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ABSTRACT

E pidemiologists are adopting new remote sensing
techniques to study a variety of vector-borne diseases.
Associations between satellite-derived environmental

variables such as temperature, humidity, and land cover type
and vector density are used to identify and characterize
vector habitats. The convergence of factors such as the
availability of multi-temporal satellite data and
georeferenced epidemiological data, collaboration between
remote sensing scientists and biologists, and the availability of
sophisticated, statistical geographic information system and
image processing algorithms in a desktop environment
creates a fertile research environment. The use of remote
sensing techniques to map vector-borne diseases has evolved
significantly over the past 25 years. In this paper, we review
the status of remote sensing studies of arthropod vector-
borne diseases due to mosquitoes, ticks, blackflies, tsetse flies,
and sandflies, which are responsible for the majority of
vector-borne diseases in the world. Examples of simple image
classification techniques that associate land use and land
cover types with vector habitats, as well as complex statistical
models that link satellite-derived multi-temporal
meteorological observations with vector biology and
abundance, are discussed here. Future improvements in
remote sensing applications in epidemiology are also
discussed.

Introduction

Hematophagous arthropod vectors such as mosquitoes,
ticks, and flies are responsible for transmitting bacteria,
viruses, and protozoa between vertebrate hosts, causing such
deadly diseases as malaria, dengue fever, and trypanosomiasis.
Until the early 20th century, vector-borne diseases were
responsible for more deaths in humans than all other causes
combined. These diseases prevented the development of large
areas of the tropics, especially in Africa [1]. Table 1 provides a
list of common arthropod vectors, the diseases they carry, and
the type of pathogen responsible for the disease. Floods and
other natural disasters create environments conducive to the
spread of communicable diseases such as malaria, diarrhea,
and cholera. Some studies suggest that climate change and
increased climate variability are fostering the spread of
infectious diseases beyond their traditional geographic
domains [2]. For example, West Nile virus, which was
previously confined to Africa, Asia, and Europe (i.e., the Old
World), has recently spread to North America. The mosquito
Aedes albopictus, a vector of both dengue fever and West Nile
virus and a native to Asia, has recently established in North

America [3]. The ‘‘burden’’ of prominent infectious diseases
worldwide transmitted by arthropod vectors is given in Table
2 [4]. Disease burden is expressed in Disability Adjusted Life
Years (DALYs), which is the sum of years lost prematurely due
to mortality and disability for incidence cases of the disease
[5]. One DALY represents the loss of a year of healthy life.
Passive disease surveillance involves voluntary reporting by

people who are ill enough to go to a treatment center; such
centers are therefore only effective for detection and
mitigation after a person has been infected. On the other
hand, active disease surveillance, which involves ‘‘searching’’
for evidence of disease proactively through routine and
continuous monitoring in endemic areas, could help prevent
an outbreak, or slow transmission at an earlier stage of an
epidemic. Improved methods are required for forecasting,
early detection, and prevention of vector-borne diseases due
to the increasing trend of large-scale epidemics such as
malaria [6]. Of late, satellite remote sensing technology has
shown promising results in assessing the risk of various
vector-borne diseases at different spatial scales. Satellite
measurements and other remote sensing techniques cannot
identify the vectors themselves, but may be used to
characterize the environment in which the vectors thrive.
Environmental variables such as land and sea surface
temperature and amount, type, and health of vegetation can
be identified and measured from space. A list of
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environmental factors that can be mapped through remote
sensing and their potential linkages with various diseases has
been previously described [7]. Satellites have the ability to
detect anomalies and deviations from the normal climate
patterns that are conducive to the breeding of disease-
carrying vectors such as mosquitoes. Techniques to map
disease occurrence and risk from satellite data therefore
require at least some understanding of the relationships
between a vector-borne disease and the air, land, and water
environment in which it occurs. The objectives of this review
are to summarize developments in the application of remote
sensing techniques for studying infectious diseases in humans
due to arthropod vectors and to identify future opportunities
for further research.

Remote Sensing of the Vector Environment

Remote sensing satellites provide continuous
measurements of the earth and its environment, and offer a
synoptic monitoring capability. Satellite measurements have
distinct advantages over ground measurements since they can
be collected repeatedly and automatically. In the United
States, the National Aeronautics and Space Administration

(NASA) is the prime agency responsible for developing new
remote sensing technologies and remote sensing satellites,
collecting earth system science data to study global change,
and developing applications to use remotely sensed data. The
National Oceanic and Atmospheric Administration (NOAA)
operates a series of weather satellites that collect operational
data for weather forecasting and climate prediction. Besides
NASA and NOAA, several European Union countries, Japan,
Canada, and India have remote sensing satellites that provide
global observations. A list of different Earth-observing
satellite sensors that are discussed in this paper and their
spectral, spatial, and temporal characteristics are given in
Table 3.
The use of remote sensing techniques to map vector species

distribution and disease risk has evolved considerably during
the past two decades. The complexity of techniques range
from using simple correlations between spectral signatures
from different land use–land cover types and species
abundance (e.g., [8,9]) to complex techniques that link
satellite-derived seasonal environmental variables to vector
biology [10]. While a variety of numerical techniques to create
maps of vector distribution in time and space from satellite
data are available, only those techniques that aid our
understanding of biological processes provide meaningful
information in epidemiology and vector control. A review of
different modeling approaches for mapping vector and
vector-borne diseases is discussed by Rogers [11]. The typical
modeling approach is to use either logistic regression or
discriminant analysis techniques that investigate associations
between multivariate environmental data and patterns of
vector presence or absence for mapping vectors and vector-
borne diseases. Both of these methods are capable of
predicting the a posteriori probability of the presence of the
dependent variable (e.g., either the vector or the disease)
from a set of independent variables (e.g., climate and land
cover data) and can be used to make risk maps from sample
data sets (i.e., training datasets) based on the observed
similarity of environmental conditions to sites. The choice of
techniques should be able to accommodate both categorical
(e.g., disease presence or absence) as well as continuous data
(e.g., surface temperature data) spatial data.
The approach in developing remote sensing applications in

epidemiology depends on the spectral, spatial, and temporal
characteristics of remote sensing measurements.
Environmental satellites that collect earth observations daily
or several times a day of the same geographic region (e.g.,
NOAA’s Polar Operational Environmental Satellites and
Geostationary Operational Environmental Satellites) are
ideally suited for collecting rapidly changing meteorological
variables such as atmospheric moisture and surface
temperature. Data from these satellites are valuable in
modeling the climate-dependent vector life cycles and
sustainability. In general, operational environmental satellites
collect more frequent observations at a coarser spatial
resolution (;1 km), over large geographic regions, and are
cheaper to acquire compared to images from other land
imaging satellites such as Landsat or IKONOS that have less
frequent revisit capability but have a higher spatial resolution
(30 m or higher). A summary of the availability of
environmental satellite data for mapping infectious diseases
can be found in [12]. A combination of high spatial resolution
data for land use and land cover classification and frequent

Table 1. Common Arthropod Vectors, Diseases, and the Type of
Pathogen Responsible for the Disease

Vector Disease Pathogen

Type

Mosquitoes Filariasis Helminth

Malaria Protozoa

Dengue fever Virus

Yellow fever Virus

St. Louis encephalitis Virus

Eastern equine encephalitis Virus

Western equine encephalitis Virus

West Nile Virus

Rift Valley fever Virus

Ticks Lyme disease Bacteria

Rocky Mountain spotted fever Bacteria

Q fever Bacteria

Tularemia Bacteria

Relapsing fever Bacteria

Ehrlichiosis Bacteria

Colorado tick fever Virus

Crimean hemorrhagic fever Virus

Babesiosis Protozoa

Mites Q fever Bacteria

Rickettsioses/rickettsialpox Bacteria

Deerflies Tularemia Bacteria

Tsetse flies Sleeping sickness (African

trypanosomiasis)

Protozoa

Blackflies Onchocerciasis Helminth

Muscoid flies Yaws Bacteria

Sandflies Leishmaniasis Protozoa

Sandfly fever Virus

Vesicular stomatitis Virus

Lice Epidemic typhus Bacteria

Trench fever Bacteria

Fleas Endemic typhus Bacteria

Bubonic plague Bacteria

Reduviids (also known

as bed bugs, kissing bugs,

cone-nose bugs)

Chagas disease (American

trypanosomiasis)

Protozoa

doi:10.1371/journal.ppat.0030116.t001
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coarse resolution environmental satellite data for monitoring
environmental variability would be ideal for studying surface
climate conditions for modeling vector populations.

Application of remote sensing data in epidemiology
involves retrieving environmental variables that characterize
the vector ecosystem such as land cover, temperature,
humidity or vapor pressure, and precipitation. Measurements
of Earth’s surface reflectances and temperature can be made
directly from satellites. However, measuring meteorological
and climate variables near the surface is more difficult, and
frequently, empirical methods are used. Because of
complexities and limitations in estimating meteorological
variables through remote sensing, proxy variables such as
vegetation indices that measure the abundance, spatial
extent, and dynamics of vegetation are used as a surrogate
indicator of climate variability in epidemiological studies
(e.g., [13]). The Normalized Difference Vegetation Index
(NDVI), which exploits the strong contrast in the reflectance
of vegetation in the red and near infrared wavelengths, is a
commonly used index to study vegetation dynamics (e.g., [14]).
Since vegetation dynamics are influenced by variations in
climate, strong correlations between vegetation indices and
climate variables can be found. A combination of vegetation
indices, surface reflectance, and temperature measurements
have been used by epidemiologists to model vector
ecosystems (e.g., [10]). An earlier discussion of remote sensing
techniques used in the study and control of invertebrate hosts
and vectors for diseases can be found in [15].

Remote Sensing Studies in Arthropod Vector-Borne
Diseases

Mosquitoes. Diseases and vector habitats. Mosquitoes (Figure
1) are found throughout the world, and mosquito-borne
diseases are among the world’s leading causes of illness and
death. Despite great strides over the last 50 years, the World
Health Organization estimates that more than 300 million
clinical cases of mosquito-borne illnesses occur each year.
There is a long history of developing disease transmission
models by mosquitoes (e.g., [16,17]) and a good summary is
provided by Anderson and May [18]. Several factors, such as
seasonality, proximity to breeding grounds, vector density,
biting rates, and proportion of infectious mosquitoes,
contribute to the spread of mosquito-borne diseases.

Mosquitoes require still or slow moving water for
completing the larval and pupal stages of their life cycle. Both
natural as well as man-made environments of stagnant water
are conducive to their breeding. For example, in Asia and
America, Aedes aegypti breeds primarily in man-made water
containers such as automobile tyres, metal drums, recycling
containers, and domestic water storage containers, whereas
in Africa, they breed in tree holes and leaf axils [19,20].
Temperature, precipitation, and relative humidity are the
three main factors that determine the abundance of
mosquitoes and the prevalence of mosquito-borne diseases
such as malaria [21]. The optimum temperature for mosquito
development of tropical species is 25–27 8C [22], and there is
a strong temperature dependence of the development of the
parasites within the mosquito vectors. For example, the time
needed for the sporozoites of Plasmodium falciparum to reach
the salivary glands of mosquitoes is inversely proportional to
the air temperature with a difference of 14 days between 30
8C and 10 8C [23]. Mosquito-borne diseases such as malaria
are seasonal and case numbers correlate well with rainfall
patterns [23]. However, too little rainfall creates fewer
breeding habitats, and too much rainfall tends to wash away
the mosquito eggs [24]. Irrigated agricultural areas such as
paddy fields in Asia and inland tidal waters are also very
favorable for the breeding of some mosquito species.
Remote sensing studies of mosquito-borne diseases. Mosquito-

borne diseases are prevalent throughout the world, and
remote sensing applications in epidemiology have been most
widely used to study mosquito-borne diseases. A good
summary of mosquito biology and methods to map their
habitats from satellites can be found in [25].
Initial studies largely focused on identifying mosquito

breeding habitats such as marshes and wetlands through land-
use and land-cover mapping using remote sensing data (e.g.,
[26–31]). For example, Landsat data was used to determine
green leaf area index (LAI) over 104 rice fields, and these
measurements were compared to larval counts of Aedes
freeborni at the edge of the fields and the minimum distance
from the center of each field to the nearest livestock pastures
that provide the blood-meal source [8,32]. This analysis
showed that fields that are near pastures that have high LAI
and tiller density produce large numbers of mosquitoes, and
fields with low LAI that are further from the pastures have
lower numbers of mosquitoes. A combination of spectral
measurements from the satellite data and distance
measurements to pastures were used in discriminant analysis
to identify high mosquito producing areas with 90%
accuracy.
Multispectral data from the SPOT (Satellite Probatoire

d’Observation de la Terre) satellite was used to map the
probability of mosquito presence in Belize by Roberts et al.
[33]. This study measured the distance of houses from
waterways, altitude above specified waterways, and amount of
forest between houses and waterways. Each site was then
ranked as high, medium, or low for probability of mosquito
infestation based on thresholds of distance, elevation, and
forest cover. Areas that were closest to the water in both
distance and altitude with no intervening forests were
assigned the highest probability of mosquito presence around
humans. Their results showed that Anopheles pseudopunctipennis
was present in 50% of all the high probability locations and
absent in all the low probability locations.

Table 2. Global Burden of Infectious Diseases Caused Due to
Arthropod Vectors [4]

Disease Disease Burden

(DALYsa) in Thousands

Mortality in

Thousands

Malaria 42,280 1,124

African trypanosomiasis 1,598 50

Lymphatic filariasis 5,644 0

Dengue fever 653 21

Leishmaniasis 2,357 59

Chagas disease 649 13

Onchocerciasis 987 0

aDALYs – Disability Adjusted Life Years (the number of healthy years of life lost due to
premature death and disability).
doi:10.1371/journal.ppat.0030116.t002
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Table 3. Characteristics of Different Earth-Observing Satellite Instruments Discussed in This Paper That Have Potential Applications in
Epidemiology

Satellite Instrument Spectral Bands (lm) Spatial Resolution Temporal Resolution

Landsat-5 (USGS) MSS 2 visible 57 m 3 79 m 16 days

2 NIR 57 m 3 79 m

TM 3 visible 30 m

1 NIR 30 m

2 SWIR 30 m

1 LWIR 120 m

Landsat-7 (USGS) ETMþ 3 visible 30 m 16 days

1 NIR 30 m

2 SWIR 30 m

1 LWIR 60 m

1 panchromatic (B&W) 15 m

NOAA-K, L, M, N (NOAA) AVHRR 1 visible All at 1.1 km Daily

1 NIR

1 SWIR

1 MIR

2 LWIR

Terra, Aqua (NASA) MODIS 1 visible and 1 NIR 250 m 1–2 days

5 visible, NIR, SWIR 500 m

29 visible, NIR, SWIR, MIR, TIR 1 km

Terra (NASA) ASTER 2 visible 15 m 16 days

1 NIR 15 m

6 SWIR 30 m

5 TIR 90 m

IKONOS (GeoEye) IKONOS 1 panchromatic (B&W) 1 m 3 days

3 visible 4 m

1 NIR 4 m

SPOT 1, 2, 3 (Spot Image) HRV 1 panchromatic (B&W) 10 m 26 days

2 visible 20 m

1 NIR 20 m

SPOT 4 (Spot Image) HRVIR 1 panchromatic (B&W) 10 m 26 days

2 visible 20 m

1 NIR 20 m

1 SWIR 20 m

VEGETATION 2 visible 1 km Daily

1 NIR 1 km

1 SWIR 1 km

SPOT 5 (Spot Image) HRG 1 panchromatic (B&W) 5 m 26 days

2 visible 10 m

1 NIR 10 m

1 SWIR 20 m

VEGETATION Same as the one on SPOT4

GOES (NOAA) GOES Imager 1 visible 1 km 30 min

1 MIR 4 km

1 LWIR 8 km

2 LWIR 4 km

IRS 1C, IRS 1D, IRS P6 (ISRO) PAN 1 panchromatic (B&W) 5.8 m 25 days

LISS-III 2 visible 23.5 m

1 NIR 23.5 m

1 SWIR 70 m

Meteosat Second Generation (MSG) (ESA) SEVIRI 1 panchromatic (B&W) 1 km 15 min

1 visible 3 km

2 NIR 3 km

1 MIR 3 km

7 LWIR 3 km

Visible¼ 0.4–0.7 lm; NIR¼ 0.7–1.3 lm; SWIR ¼ 1.3–3 lm; MIR¼ 3–5 lm; LWIR (thermal)¼ 5–14 lm.
ASTER¼Advanced Spaceborne Thermal Emission and Reflection Radiometer; ETMþ¼Enhanced Thematic Mapperþ; IRS¼ Indian Remote Sensing Satellite; GOES¼Geostationary Operational
Environmental Satellite; HRG¼ High Resolution Geometric; HRV¼ High Resolution Visible; HRVIR¼ High Resolution Visible Infrared; LISS¼ Linear Imaging Self-Scanning System; MODIS¼
Moderate Resolution Imaging Spectroradiometer; MSS, Multispectral Scanner; SEVIRI¼ Spinning Enhanced Visible and InfraRed Imager; SPOT¼ Satellite Probatoire d’Observation de la Terre.
European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) (Europe): http://www.eumetsat.int/Home/index.htm.
European Space Agency: http://www.esa.int/esaEO/GGGH88WTGEC_index_0.html.
GeoEye: http://www.geoeye.com/.
Japan Aerospace Exploration Agency (JAXA): http://www.jaxa.jp/index_e.html.
Indian Space Research Organization (ISRO): http://www.isro.org/.
National Aeronautics and Space Administration (NASA) (USA): http://www.earth.nasa.gov/.
National Oceanic and Atmospheric Administration (NOAA) (USA): http://www.noaa.gov/.
National Remote Sensing Agency (NRSA) (India): http://www.nrsa.gov.in/satellites/satellites.html.
Spot Image: http://www.spotimage.fr/web/en/.
US Geological Survey (USGS): http://www.usgs.gov/.
doi:10.1371/journal.ppat.0030116.t003
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Anopheles darlingi larval habitats were surveyed in Belize by
sampling along the Sibun River in Belize and compared with
land cover classification from SPOT and IKONOS data [34].
Ground survey showed a strong correlation between positive
larval habitats and debris from trees such as fallen trunks,
branches, and root systems compared to other landscape
features. However, no such correlations could be made
between positive larval habitats and different land cover
types such as forests and orchards or landscape features such
as river bends where one would expect to find fallen tree
detritus. Overhanging spiny bamboo trees were one of the
major sources of floating detritus mats for larval breeding,
but the satellite imagery did poorly in discriminating
bamboos from other vegetation during classification in this
study. The only association between positive and negative A.
darlingi sampling sites was their distance to the nearest
houses, where the negative sites were 162 m further away
from homes compared to the positive sites. The authors
conclude that the high cost of high spatial resolution imagery
to identify houses along a river would make this technique
unsuitable for developing countries. Nevertheless, the use of
high spatial resolution data for mapping land use, land cover,
and hydrological features to identify suitable vector habitats
continues to be a popular approach (e.g., [35]).

Advances in understanding of correlations between
multispectral satellite measurements and meteorological
variables such as rainfall and temperature have led to the
development of statistical models of mapping vector habitats
using relationships between satellite-derived climatology and
vector ecology. Rift Valley fever (RVF) is a mosquito-borne
disease that affects humans and animals in various parts of
Africa. Mosquito breeding habitats in East Africa, known
locally as ‘‘dambos’’, are frequently flooded during periods of
heavy rainfall, which leads to a build-up of mosquito
populations and subsequent RVF outbreaks. Since NDVI is
known to be correlated with variations in rainfall, variability
of NDVI has been shown to be associated with RVF incidence
[36]. A discussion on the use of temporal profiles of NDVI and
cold cloud duration (CCD) measurements from satellites in

models of mosquito distribution and malaria in Africa is
found in [37]. Sea surface temperature (SST) variations
indicate that El Niño Southern Oscillation and concurrent
SST elevations in the Pacific and Indian oceans are correlated
with increased rainfall in Eastern Africa. When SST data and
NDVI were used together as the predictor variables, the
incidence of RVF could be forecast up to 5 months in advance
[38,39].
Temporal Fourier processed measurements of NDVI, land

surface temperature, and CCD were used by Rogers et al. [10]
to capture the seasonal climatology of the African landscape.
Fourier processing of these variables reduces the
dimensionality of the data set while retaining crucial
information about habitat seasonality (information that is
lost by other methods of data reduction, such as Principal
Components Analysis). The Fourier processed images were
used in discriminant analytical models to describe both the
distribution of five important species in the Anopheles gambiae
complex of species in Africa and the risk of malaria as
captured by the entomological inoculation rate (EIR, the
number of infectious bites per person per year).
Relationships observed between EIR and satellite data were
used to make a predictive map of EIR across the continent.
Similar techniques were used to create risk maps of West Nile
virus in the United States [40] and maps of global
distributions of yellow fever and dengue [41]. The predicted
risk maps showing the maximum likelihood, posterior
probability of disease presence or absence had an average
kappa index between model predictions and observations of
0.742 for yellow fever and 0.700 for dengue.
Figure 2 shows the potential distribution of four species of

West Nile virus–carrying mosquitoes in the United States
derived using the techniques described by Rogers et al. [40].
Note the close agreement between the geographic extent of
distribution derived from satellite data and the recorded
distribution on the ground.
Ticks. Diseases and vector habitats. Ticks are responsible for

transmitting a variety of pathogens, including protozoa,
rickettsia, bacteria, and viruses, to both humans and livestock

doi:10.1371/journal.ppat.0030116.g001

Figure 1. Arthropod Vectors That Are Discussed in This Paper
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[42], which causes substantial economic damage worldwide
[43,44]. Lyme disease, Rocky Mountain spotted fever,
ehrlichiosis, and babesiosis are some of the more common
diseases in humans that are transmitted by ticks. Lyme disease
is the most common vector-borne disease of humans in the
United States and Europe [45,46].

Unlike other arthropod vectors such as mosquitoes, ticks
are hematophagous only once per life cycle stage, taking large
blood meals equivalent to 10–100 times their body weight
[47]. The primary hosts of Ixodes scapularis (Figure 1), the
black-legged tick that carries the bacteria Borrelia burgdorferi,
which causes Lyme disease in humans, are the white-footed
mice (Peromyscus leucopus) and white-tailed deer (Odocoileus
virginianus) [45]. During their life cycle, different Ixodid tick
species may use one, two, or three different host species [48].
In their free-living stages, most tick species have specific
requirements in terms of microclimate and tend therefore to
be picked up only by those hosts that frequent the habitats
providing such conditions [48–51]. Tick populations are
abundant in deciduous forests with leaf litter and ecosystems
with shrubs and tall grasses in temperate climates with high
relative humidity. Lyme disease shows strong seasonality, with
peaks occurring during the summer and fall months when the
nymphs are most active [52]. However, changes in the
incidence of tick-borne diseases cannot always be related to
climate change; changes in other elements of complex

epidemiological cycles may also play a part. For example,
Lyme disease within the United States is concentrated mostly
in the northeastern Atlantic states [53], and the spread of this
disease seems to be closely related to an increase in the
population of the white-tailed deer [54], an increase due to a
diminution of hunting pressure and an increase in woodland
in close proximity to human habitation.
Remote sensing studies of tick-borne diseases. A land cover map

derived from a Landsat Thematic Mapper (TM) image of
Guadeloupe, French Windward Islands, was used by Hugh-
Jones [55,56] to discriminate four grazing regions with
different levels of cattle tick Amblyomma variegatum infestation
in 103 cattle herds. The four classes were lightly infested dry
meadows, moderately infested foothills, heavily infested dry
scrub, and rocky grasslands. The spatial variability of pixel
values within individual grazing fields also correlated well
with tick density; areas where the landscape was variable had
more ticks compared to homogenous areas.
Ticks exhibit strong seasonal dependence of mortality and

disease transmission, which can be related to temperature
and vegetation conditions [47]. A critical factor for egg laying
and larval development is temperature and humidity. Since
these factors can be related to NDVI, multitemporal NDVI
measurements from the Advanced Very High Resolution
Radiometer (AVHRR) have been correlated with mean
mortality during the life cycle between the adult female and

doi:10.1371/journal.ppat.0030116.g002

Figure 2. Maps Showing the Potential Distribution of Four Species of Mosquitoes in the United States

Distribution predicted using satellite derived environmental data is in red, and recorded distribution is outlined in yellow. Image courtesy: TALA
Research Group–University of Oxford.
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subsequent larval stages in Burundi, Uganda, and Tanzania
[57].

Using environmental variables obtained at the residences
of Lyme disease patients in Baltimore County, Maryland,
from 1989 through 1990 within a geographic information
system (GIS), Glass et al. [58] showed that many suitable tick
habitats in the northeastern United States coincide with
residential properties close to wooded areas. Brightness,
greenness, and wetness determined from Landsat data [59]
were used along with elevation and land cover classes to
determine risk for Lyme disease on 337 residential properties
in two communities of suburban Westchester County, New
York [60]. Spatial analysis of Lyme disease risk indicated that
high-risk properties had a greater abundance of green
vegetation and/or a higher proportion of woods than lower
and no-risk properties, which is consistent with field-based
studies of the landscape ecology of Lyme disease.

Ticks are not highly mobile in nature, and they depend on
their hosts (e.g., the white-footed mouse) for movement over
large distances. However, not all environments that a host
might inhabit are suitable for ticks to survive and reproduce.
Therefore, the presence of an adequate host population by
itself is not a risk factor for the transmission of Lyme disease.
To determine what specific environments are conducive for
the survival of I. scapularis in the upper Midwest, a survey was
conducted of tick populations by collecting samples from
vertebrate hosts on the ground, and environmental data from
each collection site was compared with tick abundance [61].
Land cover data derived from Landsat TM data was used with
maps of soils, geology, elevation, and climate to determine
significant associations between tick presence and
environmental variables. Discriminant analysis was used to
determine the significant environmental factors that
differentiate positive and negative tick sites. Logistic regression
analysis was used to create maps of habitat suitability for I.
scapularis. Areas that had high suitability coincided with the
incidence of Lyme disease in Wisconsin. The results of the
logistic regression (83.9% classification accuracy) were in
agreement with the discriminant analysis (85.7% classification
accuracy) and both techniques showed that soil order and land
cover were the dominant factors for tick presence.

Using NDVI and surface temperature measurement from
AVHRR between 1982 and 2000, Estrada-Pena [62] showed
that favorable tick habitats within the United States are
increasing. A reduction in biodiversity due to deforestation
and forest fragmentation could lead to an increase in the
density of the white-footed mouse, and ticks feeding on the
white-footed mouse have a higher probability of being
infected with B. burgdorferi than any other host [63].

Environmental data derived from satellites was used by
Randolph and Rogers [64] to differentiate the eco-climatic
zones of six tick-borne flaviviruses. Since only certain
environments that can sustain the appropriate natural life
cycles of the vector can support the virus transmission cycles,
this study suggests that climate may have played a role in
directing the evolution of the flaviviruses. By understanding
the biotic and abiotic constraints imposed on the evolution
and mutation of vector-borne microbes, it may be possible to
predict the non-evolutionary emergence of vector-borne
diseases under dynamic eco-climatic conditions with a
detailed knowledge of vector biology and transmission
conditions.

Black flies. Diseases and vector habitats. Blackflies are about 1–
6 mm in length and are amongst the smallest blood-sucking
Dipterans. They usually breed in well-aerated water bodies
such as swiftly moving shallow mountain torrents [48], or
sunlit, fast flowing rivers in the tropics [65]. Onchocerciasis or
river blindness is caused by the helminth Onchocerca volvulus of
the family Filariidae, whose larvae are transmitted between
humans by blackflies of the family Simuliidae (Figure 1).
Onchocerciasis is the second leading cause of blindness in the
world with 96% of the affected people living in 30 countries
in sub-Saharan Africa (and Yemen), with the remainder in six
countries in Latin America [66]. Several programs such as the
Onchocerciasis Control Programme in West Africa [67], the
Onchocerciasis Elimination Program for the Americas [68],
and the African Programme for Onchocerciasis Control [69]
target this dreadful disease which, because its impact is
greatest in mature individuals (i.e., the agriculturally
productive sector of societies), has a disproportionate effect
on human communities.
Remote sensing studies of diseases due to black flies. The African

Programme for Onchocerciasis Control developed a program
called Rapid Epidemiological Mapping of Onchocerciasis
(REMO) to enable communities at high risk to be quickly and
cheaply identified and mapped for priority treatment.
However, when ivermectin, the drug used to treat
onchocerciasis is administered to patients who are also
infected with Loa loa, fatal complications have been reported
[70]. Therefore, before Ivermectin could be distributed, WHO
wanted to map areas with L. loa infection so that drug
administration protocols could be modified to avoid
complications. Flies of the genus Chrysops (family Tabanidae)
that carry the cutaneous filarial parasite L. loa, causing
Calabar swellings in humans, are associated with forest and
forest fringe habitats with larval stages restricted to wet,
organically rich and muddy low-lying areas within the forests
[71]. Using forest cover and landcover classes derived from
AVHRR along with soil and topography data, the prevalence
of L. loa in six African countries was predicted, and the results
were compared with priority areas defined by the REMO
project [71]. About 50% of the variation in prevalence rates
of the infection could be explained by the satellite-derived
environmental factors. There were extensive areas of
agreement between the satellite derived maps and areas that
were identified by REMO as high priority treatment areas in
Cameroon and the Democratic Republic of Congo.
Tsetse flies. Diseases and vector habitats. Tsetse flies (genus

Glossina), which are found only in Africa, transmit various
protozoan parasites of the genus Trypanosoma, which cause
sleeping sickness in humans and ‘‘nagana’’ in domestic
animals. There are 30 species or subspecies of tsetse, classified
into three groups: the fusca group, found mostly in forests, the
palpalis group, found in forests and riverine vegetation, and
the morsitans group, found in woodland areas of savannah
regions. Human sleeping sickness is caused by Trypanosoma
brucei gambiense and Trypanosoma brucei rhodesiense, which
threaten up to 60 million people in 36 countries of sub-
Saharan Africa [72]. T. b. gambiense is usually transmitted by
tsetse of the palpalis group and occurs mostly in cultivated
lands within proximity of pools of water in western and
central Africa; it is a disease adapted to humans, although
other animals—especially domestic ones—may be important
reservoir hosts. T. b. rhodesiense, which is the more virulent of
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the two, is usually transmitted by tsetse of the morsitans group
and occurs primarily in the savannah woodlands of eastern
and central/southern Africa [13,73]; it is a disease that occurs
naturally in a large number of domestic and wildlife hosts
[74]. In humans, as the disease progresses, the parasite crosses
the blood–brain barrier and invades the central nervous
system, causing neurological problems [75]. Compared to
other arthropod vectors such as mosquitoes, tsetse flies have a
very low reproductive rate and a longer life expectancy. The
mortality and reproductive rates of tsetse flies are highly
dependent upon microclimatic conditions, with high survival
rates in cool, moist areas [76]. Animal trypanosomiasis occurs
more or less throughout the area of Africa inhabited by one
or more species of tsetse (an area of approximately 10 million
km2), while human sleeping sickness, which has a much higher
threshold for transmission [77], occurs only in a relatively few,
but very persistent, disease foci.

Remote sensing studies of diseases due to tsetse flies. Predictive,
process-based models of disease transmission based on the
biology of the insect vectors are in general more robust than
statistical models, which do not necessarily describe causal
relationships between the predictor variables and the
predicted phenomena. Air temperature and vapor pressure
deficit from climatology records have been successfully used
to model the birth and death rates, and density, of tsetse flies
over Africa [76]. Since these environmental variables can be
related to NDVI, land surface temperature, and cold cloud
top temperature duration (CCD) observed from
meteorological satellites, techniques have been developed for
modeling tsetse distribution in Africa using multi-temporal
satellite data [78–80]. The techniques used in these analyses
include Fourier analysis of the time series data to reduce the
dimensionality while capturing the seasonality of variables,
and classifying the images using linear and non-linear
discriminant analysis to predict species distribution. These
methods were able to predict the distribution of tsetse with
accuracies of greater than 80%. Among the different
variables used in modeling tsetse distribution, NDVI was
considered to be the most important variable, followed by
CCD, surface temperature, and elevation. Analysis of habitats
and species’ distributions from these studies indicated that
different species of tsetse flies are differently but closely
adapted to local climate conditions. In some cases, the
presence or absence of flies was shown to be dependent upon
temperature differences of 1 8C or less, and the importance
and number of environmental variables in determining tsetse
distribution differed from region to region. A review of
different methods used in tsetse modeling from satellite data
is provided by Rogers [80], and this review contains the first
ever satellite-driven, process-based model of disease
transmission (trypanosomiasis) based upon a satellite-driven,
processed-based model for its insect vector (tsetse flies).

Sandflies. Diseases and vector habitats. Visceral leishmaniasis
(kala-azar), mucocutaneous leishmaniasis, and cutaneous
leishmaniasis are three diseases caused by Leishmania
protozoa (close relatives of trypanosomes) that are spread
through the bite of about 30 different species of sandflies of
the subfamily Phlebotominae (super-family Psychodoidea)
[81]. Sandflies feed mostly at night, when they are most active,
and breed in dark, humid environments with organic matter
that serves as food for the larvae [48]. Studying their life cycle
is difficult because the larvae, which are tiny, are very hard to

find, even in areas of high disease prevalence [82]. Sandflies
are restricted to tropical and temperate climates (hot and
humid), and therefore leishmaniasis is endemic to these areas,
which include northern Africa, the Middle East, parts of
Europe, and central South America [73]. Leishmaniasis is
primarily a zoonotic disease, affecting mostly rodents and
dogs, and humans are incidental hosts. Factors such as
deforestation, population migration from endemic rural
areas, and increased population in areas with low sanitation
have caused a resurgence of leishmaniasis by increasing the
contact between the vectors and the hosts [83].
Remote sensing studies of diseases due to sandflies. Leishmaniasis

transmitted by sandflies was reported as a health hazard for
troops deployed in the Middle East both during World War II
and in the 1991 Persian Gulf War. The spatial distribution of
sandflies is, however, not well understood, mainly because the
larvae are so difficult to find. The distribution of Phlebotomus
papatasi using NDVI and meteorological data in the Middle
East has been modeled [84]. In this study [84], published
reports of leishmaniasis and sandfly fever in the Middle East
were used to determine the presence of sandflies and their
location. Meteorological data were collected on the ground
from 114 weather stations in nine countries, including Saudi
Arabia, Kuwait, Iran, and Iraq. Meteorological data were not
available for all of the locations that had leishmaniasis and
sandfly fever. The objective, therefore, was to develop a
technique that would determine the probability of disease for
those areas where there were no weather data. Using
discriminant analysis, the probability of vector occurrence
was determined for all 114 locations that had weather data.
For those areas that were determined to be positive for
sandfly presence, NDVI measurements from AVHRR were
analyzed for a 12-year period from 1982. Analysis indicated
that the range of NDVI that was associated with vector
presence was 0.0–0.06, and this information was used to
create a map showing the areas where sandflies could be
present. This map was able to identify accurately all the areas
where sandflies were present, including those areas that had
no meteorological data.
Comparison of sandfly (P. argentipes) densities with different

land use land cover types derived from IRS LISS3 (Indian
Remote Sensing Satellite Linear Imaging Self-Scanning
System 3) data over two are areas that were endemic and non-
endemic to visceral leishmaniasis (kala-azar) in Northern
India showed that the endemic areas had a higher percentage
of water bodies [85]. The endemic areas also had a higher
proportion of marshes compared to the non-endemic areas,
and there were also significant differences in vegetation and
soil types among the two areas. Succulent vegetation was
more prominent in endemic areas, whereas non-endemic
areas had predominantly thorny and hard-stemmed plants. In
endemic areas, the vector density (as described by the man
hour density) was higher during the summer (March–June)
and rainy seasons (July–October) compared to non-endemic
areas. This study was useful for the health authorities in
prioritizing their visits to specific sites.

Future Prospects

Improvements in both sensor capabilities and data
processing algorithms are enabling estimates of parameters
such as precipitation from space directly rather than using
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surrogate variables. The availability of moderate resolution
imagery from new NASA satellites such as Terra and Aqua at
up to 250-m spatial resolution offers improved capabilities in
modeling epidemiology from space at a finer spatial
resolution than AVHRR. Technologies such as global
positioning systems and GIS provide geolocation and
mapping capabilities on the ground at unprecedented
accuracies, making it possible to merge more accurately
ground observations of vector demographics and disease
incidence with satellite data. A wide choice of powerful image
processing, GIS and statistical software packages are available
within an affordable desktop computing environment,
making it feasible for epidemiologists and biologists to
experiment with new spatial analysis techniques.
Anthropogenic factors such as land cover conversion and
increase in greenhouse gases are resulting in global climate
change, which could expand the ecosystem boundaries of
disease-carrying vectors, resulting in an increase in infectious
diseases [86]. Maps showing seasonal risks of vector-borne
diseases will be necessary to monitor the impacts of global
change on vector ecologies. Our ability to forecast climate
trends and events such as El Niño and La Niña and their
impact on rainfall patterns in regional environments,
combined with an understanding of vector-environmental
relationships, will help us to improve forecasts of epidemics.
Automation of satellite data processing could lead to the
generation of risk maps in near real-time to warn local health
care professionals.

A complex set of biotic and abiotic factors influence the
emergence and spread of vector-borne diseases. While it is
not possible to predict the evolution of new vector-borne
pathogens, remote sensing techniques can aid in determining
the influence of abiotic environmental factors on their
spread. Although multitemporal satellite data are available
for an extended time period, the availability of georeferenced
and spatially explicit disease data for the same temporal
record is still less common, especially in developing countries
that have a high burden of vector-borne diseases. Other issues
that are impacting the routine use of remote sensing in
epidemiology include accessibility to high resolution and low-
cost imagery [87,88], as well as issues with data continuity in
terms of consistencies in spatial, spectral, and temporal
resolutions among satellite sensors during different years.
Unforeseen problems, such as the failure of Landsat 7
satellite and delays in the launch of new earth observing
satellites such as the National Polar-orbiting Operational
Environmental Satellite System, as well as shifting priorities
of space agencies, could impact our ability to routinely use
satellite data in epidemiology and other applications [89].
However, these issues with remote sensing data are not
unique to epidemiological applications alone. It should be
noted that the use of remote sensing techniques for modeling
and forecasting vector-borne diseases is an emerging field,
and a sustained use of these applications could be ensured by
collaboration between remote sensing scientists and
epidemiologists from the onset of research projects [87].

Remotely sensed environmental variables such as air
temperature, humidity, and rainfall should be processed and
made available to epidemiologists in real-time and in a
format that they can readily use as inputs to their modeling
by agencies and organizations that collect and archive
satellite data. Within the United States, remote sensing data

have potential applications in modeling risk from West Nile
fever, dengue fever, and Lyme disease. The potential for
epidemic dengue transmission within the United States still
exists because of the presence of A. albopictus and A. aegypti
mosquitoes that transmit the disease [1]. Application of
remote sensing techniques to map areas at risk for dengue
fever within the United States is yet to be done. The
predictive maps of diseases need to be verified on the ground
for accuracy. While several studies have shown correlations
between global climate change and variations in the number
of people infected with a particular vector-borne disease, it
not yet clear how much change in disease would have
occurred without environmental change. Efforts therefore
should also focus on the development of stochastic, process-
based models that rely on vector biology as predictors of
diseases and their risk, instead of statistical models that do
not clearly explain causal relationships between satellite data
and disease. Nevertheless, simple statistical models could be a
good starting point for linking the limited number of
environmental variables that can be derived from satellite
data with spatial and temporal patterns of diseases and
vectors. Simple statistical models could help deduce the
epidemiological processes from an analysis of the observed
spatial patterns of the disease and the environment.
Remote sensing of vector ecosystems and interpretation of

these patterns is likely to provide both challenges and
opportunities in epidemiology. In addition to vector biology,
social and behavioral patterns such as the time spent outside,
which increases risk of exposure to anthropophilic vectors,
types of house constructions, the use of nets and other
repellents, as well as the availability of basic sanitation and
primary healthcare facilities, which are related to
socioeconomic conditions, are important in disease
prevention and control. Disease patterns have been shown to
be closely linked to poverty and social inequalities [90]. These
factors cannot be inferred from remote sensing techniques
alone.
While the studies reviewed in this paper demonstrate the

efficacy of remote sensing and other geospatial technologies
in disease surveillance, there are however, several factors that
need to be considered for these technologies to be routinely
adopted for public health management. These include the
availability of resources for gathering, processing, and
modeling geospatial data, training of personnel on the
proper interpretation of results, cost effectiveness of these
surveillance techniques, and the continuous availability of
remote sensing data in a timely manner. It should also be
emphasized that the allocation of resources for these novel
monitoring techniques should not come at the cost of basic
disease prevention and management activities at the
community level. “
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