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Changes in Cholesterol Homeostasis Modify the
Response of F1B hamsters to Dietary Very Long
Chain n-3 and n-6 Polyunsaturated Fatty Acids
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Abstract

Background: The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC)
n-3 polyunsaturated fatty acids (PUFA) is paradoxical to that observed in humans. This anomaly is attributed, in part, to
low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s) for these
responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA) or safflower oil (n-6 PUFA) (both
10% [w/w]) and either cholesterol-supplemented (0.1% cholesterol [w/w]) or cholesterol-depleted (0.01% cholesterol
[w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]).

Results: Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density
lipoprotein (HDL) cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic
low density lipoprotein (LDL) receptor, sterol regulatory element binding protein (SREBP)-1c and acyl-CoA:
cholesterol acyl transferase-2 (ACAT) mRNA and protein (p < 0.05), and higher hepatic apolipoprotein (apo) B-100
and apo E protein levels. In contrast, cholesterol-depleted hamsters fed fish oil, relative to safflower oil, had lower
non-HDL cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic SREBP-
1c (p < 0.05) but not apo B-100, apo E or ACAT-2 mRNA or protein levels. Independent of cholesterol status, fish
oil fed hamsters had lower HDL cholesterol concentrations (p < 0.001), which were associated with lower hepatic
apoA-I protein levels (p < 0.05).

Conclusion: These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary
fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their
metabolism.

Background
The response of F1B hamsters to dietary very long chain
n-3 polyunsaturated fatty acids (VLC n-3 PUFA), eicosa-
pentaenoic acid (EPA) and docosahexaenoic acid (DHA),
is dependent on cholesterol status and in some cases has
been reported to be paradoxical to that observed in
humans [1]. In humans with hypertriglceridemia, fish oil
supplementation results in plasma triglyceride lowering
and little change or a small increase in low density lipo-
protein (LDL) cholesterol concentrations [2]. This effect
is attributed to a reduction in the production rate of very
low density lipoprotein (VLDL) [3]. In contrast, F1B

hamsters fed diets high in cholesterol and VLC n-3
PUFA, relative to n-6 PUFA, dramatically increased tri-
glyceride and non-HDL cholesterol concentrations
[1,4-7]. This hypertriglyceridemic effect has been attribu-
ted, in part, to lower lipoprotein lipase activity which
impedes triglyceride clearance rates [8]. Because the
response to n-3 PUFA in hamsters affects both plasma
triglyceride and cholesterol concentrations, it likely
reflects events occurring in both the liver and small intes-
tine. Of note, in the absence of supplemental dietary cho-
lesterol, hamsters fed VLC n-3 PUFA had either
comparable or more favorable plasma lipoprotein profiles
relative to n-6 PUFA fed hamsters [1,4,5].
The regulation of plasma lipoprotein concentrations is a

complex process. Hepatic cholesterol metabolism is tightly
controlled by a balance between cholesterol synthesis,
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uptake and secretion, primarily involving the activities of
3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase, LDL
receptor and 7a-hydroxylase, respectively [9,10]. Egress of
hepatic triglyceride is mediated by microsomal triglyceride
transfer protein (MTP) via the formation and secretion of
nascent VLDL particles containing apolipoprotein (apo) B-
100 and apo E [11-13]. Sufficient hepatic cholesterol is
essential for VLDL formation [14,15]. Acyl-CoA choles-
terol acyl transferase (ACAT)-2 generates hepatic choles-
teryl ester [16]. Sterol regulatory element binding protein
(SREBP)-1c and SREBP-2 regulate the expression of genes
involved in hepatic fatty acid and cholesterol synthesis,
respectively [17]. In cell culture systems and some animal
models, PUFA inhibit the expression of SREBP-1 [18-20].
VLC n-3 PUFA appears to be more potent than n-6
PUFA, as suggested by lower expression of enzymes
involved in the lipogenic pathway [18-21].
Intestinal cholesterol absorption also modulates plasma

lipoprotein concentrations. The family of ATP-binding
cassette (ABC) transporters, ABCA1, ABGG5 and
ABCG8, regulate sterol absorption by facilitating the efflux
of sterols from the apical (ABCG5/8) [22] or basolateral
(ABCA1) [23] membrane of the enterocyte. Niemann-Pick
C1 Like1 (NPC1L1) facilitates intestinal sterol uptake on
the apical side of the enterocyte [24].
In both the liver and intestine, high-density lipoprotein

(HDL) metabolism is mediated by ABCA1 and scavenger
receptor class B type 1 (SR-B1) activities. ABCA1
enriches the cholesterol content of lipid-poor HDL parti-
cles by facilitating the efflux of hepatic and intestinal free
cholesterol [25]. SR-B1 promotes the selective hepatic
uptake of cholesteryl ester from HDL particles [26,27].
The aim of this work was to identify mechanisms asso-

ciated with the differential response of the F1B hamster to
dietary VLC n-3 and n-6 fatty acids as altered by dietary
cholesterol. To address this aim we manipulated in vivo
cholesterol homeostasis with the intent of stimulating
(cholesterol depleted) or suppressing (cholesterol supple-
mented) hepatic cholesterol biosynthesis.

Methods
Animals and diets
Sixty-four 8 week-old male F1B Golden-Syrian hamsters
(BioBreeders, Watertown, MA) were divided into four diet
groups on the basis of body weight and housed in stainless
steel suspended cages (4 hamsters/cage) with a reverse
12:12 light:dark cycle. Hamsters were given free access to
LM-485 mouse/rat diet (Harlan-Teklad, Madison, WI)
and water during a two-week acclimation period. There-
after the hamsters were switched to ad libitum semi-puri-
fied diets containing 10% (w/w) safflower oil (n-6 PUFA)
or low cholesterol fish oil (Arista Industries, Inc., Wilton,
CT) (VLC n-3 PUFA), in combination with 0.1% (w/w)
cholesterol or 0.01% (w/w) cholesterol for 12 weeks (see

Additional File 1: Table S1 [diet composition] and Table
S2 [dietary fatty acid profile]). The analytical data were
consistent with the intended diet composition.
During the last ten days of the feeding period, 0.15%

lovastatin (Merck & Co., Inc. Rahway, NJ) and 2% cho-
lestyramine (Bristol-Myers Squibb Co., Princeton, NJ)
were added to the 0.01% cholesterol diets. The combina-
tion of lovastatin and cholestyramine has previously
been demonstrated necessary to lower plasma choles-
terol concentrations in the hamster [28,29]. The 0.1%
cholesterol diet and 0.01% cholesterol plus lipid-lower-
ing drug diet were designed to supplement (+C) and
deplete (-C), respectively, cholesterol metabolism in the
animals to alter cholesterol biosynthesis (safflower +C,
fish +C, safflower -C and fish -C). A portion of the data
from the safflower oil fed hamsters has appeared pre-
viously to address an unrelated experimental question
[30].
After 12 weeks of diet treatment the hamsters were

fasted (16 hours) and killed by CO2 inhalation. Livers were
removed and cleaned. A portion was immediately used for
nuclear and membrane protein extraction and the remain-
ing segments were frozen in liquid nitrogen and stored at
-80°C. Small intestines were removed, flushed with PBS,
and the jejunum was isolated, placed in RNAlater (Qiagen,
Valencia, CA) and stored at -80°C. The animal protocol
was approved by the Institutional Animal Care and Use
Committee of the Jean Mayer Human Nutrition Research
on Aging, Tufts University.

Plasma lipid and lipoprotein analysis
Retro-orbital blood was collected into EDTA-coated tubes
from fasted hamsters (16 hours) under isoflurane anesthe-
sia at 0, 6 and 12 weeks. Plasma total cholesterol, HDL
cholesterol and triglyceride concentrations were deter-
mined on a Cobas Mira automated analyzer using enzy-
matic reagents (Roche Diagnostics, Indianapolis, IN).
Non-HDL cholesterol was calculated as the difference
between total and HDL cholesterol. Four plasma pools per
diet group were created by combining plasma from 4 ani-
mals per pool for fast protein liquid chromatography
(FPLC) analysis using two Superose 6 columns (Amer-
sham Biosciences, Piscataway, NJ) as previously described
[31]. The total cholesterol concentration of the FPLC frac-
tions was measured using enzymatic reagents (Wako,
Richmond, VA).

Liver lipid composition
Liver lipids were extracted [32], and total and free choles-
terol, and triglyceride concentrations were determined
using enzymatic reagents (Wako and Roche Diagnostics)
[33]. Cholesteryl ester was calculated as the difference
between total and free cholesterol. Delipidated liver tis-
sue was digested in 1N NaOH for the determination of

Lecker et al. Lipids in Health and Disease 2011, 10:186
http://www.lipidworld.com/content/10/1/186

Page 2 of 10



protein using the bicinchoninic acid (BCA) assay (Pierce
Inc., Rockford, IL).

Cholesterol content of experimental diets
Lipids were extracted from desiccated aliquots of diet
[32], and total cholesterol was determined by gas chro-
matography (GC) as previously described [34].

Fatty acid profiles
Fatty acid profiles of red blood cell membranes and
experimental diets were determined as previously
described [30].

Quantitative real time PCR
Total RNA was extracted from the liver and jejunum using
the Qiagen RNeasy Mini kit. A DNase digestion step was
included to eliminate contamination with genomic DNA.
RNA was reverse transcribed using SuperScript II reverse
transcriptase with random hexamers (Invitrogen, Carlsbad,
CA). Primers for ACAT-2, apoA-I, apoB-100, beta-actin,
CYP7A1, HMG-CoA reductase, LDL receptor, MTP and
SREBP-2 were designed using Primer Express software
(Applied BioSystems, Foster City, CA), and primer specifi-
city and amplification efficiency were verified before use.
Real time PCR was conducted in an Applied Biosystems
7300 Sequence detection system using SYBR green
reagents (Applied BioSystems) with the primers listed in
Additional File 1: Table S3 [35,36]. Reaction conditions
were 95°C for 10 minutes, 40 cycles of 95°C for 15 seconds
and 60°C for 1 minute. A standard curve was included on
all plates for each mRNA of interest and used to calculate
relative levels. Values were normalized using beta-actin as
an endogenous control.

Immunoblotting analysis
Freshly excised liver tissue from 2 hamsters was pooled,
and nuclear and membrane proteins and cell lysates were
extracted as described previously [29,30]. Protein concen-
trations were determined using the BCA assay. Proteins
were separated by SDS-PAGE and transferred to polyviny-
lidene difluoride membranes using a wet transfer system
and detected as previously described [35]. Relative protein
levels were normalized to the density of beta-actin.

Statistical analysis
Data are expressed as means ± SEM. Prior to statistical
analysis, data were checked for normality and appropriate
transformations performed when necessary. Differences
between dietary fat type (fish oil versus safflower oil) and
cholesterol status (supplemented versus depleted) were
determined using an unpaired Students t-test. Data that
could not be normalized were analyzed using the Wilcox-
on’s signed rank test. Differences were considered

significant at P ≤ 0.05. All statistical analyses were per-
formed using SAS (Version 9.1, SAS Institute, Cary, NC).

Results
Plasma lipid and lipoprotein profiles
At baseline, plasma lipid and lipoprotein profiles were
similar among the four hamsters groups (see Additional
File 1: Table S4). The combination of lovastatin and
cholestyramine resulted in 2- and 15-fold lower non-
HDL cholesterol concentrations after drug treatment in
safflower and fish oil fed hamsters, respectively (see
Additional File 1: Tables S5).
After 12 weeks of diet treatment, cholesterol-supple-

mented hamsters fed fish oil, relative to safflower oil,
had significantly higher total cholesterol (3-fold), non-
HDL cholesterol (3.7-fold) and triglyceride (5.4-fold),
and lower HDL cholesterol (2.5-fold) concentrations
(Figure 1A). In contrast, the cholesterol-depleted ham-
sters fed fish oil, relative to safflower oil, had signifi-
cantly lower total cholesterol (2.7-fold), non-HDL
cholesterol (1.7-fold) triglyceride (1.7-fold) and HDL
cholesterol (3.4-fold) concentrations (Figure 1B).
Consistent with the plasma lipid and lipoprotein con-

centrations, FPLC patterns indicated that the choles-
terol-supplemented hamsters fed fish oil, relative to
safflower oil, carried more cholesterol in the VLDL and
LDL fractions, and less in the HDL fraction (Figure 2).
Conversely, the cholesterol-depleted hamsters fed fish
oil, relative to the safflower oil, carried less cholesterol
in all three lipoprotein fractions.

Red blood cell fatty acid profile and hepatic lipid
composition
Red blood cell membrane fatty acid profiles reflected
that of the diet (Table 1). The mol% of n-3 and n-6
PUFA in the red blood cell membranes of hamsters fed
fish oil were 17-18% and 14-15%, respectively, and of
hamsters fed safflower oil were 1-2% and 38-39%,
respectively. These data indicate that the diet treatment
was of sufficient length to alter membrane composition.
Cholesterol-supplemented hamsters fed fish oil, rela-

tive to safflower oil, had a 1.5-fold lower hepatic total
and cholesteryl ester content (p < 0.05), and 1.8-fold
higher hepatic triglyceride content (p < 0.05) (Table 2).
In contrast, cholesterol-depleted hamsters fed fish oil,
relative to safflower oil, had a 2-fold lower hepatic tri-
glyceride content (p < 0.05), with small, but significant
differences in hepatic cholesterol content. Combined
with the differences observed in plasma lipoprotein con-
centrations these data suggest a disturbance in hepatic
lipoprotein metabolism. Of note, dietary fat type had no
significant effect on liver weights, suggesting no impair-
ment in lipoprotein secretion.
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Figure 1 Effect of dietary n-3 (fish oil) and n-6 PUFA (safflower oil) on fasting plasma lipid and lipoprotein cholesterol concentrations
in cholesterol-supplemented (A) and cholesterol-depleted (B) hamsters. Retro-orbital blood was collected into EDTA coated tubes from
fasted hamsters. Plasma cholesterol and triglyceride concentrations were determined enzymatically. Bars represent means ± SEM, n = 15-16
animals per group. Appropriate transformations of the data (log HDL; square root total cholesterol, non-HDL cholesterol; inverse triglyceride)
were made before statistical analysis. Asterisks indicate significant differences between safflower and fish oil within cholesterol-supplemented
(+C) or depleted (-C) hamsters, P ≤ 0.05.
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Figure 2 Effect of dietary n-3 (fish oil) and n-6 PUFA (safflower oil) on fast protein liquid chromatography (FPLC) cholesterol profiles
of plasma from cholesterol-supplemented (+C) or depleted (-C) hamsters. Plasma (200 μL) was pooled from 4 hamsters and lipoprotein
fractions were separated by FPLC. Cholesterol concentrations were measured in odd numbered fractions. Data represent the mean of 4-pooled
groups.

Lecker et al. Lipids in Health and Disease 2011, 10:186
http://www.lipidworld.com/content/10/1/186

Page 4 of 10



Hepatic and intestinal mRNA levels
Cholesterol-supplemented hamsters fed fish oil, relative
to safflower oil, had modest but significantly lower
hepatic mRNA levels of SREBP-1c (1.7-fold), LDL recep-
tor (1.8-fold), SR-B1 (1.4-fold) and ACAT-2 (1.3-fold)
(Figure 3A). Cholesterol-depleted hamsters fed fish oil,
relative to safflower oil, had a modest but significantly
lower hepatic mRNA levels of SREBP-1c (1.5-fold), apo
A-I (3-fold) and HMG Co-A reductase (1.6-fold) (Figure
3B). No significant differences in hepatic apo B-100,

MTP, SREBP-2, CYP7A1 or ABCA1 mRNA levels was
observed between fish oil and safflower oil fed hamsters,
regardless of cholesterol status. These data suggest that
the altered plasma lipoprotein patterns observed in
response to differences in dietary fatty acid were due in
part to changes in regulation of the genes involved in
cholesterol and lipoprotein synthesis, uptake and
secretion.

Hepatic protein levels
Cholesterol-supplemented hamsters fed fish oil, relative
to safflower oil, had significantly lower hepatic protein
levels of SR-B1 (8.2-fold), apo A1 (2.6-fold) and ACAT-2
(3.4-fold), lower hepatic membrane protein levels of
SREBP-1c (20-fold) and LDL receptor (90-fold), and higher
protein levels of apo B-100 (2-fold) and apo E (2.3-fold)
(Figure 4A). Conversely, cholesterol-depleted hamsters fed
fish oil, relative to safflower oil, had modest but significantly
higher hepatic protein levels of SR-B1 (1.3-fold) (Figure 4B).
Similar to the effect observed in cholesterol-supplemented
hamsters, cholesterol-depleted hamsters fed fish oil, relative
to safflower oil, had significantly lower hepatic apo A-I pro-
tein levels (5.1-fold), and lower membrane SREBP-1c (3-
fold) and LDL receptor (3.4-fold) protein levels. Overall,
differences in protein levels induced by dietary fat type
were consistent with the changes observed in mRNA levels
for the genes of interest.
In addition to hepatic gene expression, mRNA levels of

intestinal sterol transporters were quantified to determine
whether the differences attributable to dietary fat type and
cholesterol status were contributed to by genes involved in
cholesterol absorption. No significant differences in
mRNA levels of ABCA1, ABCG5, ABCG8 and Niemann-
Pick C1 Like1 (NPC1L1) were observed (Figure 5A, B).

Table 1 Red blood cell fatty acid profile1

Selected fatty acids Safflower oil Fish oil

Total SFA2 mol% of total fatty acids

-C 41.9 ± 0.4 47.2 ± 0.4*

+C 39.1 ± 0.4 37.8 ± 0.6

16:0

-C 26.5 ± 0.3 32.2 ± 0.4*

+C 25.2 ± 0.2 30.0 ± 0.3*

18:0

-C 13.5 ± 0.1 12.5 ± 0.2*

+C 12.2 ± 0.2 8.6 ± 0.4*

Total MUFA3

-C 17.9 ± 0.3 21.0 ± 0.3*

+C 20.3 ± 0.4 29.3 ± 0.5*

18:1

-C 14.8 ± 0.2 17.3 ± 0.2*

+C 16.5 ± 0.2 24.0 ± 0.4*

Total n-6 PUFA4

-C 37.6 ± 0.4 14.5 ± 0.2*

+C 38.5 ± 0.5 14.3 ± 0.2*

18:2n-6

-C 16.6 ± 0.2 5.8 ± 0.2*

+C 19.6 ± 0.5 8.2 ± 0.2*

20:4n-6

-C 15.9 ± 0.3 7.4 ± 0.1*

+C 14.0 ± 0.2 5.2 ± 0.3*

Total n-3 PUFA5

-C 1.8 ± 0.1 17.0 ± 0.4*

+C 1.3 ± 0.1 18.5 ± 0.5*

20:5n-3

-C 0.1 ± 0.03 5.9 ± 0.1*

+C 0.04 ± 0.01 8.8 ± 0.4*

22:6 n-3

-C 1.4 ± 0.1 7.9 ± 0.2*

+C 0.9 ± 0.03 6.9 ± 0.1*
1Values are means ± SEM, n = 16 per group. Asterisks indicate significant
differences between safflower oil and fish oil within cholesterol-supplemented
(+C) or depleted (-C) hamsters, P ≤ 0.05. Data (Total MUFA, 20:4n-6, 20:5n-3)
were log-transformed prior to statistical analysis.
2Sum of 8:0, 10:0, 12:0, 14:0, 16:0, 18:0, 20:0, 24:0
3Sum of 14:1n-5, 16:1n-9, 16:1n-7, 17:1n-7 18:1n-9, 18:1n-7, 24:1n-9
4Sum of 18:2n-6, 18:3n-6, 20:3n-6, 20:4n-6, 22:4n-6, 22:5n-6
5Sum of 18:3n-3, 20:5n-3, 22:5n-3, 22:6n-3

Table 2 Liver lipid composition1

Safflower oil Fish oil

Liver weight Grams

-C 4.9 ± 0.1 4.8 ± 0.2

+C 7.1 ± 0.2 7.5 ± 0.3

Free cholesterol2 μg/mg protein

-C 22 ± 0.5 19 ± 0.7*

+C 44 ± 3 44 ± 3

Cholesteryl ester

-C 3 ± 0.3 6 ± 0.8*

+C 221 ± 24 149 ± 8*

Triglyceride

-C 108 ± 7 52 ± 4*

+C 46 ± 3 83 ± 5*
1Values are means ± SEM, n = 14-16 per group. Asterisks indicate significant
differences between safflower oil and fish oil within cholesterol-depleted (-C)
or supplemented (+C) hamsters, P ≤ 0.05.
2Data were log-transformed prior to statistical analysis
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Discussion
F1B hamsters fed diets containing fish oil become
severely hyperlipidemic [5], exacerbated when the diet
also contains cholesterol [1,4,8]. This response has been
attributed, in part, to decreased lipoprotein lipase activ-
ity and mRNA levels [8]. Our aim was to further iden-
tify the mechanisms for these observations. The focus
was on expression of genes regulating cholesterol and
lipoprotein metabolism, and intestinal cholesterol
absorption. We took advantage of a model previously
developed of disrupted cholesterol homeostasis to
addresses the issues of interest [29,30].
Cholesterol-supplemented hamsters responded to diets

containing fish oil, relative to safflower oil, with higher
plasma non-HDL cholesterol concentrations. This obser-
vation was associated with lower hepatic LDL receptor
mRNA and membrane protein levels, consistent with ele-
vated non-HDL particle concentrations, as previously
reported [5,36]. We further observed that although
SREBP-2 has a regulatory role in LDL receptor transcrip-
tion [37,38], the effect of fish oil on LDL receptor mes-
sage levels was unrelated to SREBP-2 mRNA or nuclear
protein levels.

Cholesterol supplemented hamster diets containing fish
oil, relative to the safflower oil, also had dramatically
higher hepatic triglyceride levels and plasma triglyceride
concentrations. Nonetheless, SREBP-1c mRNA and mem-
brane protein levels were lower in these hamsters. VLC n-
3 PUFA have been reported to down-regulate SREBP-1c
in both cell culture and animal models, which, in turn,
leads to a reduction in the expression of genes involved in
the fatty acid synthetic pathway [19-21,39]. One potential
cause for the discordance in plasma and hepatic triglycer-
ide concentrations and SREBP-1c expression is lower rates
of hepatic fatty acid oxidation [40]. Similar to the results
in the current study, fish oil did not decrease plasma tri-
glyceride concentrations in apo E deficient mice, despite a
reduction in the triglyceride production rate [41]. This
suggests that down regulation of SREBP-1c alone does not
account for the lower plasma triglyceride concentrations
in this animal model.
Secretion of apo B containing lipoprotein particles is a

major determinant of plasma non-HDL cholesterol and
triglyceride concentrations, as well as hepatic lipid levels
[42]. The assembly of VLDL particles is dependent upon
the MTP [13], and the availability of apo B, apo E, and
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Figure 3 Effect of dietary n-3 (fish oil) and n-6 PUFA (safflower oil) on hepatic mRNA levels of genes associated with cholesterol and
lipoprotein metabolism in cholesterol-supplemented (A) and cholesterol-depleted (B) hamsters. Real time PCR was used to measure
gene expression in the liver. A standard curve was run on all plates for each mRNA of interest to calculate relative levels. Values were normalized
using beta-actin as an endogenous control. Bars represent means ± SEM, n = 14-16 animals per group. Appropriate transformations of the data
(log SREBP-2, CYP7A1, MTP, apo B-100, ABCA1, HMG-CoA reductase; square root SR-B1, SREBP-1c, apo A-I) were made before statistical analysis.
Asterisks indicate significant differences between safflower oil and fish oil within cholesterol-supplemented (+C) or depleted (-C) hamsters,
P ≤ 0.05.
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cholesterol [12,43]. There was no significant effect of
dietary fat type, regardless of cholesterol status, on MTP
mRNA or protein levels. However, the cholesterol-sup-
plemented hamsters fed fish oil, relative to safflower oil,
had higher hepatic apo B-100 and apo E protein levels.
Apo E expression in mice is positively associated with the

rate of hepatic VLDL production and secretion [41].
These data suggest a role of apo E in modulating plasma
non-HDL cholesterol and triglyceride concentrations
[44]. We also observed lower hepatic ACAT-2 protein
expression in fish oil, relative to safflower oil, fed ham-
sters, which in turn may have contributed to lower
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Figure 4 Effect of dietary n-3 (fish oil) and n-6 PUFA (safflower oil) on hepatic protein levels of genes associated with cholesterol and
lipoprotein metabolism in cholesterol-supplemented (A) and cholesterol-depleted (B) hamsters. Proteins were extracted from the liver,
separated by SDS-PAGE and detected by immunoblotting. Relative protein levels were normalized to the density of beta-actin. Bars represent
means ± SEM, n = 14-16 animals per group. Appropriate transformations of the data (log apo A-I, apo E, LDL receptor, SREBP-1c, SR-B1; square
root apo B-100) were made before statistical analysis. Asterisks indicate significant differences between safflower oil and fish oil within
cholesterol-supplemented (+C) or depleted (-C) hamsters, P ≤ 0.05.
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hepatic cholesteryl ester concentrations. Taken together
these data suggest that despite lower hepatic cholesterol
available for VLDL synthesis, higher hepatic triglyceride,
apo B and apo E levels may have contributed to the
higher plasma triglyceride and non-HDL cholesterol con-
centrations in fish oil fed hamsters.
In addition to hepatic cholesterol metabolism, intest-

inal cholesterol absorption is also a determinant of
plasma non-HDL cholesterol concentrations [22]. None-
theless, no significant differences in mRNA levels of the
sterol transporters ABCA1, ABCG5, ABCG8 and
NPC1L1 were observed in response to dietary fat type in
cholesterol-supplemented or cholesterol-depleted ham-
sters. These data imply that this was not a major regula-
tory point of plasma cholesterol concentrations in this
animal model. Hamsters fed diets containing fish oil
without cholesterol have been reported to have lower
mRNA levels of NPC1L1 relative to hamsters fed control
diets or diets containing olive oil [45], suggesting that the
effect of fish oil on NPC1L1 expression may be secondary
to whole body cholesterol status.
In cholesterol-supplemented hamsters, diets containing

fish oil resulted in lower HDL cholesterol concentrations
than safflower oil. Plasma HDL cholesterol concentrations
is regulated, in part, by apo A-I, the major structural pro-
tein of HDL [46]. Hepatic apo A-I protein levels were
lower in cholesterol-supplemented hamsters fed fish oil,
relative to the safflower oil. ABCA1 and SR-B1 also modu-
late HDL cholesterol concentrations through mediating
the production and catabolism of HDL particles, respec-
tively [26,27,47]. The lower SR-B1 mRNA and protein
levels observed in fish oil, compared to safflower oil fed,
cholesterol-supplemented hamsters is not consistent with
the lower HDL cholesterol concentrations in this group.
These data suggest that, in these animals, regulation of
HDL cholesterol uptake is primarily at the level of SR-B1
receptor activity. Higher SR-B1 activity in response to fish
oil has been observed in the rat [48]. No significant differ-
ences in ABCA1 mRNA levels were observed in the cur-
rent study. Post-transcriptional regulation of ABCA1 may
be altered in response to fish oil; however, we were unable
to detect ABCA1 protein in the liver samples.
Cholesterol-depleted hamsters responded differently to

dietary fat type than did cholesterol-supplemented ham-
sters. Cholesterol-depleted hamsters fed fish oil, relative to
safflower oil, had lower plasma and hepatic triglyceride
concentrations. This was associated with lower hepatic
SREBP-1c mRNA and protein levels, consistent with the
known role of SREBP-1c in regulating plasma triglyceride
concentrations [19].
There was an unanticipated effect of dietary fat type in

cholesterol-depleted hamsters. Despite lower LDL recep-
tor protein levels, the hamsters fed diets containing fish

oil had lower non-HDL cholesterol concentrations than
hamsters fed safflower oil. The difference in non-HDL
cholesterol concentrations between fish oil and safflower
oil fed hamsters was not be accounted for by differences
in expression of genes modulating hepatic cholesterol
synthesis and uptake, VLDL assembly and secretion, or
intestinal cholesterol absorption. Both lovastatin and
VLC n-3 PUFA inhibit HMG-CoA reductase activity.
These factors may have contributed to the lower plasma
non-HDL cholesterol concentrations in cholesterol-
depleted hamsters fed fish oil [49-51].
The dramatic shift in cholesterol status of the hamster

did not alter the effect of dietary fish oil, relative to saf-
flower oil, on HDL cholesterol concentrations. Cholesterol-
depleted hamsters fed diets containing fish oil, relative to
safflower oil, had lower HDL cholesterol concentrations
and this was associated with higher hepatic mRNA and
protein levels of SR-B1, and lower hepatic protein apo A-I
levels. This observation is consistent with previous findings
that SR-B1 and apo A-I are major determinants of plasma
HDL cholesterol concentrations [26,52,53].

Conclusion
In conclusion, our findings indicated that higher non-
HDL cholesterol and triglyceride concentrations in cho-
lesterol-supplemented hamsters fed fish oil, relative to
safflower oil, is associated with lower hepatic LDL
receptor expression and higher hepatic apo E and apo B
expression. In cholesterol-depleted hamsters, the hypoli-
pidemic effect of fish oil is partly attributed to lower
SREBP-1c expression. The lower HDL cholesterol con-
centrations in hamsters fed fish oil, relative to safflower
oil, is independent of cholesterol status and is associated
with lower hepatic apo A-I protein levels. There appears
to be no correlate between the effect of VLC n-3 PUFA
metabolism in humans and F1B hamsters.
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