilization
when the oxygen delivery is adequate (Dienel and Cruz,
2016). In the resting brain, glycolysis and oxidative phos-
phorylation rates appear well-matched, indicating nearly
complete oxidation of glucose. However, in the activated
brain at physiological conditions, e.g., during sensory stimu-
lation and mental testing, aerobic glycolysis has been ob-
served in various brain regions (Dienel and Cruz, 2016;
Dienel, 2019a). The cellular contribution to aerobic glycolysis
is yet unclear and is a matter of debate (Dienel and Cruz,
2016; Barros et al., 2020). As lactate (in addition to pyruvate)
is the end-product of the glycolytic pathway during aerobic
glycolysis, it can either be cleared out from the brain or par-
tially consumed as supplementary fuel for neurons (Pellerin
and Magistretti, 2012; Dienel and Cruz, 2016). Indeed, aero-
bic glycolysis as an ATP production mechanism, while low-
capacity, is rapid, ensuring fast ATP resupply in neurons
where the dynamic demand for energy is highest (Yellen,
2018). The notion of fast ATP synthesis (aerobic glycolysis)
is supported by an immediate rise in extracellular lactate
and reduction in glucose levels during brief visual stimula-
tion coincident with spiking activity (Li and Freeman, 2015).
Neurons are rich in mitochondria, a major source of

ATP (Hall et al., 2012). However, for some of the neuronal
functions, aerobic glycolysis may be the preferential
method of fuel generation, for instance, for fast axonal
vesicle transport (Zala et al., 2013). Although synaptic
transmission is a very energy-demanding process, many
presynaptic nerve terminals lack mitochondria (Devine
and Kittler, 2018; Tourigny et al., 2019), although mito-
chondria can migrate to and/or ATP can diffuse into the
presynaptic boutons during enhanced synaptic activity
(Chamberlain and Sheng, 2019; Rossi and Pekkurnaz,
2019). Recent studies indicate that presynaptic transmis-
sion is dependent on activity-induced glycolysis (Ashrafi
and Ryan, 2017), while presynapses can use ATP pro-
duced by both glycolysis and oxidative phosphorylation
to sustain neurotransmission (Ashrafi and Ryan, 2017;
Chamberlain and Sheng, 2019; Rossi and Pekkurnaz,
2019). Moreover, dendritic spines that receive most exci-
tatory synaptic inputs have been shown to contain no mi-
tochondria (Kasthuri et al., 2015), despite being sites of
intense energy utilization. Although some ATP might dif-
fuse to spine heads from nearby dendritic mitochondria, it
is conceivable that spines are reliant on glycolysis instead
(Kasthuri et al., 2015). Glycolytic ATP alone, with its limited
production capacity, is unlikely to be sufficient to power
ion pumping required for the maintenance of ion gradient
and membrane potential (Hall et al., 2012), but it may
nevertheless play an important role in fast refueling. For in-
stance, the preferential role of glycolytic energy supply was
demonstrated for Na/K-ATPase in fast-twitch skeletal mus-
cle (Okamoto et al., 2001) and cardiac Purkinje cells
(Glitsch and Tappe, 1993). Aerobic glycolysis during KD

has not been studied yet. However, unlike glucose, ke-
tones cannot be involved in aerobic glycolysis, and thus
they contribute to ATP production via oxidative phospho-
rylation only (Cunnane et al., 2020).

The Cytoplasmic Antioxidant System
Reactive oxygen species (ROS) in brain cells originate

from multiple sources and most of them are generated as
byproducts of metabolic reactions. Intracellular ROS come
mainly from NADPH oxidase (NOX), xanthine oxidase, nitric
oxide synthase, and mitochondria. NOX is the only enzyme
with the primary function of generating ROS (Bedard and
Krause, 2007; Koju et al., 2019) that are mostly used for the
“host defense” (e.g., microbial killing) in organisms. NOX
enzymes are predominantly expressed in the cellular plas-
ma membrane (Ma et al., 2017). The enzyme consists of a
membrane-bound catalytic core and several cytosolic reg-
ulatory subunits (Bedard and Krause, 2007). There are
seven known isoforms of NOX with NOX1, NOX2, and
NOX4 expressed in multiple brain regions including the
cerebral cortex, hippocampus, cerebellum, hypothalamus,
midbrain, and/or striatum (Hou et al., 2020). These NOX
variants are the most prominent isoforms detected in a va-
riety of brain cell types (Cahill-Smith and Li, 2014; Rastogi
et al., 2016; Hou et al., 2020), with NOX2 the dominant
form expressed by microglia, neurons, and astrocytes.
Activation of NOX results in an increase of extracellular
H2O2 levels followed by H2O2 entry into the cells via aqua-
porins (Bienert and Chaumont, 2014). Under “resting con-
ditions” in the brain, NOX is normally dormant and
therefore its contribution to the total cellular ROS produc-
tion under resting or physiological conditions is not clear
(Brown and Borutaite, 2012). In pathology, when NOX is
activated by specific stimulation (Rastogi et al., 2016), its
cytosolic subunits translocate to the membrane and asso-
ciate to the functioning complex. Under these conditions,
mitochondria and NOX are the major ROS producers
(Tarafdar and Pula, 2018; Barua et al., 2019). However, be-
fore its diffusion to the cytoplasm, the internal consumption
of H2O2 in mitochondria is much higher than originally an-
ticipated (Munro and Pamenter, 2019) and during oxidative
stress, mitochondria may be victims rather than producers
of oxidative damage (Gandhi and Abramov, 2012). Indeed,
in AD models, the effects of mitochondrial ROS were found
to be much smaller compared with those of NOX-pro-
duced ROS (Angelova and Abramov, 2018).
In the cytoplasm, an efficient anti-oxidative system

based largely on the glycolysis-associated pentose-phos-
phate pathway strictly regulates ROS levels to avoid any
oxidative injury (Bolaños and Almeida, 2010; Franco et al.,
2019; Cherkas et al., 2020). Thus, brain cells use glucose
as an energy provider as well as the substrate for cyto-
plasmic ROS detoxification mechanisms. The combina-
tion of ROS overproduction with inadequate antioxidant
defenses (such as when glucose utilization is inhibited) re-
sults in oxidative stress and consequent damages, e.g.,
neural cell death and neurodegeneration (Avery, 2011;
Tarafdar and Pula, 2018).
An extreme example of the importance of glucose-

based antioxidant defense for cellular function was
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reported by us when glucose in artificial CSF (ACSF) was
exchanged for pyruvate in hippocampal slices (Malkov et
al., 2014, 2019). The substitution resulted in oxidative
stress leading to massive network depolarization (analo-
gous to spreading depression; Pietrobon and Moskowitz,
2014) together with a “metabolic collapse.” Importantly,
we obtained similar results replacing glucose with other
mitochondrial fuels such as lactate or b -hydroxybutyrate
(unpublished), indicating again the unique importance of
glucose.
KD improves antioxidant defense by stimulating the en-

dogenous antioxidant system. Mild oxidative stress follow-
ing KD onset drives nuclear translocation of transcription
factor Nrf2, leading to increased synthesis of glutathione
which is one of the major components of the antioxidant
defense (Pinto et al., 2018; Camberos-Luna and Massieu,
2020).

Glycogen Production in Astrocytes
The major energy reserve in the brain is glycogen, a

macromolecular storage form of glucose (Dienel, 2019b).
Found mostly in astrocytes (Dienel and Carlson, 2019;
neurons can store less significant amounts; Saez et al.,
2014), glycogen is a dynamic participant in brain activity
and is regulated by neurotransmitters. Dysregulation of
glycogen turnover may cause severe consequences, e.g.,
Lafora disease with progressive neurodegeneration and
epilepsy leading to death in early adulthood (Duran et al.,
2019). During intense brain activity, glycogen converted
to lactate and released from astrocytes can be used by
neurons as mitochondrial fuel. Meanwhile, rapid glyco-
genolytic generation of ATP may be important for astro-
cytic energy demands (Dienel and Rothman, 2019), and
thus glycogenolysis, by reducing the astrocytic require-
ment for blood-borne glucose, can spare an equivalent
amount of glucose for neuronal utilization (Dienel, 2019a;
DiNuzzo et al., 2019). The estimated glucose equivalent of
glycogen concentration in astrocytes is up to 40–100 mM.
Considering the high rate of glycogenolysis, the amount
of glucose that can be released via glycogen breakdown
is very significant (Dienel, 2019a; DiNuzzo et al., 2019).
Unfortunately, glycogen levels in the human brain during
KD have yet to be investigated. In rats, one study reported
increased inbound glucose (reflecting glycogen content;
DeVivo et al., 1978) under KD, while no change in glyco-
gen content was found in another study (Al-Mudallal et
al., 1995) or glycogen was decreased (Bough et al., 2006).
Carbohydrate intake does not affect brain glycogen con-
tent, while in both muscle and liver it does significantly
correlate with glycogen levels (Soya et al., 2018).

Production of Major Neurotransmitters
Glucose fuels de novo synthesis of major neurotrans-

mitters. Precursors for glutamate or GABA are synthe-
sized by astrocytes and then transferred to neurons in the
glutamine–glutamate/GABA cycle (Dienel, 2019a). The
transmitters released during synaptic activity are trans-
ported back to astrocytes, where a fraction (;25%) is de-
graded with the remainder released and reused by the
neurons. The process is very intense, consuming up to

75% of the entire glucose consumption in the cortex
(Schousboe et al., 2013; Hertz and Rothman, 2016).
Glucose metabolism is required for the synthesis of gluta-
mate from glutamine in glutamatergic neurons (Bak et al.,
2006; Lund et al., 2009; Chowdhury et al., 2014; Hertz
and Rothman, 2016), but in GABAergic neurons, b -hy-
droxybutyrate is capable of replacing glucose for GABA
production (Hertz and Rothman, 2016).

Glucose Utilization in the Brain during
Ketosis
The KD is an efficient clinical treatment used for over a

century to decrease brain hyperexcitability and seizures
via a yet unclear mechanism. Carbohydrate limitation in
KD led to a popular notion that glycolysis inhibition may
partially reproduce the effects of KD. However, this hy-
pothesis ignores the important fact that glycolysis inhibi-
tion a priori results in energy deprivation; meanwhile, no
energy deficiency occurs under KD [in rats on KD, the
brain ATP level was found either unchanged (Al-Mudallal
et al., 1996; Bough et al., 2006) or increased (DeVivo et
al., 1978; Nakazawa et al., 1983)]. However, do ketones
inhibit glycolysis [as, for instance, does 2-deoxy-D-glu-
cose (Pajak et al., 2019) or iodoacetate (Schmidt and
Dringen, 2009)] or do they just compete with glucose as
mitochondrial fuel? The NMR study of Valente-Silva et al.
(2015) is often cited as evidence of glycolysis inhibition.
There are a number of important flaws in this study, how-
ever: (1) the 400-mm-thick brain slices were superfused
with oxygenated ACSF at 3 ml/min rate that results in an-
oxic conditions within the tissue (Ivanov and Zilberter,
2011), making oxidative phosphorylation impossible; and
(2) the authors used 4-AP to induce network activity, while
epileptiform activity induced by 4-AP was itself shown to
be a strong inhibitor of glycolysis (Malkov et al., 2018). To
the best of our knowledge, there are no other reports on
ketones’ direct inhibitory action on glycolysis.
There have been many attempts to estimate brain glu-

cose utilization under KD, with variable results. In awake
animals, glucose utilization either increased (Yudkoff et
al., 2005), did not change (Al-Mudallal et al., 1995) or de-
creased (Melø et al., 2006), while brain glucose levels ei-
ther increased (Melø et al., 2006), did not change (DeVivo
et al., 1978; Yudkoff et al., 2005) or decreased (Samala et
al., 2011). Utilization of the fluorodeoxyglucose (18F)-posi-
tron emission tomography (FDG-PET) technique in ani-
mals requires anesthesia that introduces a brain state
quite different from an awake one. Nevertheless, under
anesthesia, glucose utilization either increased (Pifferi et
al., 2011; Roy et al., 2012), remained unchanged (Yudkoff
et al., 2005), or decreased (LaManna et al., 2009; Zhang
et al., 2013). The variability of the results may be ex-
plained by the presence of confounding factors such as,
e.g., the use of anesthesia, significant age difference and
the relatively high interindividual variation in plasma ke-
tones during KD (Pifferi et al., 2011; Roy et al., 2012).
Interestingly, in healthy young/middle age humans, cer-

ebral glucose utilization evaluated by arteriovenous differ-
ence was decreased under acute hyperketonemia (a
blood infusion of b -hydroxybutyrate; Hasselbalch et al.,
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1996) or following 3 d of fasting (Hasselbalch et al., 1994).
Recent studies using the FDG-PET technique confirmed
these results reporting decreased brain glucose utilization in
healthy humans under KD (Courchesne-Loyer et al., 2017)
or acute hyperketonemia (Svart et al., 2018). Importantly
and however, similar recordings during ketogenic interven-
tion in humans suffering mild cognitive impairment (Fortier
et al., 2019) or mild-moderate Alzheimer’s disease (AD;
Croteau et al., 2018b) revealed no change in brain glucose
utilization, while brain ketone metabolism was found to be
normal (Castellano et al., 2015; Croteau et al., 2018a).
Notably, glucose hypometabolism is a hallmark of AD
pathogenesis (Caminiti et al., 2018; Gordon et al., 2018;
Butterfield and Halliwell, 2019). Indeed, disrupted glucose
metabolism associated with oxidative stress is the common
feature of major neurodegenerative diseases (Zilberter and
Zilberter, 2017; Cunnane et al., 2020; Tang, 2020) and epi-
lepsy (Pearson-Smith and Patel, 2017; Zilberter and
Zilberter, 2017; Patel, 2018). For instance, AD pathology oc-
curs well before (up to two decades prior) the onset of clini-
cal symptoms (Caminiti et al., 2018; Gordon et al., 2018;
Butterfield and Halliwell, 2019) with dysfunctional glucose
metabolism as one earliest manifestation. In human epi-
lepsy, clinical tests using FDG-PET imaging have estab-
lished that decreased brain glucose utilization during
quiescent (interictal) periods is a widely recognized bio-
marker of epileptogenesis (Sarikaya, 2015; Lotan et al.,
2020). Since glucose utilization underlies vital brain func-
tions such as energy supply and antioxidant defense (see
above), it is not surprising that disturbances in glucose me-
tabolism can lead to a chain of harmful consequences, and
thus likely represent a major underlying cause of disease ini-
tiation and progression (Pearson-Smith and Patel, 2017;
Zilberter and Zilberter, 2017; Butterfield and Halliwell, 2019).
Therefore, as also suggested previously (Cunnane et al.,

2016a; Croteau et al., 2018b), it is logical to conclude that in
a normal brain, where glucose can fully cover energy needs,
the addition of ketones as mitochondrial fuel competitors re-
duces the need for a part of glucose function and the total
glucose utilization goes down. In pathology, when glucose
utilization is impaired leading to energy deficiency, ketone
bodies compensate at least partially this energy gap, leaving
more glucose available for its other vital functions such as
mentioned above.
In fact, the glucose-sparing effect may be dominant in

ketone’s beneficial therapeutic function ensemble. Clinical
effects of KD are mostly known regarding epilepsy as
childhood epilepsy has been successfully treated with KD
since the 1920s (Wilder, 1921). Recently, however, the KD
began to be used in preclinical studies of other disorders,
including neurodegenerative, psychiatric, and brain injury
(McDonald and Cervenka, 2018; Camberos-Luna and
Massieu, 2020; Kraeuter et al., 2020), demonstrating prom-
ising efficiency that has also been confirmed in clinical tri-
als in mild cognitive impairment, AD, and Parkinson’s
disease patients (for review, see Cunnane et al., 2020).
Meanwhile, it has been noted that the efficacy of KD in an
array of disorders with distinct pathophysiologies may indi-
cate shared underlying pathologic mechanisms (Kraeuter
et al., 2020). In the case of major neurodegenerative dis-
eases, one such mechanism is glucose hypometabolism
(Zilberter and Zilberter, 2017; Cunnane et al., 2020; Tang,
2020). Definitely, impaired glucose metabolism may lead to
energy deficiency that ketones can partially compensate
by boosting mitochondrial oxidation. Here, it is interesting
to note that in the case of early AD stages, neither cerebral
oxygen consumption (Hoyer et al., 1988; Hoyer, 1992) nor
mitochondrial ability for ketone utilization changed
(Castellano et al., 2015; Croteau et al., 2018a), suggesting
normal mitochondrial functioning (Cunnane et al., 2016b,

Figure 1. Roles of glucose and ketone bodies in brain cells: parallel, converging, and exclusive. Red: ketone bodies’ pathway to mi-
tochondria. Blue: glucose pathway to mitochondria. Purple: the point of convergence. Green: exclusive roles of glucose.
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2020), despite pronounced glucose hypometabolism.
Indeed, we demonstrated recently in hippocampal slices
that amyloid-b (Malkov et al., 2020) as well as epileptiform
activity (Malkov et al., 2018) strongly inhibited glycolysis
while mitochondrial function remained normal or even up-
regulated, potentially as a compensatory mechanism. This
therefore suggests that glucose metabolism deficiency
mostly affects functions not related to oxidative phospho-
rylation and thus ketones possibly leave more glucose
available for other vital functions (Fig. 1) that may be espe-
cially important for the therapeutic effects of KD. The po-
tential importance of the glucose-sparing effect of ketones
has been noted previously in reports considering neurode-
generative diseases (Cunnane et al., 2016a, 2020).

Conclusions
Glucose does not share some of its functions in the

brain with other metabolic substrates, which makes it an
exclusive neurometabolite. The frequent claim that ke-
tones directly inhibit the process of glycolysis is not sup-
ported by experimental evidence and seems theoretically
unlikely. Moreover, glycolysis inhibition modifies a num-
ber of cellular functions that lead to unpredictable varia-
tions of network excitability, and in the long-run has been
shown to result in epileptogenesis (Samokhina et al.,
2017, 2020). In pathology, ketones are capable of partially
taking over the glucose’s energy fuel role in mitochondria
and presumably spare glucose for its other exclusive
functions. Here, we summarized the evidence and offer a
non-antagonistic view of the ketone bodies-glucose inter-
play during metabolic shifting. The glucose-sparing effect
of ketone bodies may determine the efficiency of the keto-
genic regime and is especially important in epilepsy and
major neurodegenerative diseases characterized by sig-
nificantly impaired brain glucose utilization.
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