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Linking microbial community structure to ecological processes requires understanding
of the functional roles among individual populations and the factors that influence
their distributions. These structure–function relationships are particularly difficult to
disentangle in estuaries, due to highly variable physico-chemical conditions. Yet,
examining microbe-mediated turnover of resources in these “bioreactor” ecosystems is
critical for understanding estuarine ecology. In this study, a combined metagenomics
and metaproteomics approach was used to show that the unequal distribution of
microbial populations across the Yaquina Bay estuary led to a habitat-specific taxonomic
and functional structure and a clear spatial distribution in microbe-mediated capacities
for cycling of carbon and nitrogen. For example, size-fractionation revealed that
communities inhabiting suspended particulate material encoded more diverse types
of metabolisms (e.g., fermentation and denitrification) than those with a planktonic
lifestyle, suggesting that the metabolic reactions can differ between size fractions of the
same parcel of an estuarine water column. Similarly, communities inhabiting oligotrophic
conditions in the lower estuary were enriched in genes involved in central carbon
metabolism (e.g., TCA cycle), while communities in the upper estuary were enriched
in genes typical of copiotrophic populations (e.g., cell growth, cell division). Integrating
gene and protein data revealed that abundant populations of Flavobacteriales and
Rhodobacterales encoded similar genomic functions, yet differed significantly in protein
expression, dedicating a large proportion of their respective proteomes to rapid growth
and division versus metabolic versatility and resource acquisition. This suggested
potentially distinct life-strategies between these two co-occurring lineages and was
concomitant with differing patterns of positive evolutionary selection on their encoded
genes. Microbial communities and their functions across Yaquina Bay appear to be
structured by population-level habitat preferences, resulting in spatially distinct elemental
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cycling, while within each community, forces such as competitive exclusion and
evolutionary selection influence species life-strategies and may help maintain microbial
diversity.

Keywords: metagenomics, metaproteomics, estuary, biogeochemical cycling, Yaquina Bay, free-living,
particle-attached

INTRODUCTION

Estuaries host communities of microorganisms that influence
the exchange of nutrients between terrestrial, freshwater, and
marine biomes (Cole and Caraco, 2001; Bauer et al., 2013).
These boundary ecosystems often exhibit strong spatiotemporal
gradients in salinity, turbidity, and resource availability, resulting
in microbial communities with highly variable characteristics
across these conditions (Crump et al., 2004; Jeffries et al., 2016).
Biotic and abiotic dynamism is particularly evident in estuaries
during winter along the Oregon coast when heavy overland
precipitation and steep nearshore topography cause coastal river
flooding events that transport significant amounts of suspended
particulate matter into estuarine water columns (Hickey and
Banas, 2003; Hastings et al., 2012; Goñi et al., 2013).

Microbes colonizing such particles represent an important
component of aquatic biogeochemical cycles by acting to liberate
particulate carbon and nutrients to the planktonic microbial
loop through decomposition processes, and by supplementing
higher trophic levels of the food web through resulting
biomass production (Goulder, 1977; Wainright, 1990; Brown
and Ozretich, 2009; Stocker, 2012). Studies examining microbial
communities in Oregon estuaries have observed significant
differences in the phylogenetic composition and respiratory
activity between particle-associated and free-living microbial
communities and across marine–estuarine–riverine gradients
(Crump et al., 1998, 1999, 2017; Smith et al., 2013). Beyond
phylogenetic characterization, however, the functional roles of
microbial communities and their relative influence on ecological
processes occurring in different habitats within heterogeneous
estuarine systems have seldom been examined (Simon et al.,
2014).

Applying a combination of high-throughput DNA sequencing
and metaproteomics techniques, we investigated the phylogenetic
and functional structure of microbial communities with two
contrasting, operationally defined lifestyles (particle-associated
and free-living) in two spatially separated locations (upper
and lower) of Yaquina Bay, Oregon, United States. Using
these data, we estimated how the mechanisms of microbe-
mediated carbon and nitrogen turnover differed between the
four habitats. This was achieved using previously identified
metabolic marker genes and proteins, whose relative abundances
provide a proxy for different components of aquatic microbe-
mediated biogeochemical cycles (Lauro et al., 2011; Llorens-
Marès et al., 2015). We hypothesized that habitat preference (i.e.,
a distribution biased toward a specific habitat) at the population
level would lead to communities with distinct taxonomic
and functional structures, corresponding with habitat-specific
carbon and nitrogen cycling on both large (kilometers, between
locations) and small (microns, between particle-attached and

free-living) spatial scales (Hyndes et al., 2014) in the Yaquina Bay
estuary.

To understand the ecology of successful microorganisms in
this ecosystem, we also reconstructed the encoded genomes and
expressed proteomes at the time of sampling from 15 populations
in two dominant lineages (Flavobacteriales and Rhodobacterales)
to determine whether their life-strategy – i.e., the set of traits
used for survival, growth, and reproduction (Barnard et al.,
2013) – contributed to their pervasiveness across habitats. To
determine if life-strategy of the two taxa was consequential for
their coexistence and codominance (i.e., whether they displayed
overlapping or divergent life-strategies and, thus, occupied a
similar or different niche space), we compared the relative
abundances of their expressed proteins and their protein-coding
genes. Similarly, we examined positive evolutionary selection
in these two lineages using classical analyses of synonymous
and non-synonymous mutation rates on protein-coding genes
to determine whether evolutionary pressure on each lineage was
related to its life-strategy.

MATERIALS AND METHODS

Sample Collection and Processing
Surface water samples were collected on November 22, 2014
from two sites in Yaquina Bay (OR, United States). Samples
were taken from the top 1 m of the water column at a tidal
height of ∼1.8 m near slack current (−0.1 m/s) in both
the riverine end-member of the estuary (hereafter, “upper”:
44.58◦N, −123.99◦W) and the coastal estuary mouth (hereafter,
“lower”: 44.62◦N, −124.04◦W), which are separated by 8 km
(Supplementary Figure S1). Along with tidal influence, Yaquina
River flow was ∼17 m3/s (Oregon Water Resources Department,
Station ID 14306030), resulting in upper and lower estuary
sampling sites that represent differing salinity and nutrient
zones during our sampling period (Brown and Ozretich,
2009; Shafer et al., 2016). Triplicate 12 L water samples were
collected in acid-washed carboys and filtered through in-line
3-µm and 0.22-µm PES membranes (Pall Corporation, Ann
Arbor, MI, United States) to recover operationally defined
particle-associated and free-living microbial communities,
respectively. Collected biomass was stored at −80◦C until
processing.

Community DNA was extracted using the CTAB protocol
described in (Doherty et al., 2017). Total protein was extracted
using SDS lysis method detailed in (Bryson et al., 2016, 2017).
Extractions from 1 and 11 L of water yielded sufficient quantities
of analytes for further analyses (1–5 µg DNA and 150–300 µg of
protein, respectively).
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16S Amplicon Library Construction and
Analysis
The v4 locus of the 16S rRNA gene was amplified and
sequenced on the Illumina MiSeq (Illumina, Inc., San Diego, CA,
United States) using the two-step PCR protocol of the Nextera
XT index kit. First-step PCRs were performed with 30 cycles
using ∼50 ng of DNA, AccuStart II PCR ToughMix Polymerase
(QuantaBio, Beverly, MA, United States) following manufacturer
instructions, and primers encoding universal prokaryotic v4-
complement sequences (515F and 806R) (Takahashi et al., 2014).
AMPure XP beads were used for product purification. Second-
step PCRs were performed per Nextera XT kit instructions.

Libraries were normalized by concentration, pooled, and
sequenced using an Illumina MiSeq v2 kit (251 bp, paired-end
reads), generating>17,000 reads per library. Reads were trimmed
and quality filtered using FastQC and Sickle (Joshi and Fass,
2011). Low quality (<25 phred scores across 15 base sliding
windows) sequences within reads were trimmed and >200 bp
reads were retained. The “mothur” program was used to remove
adapter regions and for read-pair assembly, unsupervised OTU
clustering (97% identity), taxonomic assignment with the RDP
classifier, rarefaction, relative abundance calculations, and OTU
table generation (Schloss et al., 2009).

Metagenome Sequencing, Assembly,
and Annotation
Metagenome libraries were prepared using Nextera XT (Illumina,
Inc., San Diego, CA, United States) and Wafergen (Wafergen
Bio-systems, Fremont, CA, United States) kits. Libraries
were quantified with Bioanalyzer HS-DNA Chips, normalized
by concentration, and pooled. Metagenome sequencing was
performed on Illumina HiSeq 3000 using 151 bp long, paired-
end reads and yielded >16 Gb per library (>32 M reads).
Metagenome reads were filtered as defined for 16S amplicon
reads, with the exception that the length threshold was 100 bases.
IDBA-UD (Peng et al., 2013) was used for de novo metagenome
assembly of the combined read sets from all three replicate
community DNA samples in each of the four habitats (i.e., upper
and lower estuary communities with both particle-associated
and free-living lifestyles). All 16S-amplicon and metagenome
sequences are available from NCBI (BioSample SAMN04917373,
BioProject PRJNA320136, short read archive SRS1422236 with
accession numbers SRX1738750-90 for 16S-amplicon reads, and
SRX1738728-32 for metagenome reads).

Predicted coding sequences (CDS) on contigs were
determined using Prodigal (Hyatt et al., 2012). Taxonomic
assignment of CDS was based on best hits to the RefSeq
database (downloaded June 14, 2014) using the Diamond
algorithm in “blastp” mode (Buchfink et al., 2015). Diamond
blastp was chosen for annotation to the Class taxonomic level
based on speed and sensitivity tests comparing the algorithm
with traditional blastp and Diamond blastp in sensitive mode
(Supplementary Figure S2). The GhostKoala server was used to
functionally annotate each CDS by assigning a KEGG Orthology
(KO) number (Kanehisa et al., 2016). Additional functional
assignments of CDS were based on best rpsBLAST hits to

protein families from the Pfam (Finn et al., 2016) and cluster of
orthologous genes (COG) (Huerta-Cepas et al., 2016) databases.

Read depths of contigs/scaffolds and of CDS were defined by
separately aligning reads from all libraries against each of the
four resulting assembles using the Bowtie2 program (Langmead
and Salzberg, 2012). The relative abundances of CDS were
approximated using the reads per kilobase of genome equivalents
(RPKG) metric, which was calculated with “MicrobeCensus.”
This metric uses CDS read-depth and a genome equivalent
metric based on metagenome library size and single-copy marker
genes in order to normalize relative abundances of CDS across
metagenomes (Nayfach and Pollard, 2015).

Contigs from each metagenome were automatically binned
into organism-specific sets using the “maxbin2.1” program,
which uses contig read-depths and tetranucleotide (TN)
frequency data for bin assignment (Wu et al., 2016). More than
600 total bins were auto-generated. The lineage-specific workflow
of “CheckM” (Parks et al., 2015) was used to assess initial bin
quality by calculating completeness and contamination metrics.
Bins with >85% completeness (83 bins; bolded typeface in
Supplementary Table S1) were manually curated using “Vizbin”
(Laczny et al., 2015) and “mmgenome” (Karst et al., 2016).
Outlying contigs were identified in plots of GC content, TN
frequency, and read-depths and removed. Resulting bins were
reassessed in “CheckM,” and those with >85% completeness and
<10% contamination were analyzed further (40 bins; bolded
and italicized typeface in Supplementary Table S1). Taxonomy
of manually curated bins was determined by BLAST-based
annotation of binned CDS, by comparison to the “amphora2”
marker gene set (Wu and Scott, 2012), and with “CheckM” rerun
with the taxon-specific workflow. Thirty-nine bins with >85%
completeness and<10% contamination were retained for further
population-level analyses.

Peptide Mass Spectrometry, Database
Construction, and Protein Identification
Extracted proteins were digested with trypsin at room
temperature (enzyme:substrate ratio of 1:100 w:w). Twenty-
five micrograms of peptides were analyzed for each of
the 12 metaproteomes using 2D-Liquid Chromatography
Tandem Mass Spectrometry (LC-MS/MS) with previously
described conditions (Bryson et al., 2016). LC-MS/MS
measurements were performed on an LTQ Orbitrap Elite
mass spectrometer (Thermo Scientific, Waltham, MA,
United States) (Washburn et al., 2001). MS and MS/MS
scans were acquired with a resolution of 30,000 and 15,000,
respectively, and the 10 most abundant precursor ions were
selected for MS/MS analysis by higher-energy collisional
dissociation.

Sipros Ensemble (Guo et al., 2017) was used to search all
MS spectra against a peptide database constructed from all
metagenome CDS clustered at 100% identity using cd-hit (Li
and Godzik, 2006), and with reverse sequences of all peptides
added as decoys to calculate false discovery rate (FDR) (Bryson
et al., 2016). Searches considered 7–60 residue peptides with a
maximum of two missed tryptic cuts. The two-peptide rule – one

Frontiers in Microbiology | www.frontiersin.org 3 June 2018 | Volume 9 | Article 1282

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01282 June 13, 2018 Time: 16:59 # 4

Kieft et al. ‘Omics of Estuarine Microorganisms

unique plus one shared peptide, or two unique peptides – was
used to determine confident protein identifications, and a 1%
FDR at the peptide level was implemented as in (Bryson et al.,
2016). Normalized balanced spectral counts (NBSC) of peptides
for identified proteins were used as measures of protein relative
abundances across all samples (Supplementary Table S2). The
proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE (Vizcaíno et al., 2016) partner
repository with the dataset identifier PXD008093.

DNA Sequence Analyses
The relative abundances of KO, Pfam, and COG protein families
within each metagenome were approximated based on the
cumulative RPKG of all CDS assigned to a given protein family.
The relative abundance of COG categories was calculated by
summing RPKG for all CDS assigned to COG numbers in each
COG category.

To infer carbon and nitrogen cycling potential of each
microbial community, relative abundances of metabolic marker
genes (KO numbers) defined in previous studies (Lauro et al.,
2011; Llorens-Marès et al., 2015; Vavourakis et al., 2016) were
calculated using marker KO RPKG ratios. A total of 40 marker
genes were used in the analysis, representing 10 microbe-
mediated elemental cycling reactions (Supplementary Table S3).
Metabolic potential for each metagenome was calculated as in
(Lauro et al., 2011) and averaged across replicates. The relative
abundance of proteins (in NBSC) encoded by marker KO genes
were similarly analyzed. Statistically significant differences in
the relative abundances of element cycling processes between
habitats were assessed using ANOVA with the Tukey–Kramer
post hoc test and Benjamin-Hochberg FDR controlled at 5% using
the “STAMP” software package (Parks et al., 2014).

OTU relative abundances based on 16S amplicon sequencing
data were summed at Order-level taxonomic groupings for
community diversity analyses. Biplots of principal component
analyses (PCA) examining the beta-diversity of communities
were produced using the “pca3d” library in R (Weiner, 2017).
Weighted Unifrac calculations, PCA, Mantel tests, Procrustes
analyses, and permutational ANOVA tests were performed in
R using the “vegan” package (Oksanen et al., 2017). Faith’s
(1992) phylogenetic alpha-diversity was calculated using the
“picante” package and significant differences between samples
were defined using pairwise Welch’s t-tests. R scripts and input
data for statistical calculations can be found in Supplementary
Table S2.

Significantly discriminating taxonomic and functional
features between communities were identified using the linear
discriminant analysis (LDA) method implemented in “LEfSe”
(Segata et al., 2011). “Enrichment” of a feature refers to one
with an LDA score >2.0 (log 10) using the strict all-against-all
multi-class analysis and a p < 0.05 cutoff for the among-
and between-class LEfSe tests. LEfSe, by default, performs
significance testing on normalized relative abundances. Thus,
a correction variable was added to input files when the feature
abundance was in RPKG, which is based on a unique genome
equivalent metric calculated for each sample (Nayfach, personal
communication).

Positive Selection Detection on Groups
of Orthologous Proteins
ProteinOrtho was used to predict orthologous protein groups
(OGs) shared between populations (Lechner et al., 2011).
OGs were scanned for evidence of horizontal transfer using
GENECONV, and those with significant hits were not considered
in further analyses (Sawyer, 1989; Posada and Crandall, 2001).
The “ETE3” toolkit (Huerta-Cepas et al., 2016) was used to
discover evidence of positive selection on OGs using Codeml
and PAML. Clustal Omega with trimAL and RaxML were
implemented for multiple codon sequence alignments and tree-
building, respectively (Sievers et al., 2011; Stamatakis, 2014).
Trees were visualized with the Interactive Tree of Life server
(Letunic and Bork, 2016).

Models M1 vs. M2, M7 vs. M8, and M8 vs. M8a were used
as sets of null and alternative models, respectively, for defining
a threshold of significance for positive selection (Yang et al.,
2000). A significant difference in dN/dS ratio (omega) based on
likelihood ratio tests (LRT) of model outcomes with the BEB
posterior probability method was used to infer the best model fit
for a given OG alignment (Yang et al., 2005). LRT p-values from
all tests were corrected by controlling at a FDR of 5%. If an OG
had a corrected q-value< 0.05 under any of the three models, this
gene group was considered to be under putative positive selection
(e.g., as in Tang and Zhang, 2007).

RESULTS

Community Taxonomic Structure and
Diversity
Amplicon sequencing of 16S v4 loci and clustering at 97%
identity yielded 6,792 OTUs from ∼240,000 total paired-end
reads (>17,000 paired-end reads per replicate) across all four
sampled habitat communities (Supplementary Table S4). The
OTU-level Unifrac distance matrix and Order-level Euclidean
distance matrix calculated from OTU counts yielded highly
similar community beta-diversity patterns (Mantel’s test, Pearson
r = 0.962, p < 0.001), and PCA likewise resulted in similar
data shape between these two metrics (Procrustes symmetric
correlation = 0.982, p < 0.001). Therefore, community structure
analysis was conducted using Euclidean PCA and biplotting of
Order-level taxa relative abundances across samples to determine
which groups most strongly drove differences in community
structure (Figure 1). PCA indicated that 23.4% of community
structure variance was explained by sampling location and 20.1%
by lifestyle (Figure 1). However, only location significantly
differentiated overall sample grouping, while lifestyle did not
(Permutational ANOVA, perms = 999; df = 11; location:
p = 0.002, R2 = 0.54; lifestyle: p = 0.14, R2 = 0.85). In
contrast, community alpha-diversity was not different between
the upper and lower estuary communities (p = 0.45). Rather,
communities in the particle-associated lifestyle were significantly
more diverse than their free-living counterparts both overall
(t-test, p < 0.0001), and within each location (each p < 0.01;
Supplementary Figure S3).
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FIGURE 1 | Euclidean distance PCA with feature biplots of taxonomic community structure. Plotted data are relative abundance of 16S OTUs grouped at Order-level
taxa. Sample triplicates per habitat (points) are plotted alongside a set of the most important Orders driving sample separation (vectors). Arrow direction and
magnitude represent both the covariance between features (Orders) and their effect on PC loadings. Ellipses represent 95% confidence intervals for centroid
positions. FL, free-living; PA, particle-attached.

Population-Level Habitat Preferences
Of the 6,792 OTUs recovered, 157 (2.3%) were overrepresented
in one of the four estuary habitats based on significant relative
abundance changes across samples using linear discriminant
analysis (LDA score >2). Despite being a minor subset of
all OTUs, these populations represented 75.5% of all sampled
16S reads, indicating that relatively high-abundance populations
exhibited habitat preference (Supplementary Table S5).

The three most abundant Orders in all samples were
Pelagibacterales, Flavobacteriales, and Rhodobacterales,
collectively representing 39–54% of total 16S reads
(Supplementary Figure S4). The relative habitat preferences
of several populations in these three lineages influenced
divergent habitat taxonomic structures (Figure 1). For example,
the SAR11 clade member HTCC1062 (Pelagibacterales) was
cumulatively the most abundant Yaquina Bay organism (OTUs 1,
14, 55) and exhibited clear habitat preference for the free-living
fraction of the marine-influenced lower estuary (each OTU LDA
score >3.2; Supplementary Table S5). In the Flavobacteriales
and Rhodobacterales lineages, notable populations with
significant habitat preference included a Cellulophaga (OTU 2;
Flavobacteriales) in the free-living lifestyle of the upper estuary
(LDA = 4.8) and a Thalassobius (OTU 4; Rhodobacterales) in the
particulate-associated lifestyle of the upper estuary (LDA = 4.5).

An archaeal population of Nitrosopumilales (OTU 30), which
represented >98% of estuary Thaumarchaeota, was strongly
associated with the free-living fraction of the lower estuary

(LDA score = 3.6), causing this group to be as influential as
Pelagibacterales in driving unique taxonomic structure of the
habitat despite its lower relative abundance (Figure 1). Likewise,
OTUs belonging to lineages that typically inhabit anaerobic
or microaerophilic environments (e.g., Desulfovibrionales) were
relatively rare community members (cumulatively 0.5–2.5%;
Supplementary Figure S5), but their enrichment in the particle-
associated habitats drove distinct alpha-diversity (Supplementary
Figure S4) and beta-diversity structure (Figure 1) of this lifestyle
in each estuary location.

Community Functional Structure
Assembly of ∼62 Gbp shotgun metagenome DNA sequence
yielded ∼1 M contigs (1.8 Gbp) and ∼2.5 M predicted CDS across
all four sampled habitats (Supplementary Table S4). Between
71 and 78% of CDS were assigned to a taxonomic group and
between 32 and 58% were annotated to COG, KEGG, or Pfam
protein families. Functional structure based on KEGG-annotated
CDS relative abundance was significantly correlated to taxonomic
structure inferred from 16S analyses (Mantel’s test, Pearson
r = 0.832; p < 0.0001), leading to the similar ordination pattern
(Figures 1, 2).

Of the 4,764 KEGG protein families identified across all
metagenomes, 432 (9.1%) were biased in their distribution
between samples (Supplementary Table S6). Several functional
pathways showed clear patterns of habitat enrichment
based on the distribution of KEGG families (Figure 2 and
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FIGURE 2 | Euclidean distance PCA of functional community structure. Plotted data are KO RPKG relative abundance across samples based on metagenome CDS
annotation. Ellipses represent 95% confidence intervals for centroid positions. FL, free-living; PA, particle-attached.

Supplementary Figure S6), including photosynthesis in the
particulate-associated fractions (Supplementary Figure S6A),
ABC transport in the free-living fractions, flagellar motility
in the upper estuary (Supplementary Figure S6C), TCA
cycle and glycolysis in the lower estuary (Supplementary
Figures S6D,E), and ribosomal and transcription in the upper
estuary (Supplementary Figures S6F,G).

Community Carbon and Nitrogen Cycling
Capacities
Out of 40 marker genes for 13 biogeochemical flux processes,
31 genes and 10 processes were identified in our metagenome
assemblies (Supplementary Table S3). Most missing genes were
involved in processes not expected to occur at detectable levels in
aerobic estuarine surface water (anammox and methanogenesis).
Of the 31 metagenome-encoded marker genes, 21 proteins
were identified in metaproteomes (Supplementary Table S3).
The relative abundance of marker genes and marker proteins
within each habitat were correlated, indicating that the gene
abundance for C- and N-cycling processes was generally a
useful indicator of protein abundance within our samples
(Figure 3).

As expected, the encoded genetic capacity (metagenome)
for aerobic C respiration is likely the dominant pathway of
estuary C flux and was equal across all habitats (FDR-corrected
ANOVA, q = 0.18; Figure 3A). Aerobic C fixation potential,
on the other hand, was significantly higher in the particle-
associated fractions of both locations, and marker gene relative
abundance for anaerobic C fixation and fermentation were
overrepresented in particle-attached community of the lower
estuary (Figure 3A). Notably, carbon monoxide (CO) oxidation
genes were highly enriched in upper estuary samples, and over

68% of CO oxidation capacity was annotated to the Roseobacter
clade (e.g., Roseovarius, Ruegeria).

With regard to N-cycling processes, the encoded capacity
for N assimilation is likely the dominant pathway of estuary N
flux and was equal across all habitats (FDR-corrected ANOVA,
q = 0.13; Figure 3B). Importantly, though, encoded community
capacity for N mineralization appeared to be highest in the
particle-attached lifestyles in each location. Marker gene and
marker protein relative abundances suggested enrichment in
ammonification and denitrification potential in the marine-
influenced lower estuary, particularly in the particle-associated
communities (Figure 3B). On the other hand, marker gene
abundance for N fixation was significantly enriched in the upper
estuary, though detected proteins did not show this trend.

A comparison of the taxonomic distribution of 16S rRNA
reads, metagenome CDS, and the N or C marker genes showed
that many taxa appear to contribute disproportionately to
community biogeochemical cycling capacity compared to their
relative abundance in the community (Supplementary Figure S7).
These taxa and processes included ammonification in Epsilon-
proteobacteria (ammonification: 85%, 16S: 0.4%), fermentation
in Aquificae and Planctomycetia (fermentation: 63%, 16S: 0.02%;
fermentation: 9%, 16S: 0.7%), N fixation in Alpha-proteobacteria
(N fixation: 81.3%, 16S: 15.3%), and aerobic C fixation in
Eukaryota (C fixation: 10%, 16S: 1.4%).

Population-Level Life-Strategies
Flavobacteriales and Rhodobacterales were ubiquitous, though
unevenly distributed (Figure 1), across all samples; their
combined pangenome (>450,000 CDS) and panproteome
(>4,500 proteins) represented 24.7 and 31.4% of total sampled
genes and proteins, respectively (Figure 4). Fifteen well-curated
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FIGURE 3 | Major processes within the (A) C- or (B) N-cycles and relative abundance of biological marker genes that catalyze fluxes. Arrow sizes show relative
abundance of total marker gene RPKG for each process. Bar plots show marker genes (left-axis) and lines plots show marker proteins (right-axis). Dotted arrows
represent a process with no recovered marker genes or proteins. Axis labels and scales are equivalent for all plots and only drawn on one plot for clarity. Significantly
non-equal potential across habitats was determined with a FDR-corrected ANOVA: q < 0.05). Error bars represent standard error of the mean for each set of
replicate samples. MP, metaproteome; MG, metagenome in ANOVA results.

population Flavobacteriales and Rhodobacterales genomes were
defined from the metagenome contig binning and curation
process, while bins from the other relatively abundant taxon,
Pelagibacterales, could not be easily resolved (data not shown).
This was reflected in 16S v4 diversity; of OTUs over 0.1%
relative abundance, three were in Pelagibacterales, while 18 were
Flavobacteriales and 10 were Rhodobacterales. The robust dataset
of genes, proteins, and curated genomes made Flavobacteriales
and Rhodobacterales lineages good candidates to test whether co-
dominance across the estuary was corollary to divergent strategies
for growth and resource acquisition, which is a hypothesis that
has been explored for co-dominant microbial populations in
other ecosystems (e.g., Violle et al., 2011).

While the Flavobacteriales and Rhodobacterales pangenomes,
as determined by the relative abundance of all metagenome CDS
annotated to each group, were correlated at the conservative
functional classification level of COG category (Pearson’s
ρ = 0.81), their panproteomes, as determined by the relative
abundance of all proteins annotated to each group, were weakly
correlated at this broad resolution (ρ = −0.07), indicating that
proteins of different functions were being expressed by each
group during sampling (Figure 4).

The panproteome of Rhodobacterales populations was
relatively enriched for metabolism functions, with over 50%
of proteins annotated to amino acid (E), carbohydrate (G),
nucleotide (F), and secondary metabolite (Q) transport
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FIGURE 4 | Comparison of (A) pangenome and (B) panproteome content of
Rhodobacterales (Rb) and Flavobacteriales (Fb). Plots show cumulative
relative abundance of lineage-specific (A) CDS and (B) proteins annotated to
COG numbers and grouped at COG category level (represented by letters as
points on each plot). Input and results of correlation analysis from genomic
and proteomic data are shown above each plot. The inset in (B) is an
expansion of the origin region (0–0.02 on x-axis and 0–0.015 on the y-axis).
COG categories are colored according to their classification: blue, information
storage and processing; green, metabolism; red, cellular processes and
signaling; black, unclassified. Dotted lines indicate a 1:1 relationship. COG
categories shown but not labeled are: D, cell cycle control, cell division,
chromosome partitioning; M, cell wall/membrane/envelope biogenesis; N, cell
motility; O, post-translational modification, protein turnover, and chaperones;
T, signal transduction mechanisms; U, intracellular trafficking, secretion, and
vesicular transport; V, defense mechanisms; B, chromatin structure and
dynamics; L, replication, recombination and repair; C, energy production and
conversion; F, nucleotide transport and metabolism; I, lipid transport and
metabolism; R, general function prediction only; S, function unknown.

and metabolism COG categories (Figure 4). In contrast,
Flavobacteriales populations devoted just 6.8% of proteins

to these four COG categories and were instead enriched in
translation (J, 27.4%) and transcription (K, 16.7%) functions
relative to Rhodobacterales (7.4 and 2.1%, respectively).
Flavobacteriales inorganic ion transport and metabolism
proteins was also highly disproportionate (P, 27.0%) relative to
Rhodobacterales (3.1%), though the majority of these proteins
(>93%, predominately SusC and SusD) are involved in the
Bacteroidetes starch utilization system (Reintjes et al., 2017).

Evolutionary Pressure on Life-Strategies
The 10 Flavobacteriales and five Rhodobacterales population
genomes recovered by metagenome contig binning had an
average completeness of 93.84% and an average contamination
of 2.68% (Supplementary Table S7). In total, 73 and 138
single-copy, orthologous gene groups (OGs) were shared in the
Flavobacteriales and Rhodobacterales populations, respectively.
A concatenated amino acid alignment of these OGs was used
to estimate the phylogenetic relationship between populations in
each lineage (Supplementary Figure S8), and positive selection on
OGs was determined based on the classic dN/dS substitution ratio
(Yang et al., 2000). Positive selection was observed in seven (9.6%)
Flavobacteriales and 10 (7.2%) Rhodobacterales OGs (Table 1).
Model statistics are reported in Supplementary Tables S8, S9.
Similar rates have been reported in other non-pathogenic, or
host-dependent, microbial populations (e.g., 4.5% in Nandi et al.,
2010; 9% in Bulgarelli et al., 2015).

In Rhodobacterales, over half of genes under selection were
related to resource transport and metabolism (Table 1). The
positively selected genes glnG, mgtE, phoU, and aapM code
for proteins that regulate or directly facilitate the import and
utilization of metabolic substrates. In addition, gene sequences
of the metabolic enzymes chlN and argF, as well as a predicted
sulfurtransferase, thioesterase, and amidase, each were under
positive selection.

In contrast, positively selected genes in the Flavobacteriales
were typically assigned to cell growth, repair, and replication
functions (Table 1). A histidyl-tRNA synthetase gene (hisS),
a DNA replication and repair gene (recR), and two outer-
membrane biogenesis and protein folding chaperones (hlpA and
ftsI) were each under positive selection. The positively selected
gene purB encodes the enzyme adenylosuccinate synthetase,
which is involved in purine nucleotide biosynthesis during
cellular replication and division.

DISCUSSION

The taxonomic structure of estuarine bacterioplankton
communities is known to vary across salinity gradients (e.g.,
Crump et al., 1999; Smith et al., 2013) and between particle-
attached and free-living fractions (e.g., D’Ambrosio et al., 2014;
Zhang et al., 2016), but little is known about the physiological
capabilities that results from this variability. Our study expands
on this previous work by quantifying the functional capabilities
and activities of taxa present under four distinct spatially
separated and size-fractioned habitat conditions in the Yaquina
Bay estuary.
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TABLE 1 | Genes in the Rhodobacterales and Flavobacteriales lineages that are under putative positive selection.

OG p-value q-value COG Gene description COG category COG category description

Rhodobacterales

469 0.00000 0.00000 COG2710 chlN [EC:1.3.7.7] C Energy production and conversion

566 0.00000 0.00000 COG0078 argF [EC:2.1.3.3] E Amino acid metabolism and transport

623 0.00060 0.01385 COG0765 aapM E Amino acid metabolism and transport

29 0.00103 0.01765 COG2379 gckA [EC:2.7.1.165] G Carbohydrate metabolism and transport

113 0.00115 0.01765 COG2239 mgtE P Inorganic ion transport and metabolism

859 0.00172 0.02372 COG0704 phoU P Inorganic ion transport and metabolism

282 0.00007 0.00179 COG1054 - R General functional prediction only

313 0.00104 0.01765 COG0824 ybgC [EC:3.1.2.-] R General functional prediction only

647 0.00000 0.00000 COG2366 [EC:3.5.1.11] R General functional prediction only

633 0.00000 0.00000 COG2204 glnG T Signal transduction

Flavobacteriales

144 0.00214 0.02233 COG0074 sucD [EC:6.2.1.5] C Energy production and conversion

56 0.00007 0.00168 COG0015 purB [EC:4.3.2.2] F Nucleotide metabolism and transport

105 0.00037 0.00677 COG0124 hisS [EC:6.1.1.21] J Translation

123 0.00069 0.01007 COG0353 recR L Replication and repair

121 0.00000 0.00007 COG0768 ftsI [EC:3.4.16.4] M Cell wall/membrane/envelop biogenesis

81 0.00107 0.01299 COG2825 hlpA M Cell wall/membrane/envelop biogenesis

147 0.00000 0.00000 COG0386 gpx [EC:1.11.1.9] O Protein turnover, chaperones

OG, orthologous group, where the three-digit numbers represent clusters of orthologs predicted by ProteinOrtho. p-value, p-value from modeling. q-value, Benjamini–
Hochberg correction of p-values with FDR cut-off set at 0.05. In the COG category column, typefaces indicate the following classes: bold, metabolism; italic, cell
processing and signaling; underlined, information storage and processing; normal, poorly characterized.

Using amplicon sequencing of the v4 region of the 16S
gene, we determined that microbial community-level taxonomic
structure in Yaquina Bay was distinct between the upper and
lower estuary margins and the free-living and particle-attached
lifestyles in each location. Ordinations of these patterns in
bacterial diversity based on 16S amplicon sequencing changed
little using OTU-level or Order-level annotations and were each
similar to taxonomic structure as determined by metagenome
CDS sequence annotation (Supplementary Figure S9). Overall,
we found patterns in the distributions of microbial populations
that were similar to those in other temperate estuaries (e.g.,
Bouvier and del Giorgio, 2002; Ortmann and Santos, 2016).

The Relative Abundance of Key
Taxonomic Groups Distinguished the
Four Sampled Habitats
Two highly abundant lineages, the Flavobacteriales and
Rhodobacterales, contained 11 and 19 OTU-level populations
that exhibited distinct habitat preferences. Both lineages had
multiple OTUs enriched in each of the four habitats, resulting
in no clear consensus of Order-level habitat preference.
However, their two most abundant populations, a Cellulophaga
(Flavobacteriales) and a Thalassobius (Rhodobacterales), were
each relatively enriched in the upper estuary, leading to the
significant influence of Flavobacteriales and Rhodobacterales in
driving upper estuary communities apart from those inhabiting
the lower estuary.

Pelagibacterales were also highly abundant in the estuary,
but unlike Flavobacteriales and Rhodobacterales, the three
Pelagibacterales OTUs exhibited strong habitat preferences, each

being highly enriched in the planktonic fraction of the marine-
influenced lower estuary margin and being most depleted in
the particle-associated lifestyle of the upper estuary. These
populations, which were all classified as SAR11 clade members,
were most closely related to coastal (Ortmann and Santos,
2016), rather than brackish ecotypes (Smith et al., 2013),
suggesting that they may have entered the estuary by tidal
intrusion. This distribution of Pelagibacterales is consistent with
the well-characterized planktonic lifestyle of SAR11 Subclade I
(Giovannoni et al., 1990) and with its observed decrease
in its relative abundance across another marine-estuary-river
continuum (Ortmann and Santos, 2016).

Nitrosopumilales enrichment in the marine-influenced
lower estuary (Hewson et al., 2014; Hugerth et al., 2015)
and Burkholderiales in the riverine-influenced upper estuary
(Bouvier and del Giorgio, 2002; Silveira et al., 2011) also
corroborate previous findings of microbial population habitat
range. Similarly, the high relative abundance of anaerobic
or microaerophilic populations on suspended particulates is
a common observation in estuarine environments (Crump
et al., 1999; Waidner and Kirchman, 2007; Zhang et al., 2016),
and may be the result of oxygen-depleted niches in particle
biofilms (Dang et al., 2011), or suspension of colonized grains
from the anoxic sediment by physical mixing (Crump and
Baross, 1996; Baker et al., 2015). The specialist populations in
particle-associated communities contributed to a significantly
higher phylogenetic and metabolic diversity in the community
associated with these samples, which is consistent with studies
of suspended particulate material in other aquatic ecosystems
(Smith et al., 2013; Dang and Lovell, 2015; Yung et al.,
2016).
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Overall, the results from community taxonomic structure
analyses substantiate those from previous studies showing that
both lateral gradients (Crump et al., 2004; Henriques et al.,
2004) and filtration fraction of the water-column (Crump et al.,
1999; Zhang et al., 2016) are significant predictors of microbial
community structure in estuaries.

Distinct Taxonomic Structure of
Communities in Each Habitat Was
Correlated With Distinct Functional
Structure
We hypothesized that the distinct community taxonomic
structure of each habitat would correspond to distinct functional
structure, leading to differences in the capacity of each
community to perform ecological processes such as carbon and
nitrogen turnover. If supported, this habitat-specific ecological
function may indicate how biogeochemical cycling in the
estuarine water-column is spatially organized and provide a more
complete understanding of how resources move through this
ecosystem. If no significant functional differences were evident
between habitats, it would suggest that communities encode
functional redundancy despite their distinct taxonomic structure,
leading to a uniform spatial distribution of biogeochemical
cycling capacity and a dissociation between microbial population
diversity and functional diversity (Allison and Martiny, 2008;
Delgado-Baquerizo et al., 2016).

To determine community functional structure, we sequenced
metagenomes of all samples and measured relative abundances
of protein-coding gene families. Community functional structure
was significantly correlated with taxonomic structure, leading to
similar ordination shapes of OTU and KEGG relative abundance
data. Lower estuary communities were enriched in central
carbon metabolism functions (i.e., glycolysis and TCA cycle),
while upper estuary communities were enriched in cell growth,
transcription, and translation genes (Supplementary Figure S6).
This result tracked with the distribution of microbial taxa with
different trophic strategies: genomes of copiotrophic populations,
such as those in the Rhodobacterales and Flavobacteriales
lineages that were enriched in the upper estuary, typically encode
relatively more transcriptional and ribosomal genes in their
larger genomes, whereas oligotrophs, such as Pelagibacterales
that were enriched in the lower estuary, often encode streamlined
genomes with higher proportions of genes involved in resource
transport and metabolism (Cottrell and Kirchman, 2016). Similar
observations have been made across physico-chemical gradients
in the brackish Baltic Sea, where key pathways and core metabolic
processes were organized spatially by salinity gradients (Dupont
et al., 2014).

Similarly, the relative enrichment of photosynthetic genes
in particle-associated communities was related to the increased
relative abundance of Cyanobacteria and chloroplast-like 16S
v4 rRNA sequences in this size-fraction. In contrast, ABC
transporters were overrepresented in free-living communities,
which may be related to the enrichment of planktonic
prokaryotes (e.g., SAR11, whose genome has a high density of
transporter functions) in this water-column filtration fraction.

Enrichment for flagellar motility genes in the upper estuary
differentiated the functional structure of communities in this
margin from those in the lower estuary, which again may reflect
the biased distribution of copiotrophic and oligotrophic lineages.
The single flagellar motility gene that was overrepresented in the
lower rather than upper estuary was an archaeal flagella subunit
(K07332). This was expected considering that all 7 archaeal
OTUs with significant habitat preferences were enriched in the
marine-influenced lower estuary margin (OTUs 6, 30, 35, 42, 78,
161, 256).

Communities Differed in Capacities for
Carbon and Nitrogen Transformation
Based on these significant biases in the distributions of microbial
community function across habitats, we hypothesized that
microbe-mediated biogeochemical flux would be habitat-specific,
leading to the spatial distribution of carbon- (C) and nitrogen-
(N) cycling processes in the estuary. To test this hypothesis, we
used metagenome and metaproteome data to estimate the relative
abundance of marker genes and proteins involved in central
C and N utilization pathways within each habitat community.
Relative abundance ratios of these 31 functional markers were
used to infer their capacity for catalyzing 10 major C- and
N-cycling processes.

Out of the 31 metagenome marker genes, we detected 21
marker proteins in our samples, reflecting the difficulty in
capturing total protein diversity from complex communities
and the low recovery of protein fragments such as membrane-
spanning domains (Williams and Cavicchioli, 2014). Regardless,
all 10 C- and N-cycling processes we examined were represented
by at least one marker protein, and the relative abundances of
marker proteins generally tracked those of the marker genes that
encoded them.

The two most abundant metabolic pathways, aerobic C
respiration and N assimilation, had equal capacity across
all habitat metagenomes and metaproteomes, suggesting that
differences in taxonomic composition did not affect the
capacity of the community to perform these functions. On
the other hand, the relative abundance of markers for
processes requiring specific environmental conditions was
not conserved across habitats. For example, denitrification
and fermentation genes and proteins were relatively more
abundant in the particle-associated communities, especially
in the lower estuary margin. The marker genes for these
processes were predominately annotated to facultative or strictly
anaerobic OTUs, which correspondingly were enriched in the
particle-attached communities of both the upper and lower
estuary, indicating that these metabolic specialists could be
biogeochemically important members of the particle-associated
communities (Jørgensen, 1977; Etcheber et al., 2007; Garnier
et al., 2010; Zhang et al., 2016).

The relative abundance of encoded marker genes and
expressed marker proteins for CO oxidation suggested that this
process has the potential to contribute significantly to the C
cycle of Yaquina Bay. CO oxidation capacity was highest in the
upper estuary communities, and the majority (68%) of marker
genes for this process were annotated to Roseobacter populations.
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Many OTUs in this clade were significantly enriched in the
upper estuary (e.g., OTU 15, Litoreibacter; OTU 4, Thalassobius),
and indeed Roseobacters have been proposed to be the major
drivers of biotic CO oxidation in coastal ecosystems (Moran et al.,
2004; Tolli et al., 2006). Estuarine CO is primarily produced
through the photolysis or oxidation of particulate matter (Miller
et al., 2002; Song et al., 2015), and the Yaquina Bay estuary and
Yaquina river are known to be supersaturated in CO throughout
the year (Butler et al., 1987). Thus, we hypothesize that a
steady supply of CO from decaying particulate organic matter
entering Yaquina Bay by riverine transport is consumed by
Roseobacters in the upper estuary. Given the relative magnitude
of this biogeochemical process based on marker gene and protein
abundance, CO oxidation may be a key characteristic of upper
estuary ecology, and changes in Roseobacter abundance or
CO production may significantly change the flux of C from
Yaquina Bay.

Unexpectedly, we did not detect KO marker genes for
nitrification (K10944, K10945, or K10946), despite finding
that the Nitrosopumilales lineage represented 0.6% of all 16S
amplicons. When considering sample metagenomes, however,
the relative abundance of genes annotated to these nitrifiers
was an order of magnitude lower than 16S relative abundance
(0.06%) and most recovered Nitrosopumilales genes were of
housekeeping or unknown function (data not shown). This result
indicates that the absence of nitrification markers in our samples
may have been due to under-sampling of the genetic diversity in
the system, rather true biological absence.

Importantly, our results highlight potential keystone
organisms in the microbial food webs of the estuary surface
water. For example, populations of Epsilon-proteobacteria
(predominately of Sulfurospirillum) represented an
ammonification marker gene abundance that was highly
disproportional to their relative community abundance.
Significant contribution to biogeochemical cycling by such
populations in low-abundance lineages has been supported by
studies examining rare biosphere activity (Campbell et al., 2011).

Microbial Populations Appear to Use
Varying Strategies to Succeed in the
Estuarine Environment
To understand what characteristics may be allowing
microorganisms to coexist across these four distinct
habitats, we examined the pangenome and panproteome
of the Flavobacteriales and Rhodobacterales lineages. The
co-dominance of these lineages is a common observation
in estuarine ecosystems (Dong et al., 2014; Colatriano
et al., 2015), and they have been shown in experimental
and observational studies to grow and acquire resources
using different strategies (Alonso-Sáez and Gasol, 2007;
Poretsky et al., 2010; Bryson et al., 2016, 2017). Thus, we
hypothesized that their ability to coexist across the estuary
may be due to the use of different strategies for growth
and reproduction (Hibbing et al., 2010). This hypothesis is
based on the phylogenetic limiting theory, which states that
when populations minimize their overlap in life-strategy,

deleterious interactions can be reduced between them, curtailing
forces such as competitive exclusion that drive species with
similar life-strategies out of a single habitat (Violle et al.,
2011).

Our results supported the divergence in life-strategies of
Flavobacteriales and Rhodobacterales, which we inferred based
on the significantly different types of proteins expressed by each
lineage at the time of sampling. Rhodobacterales populations
dedicated a relatively larger part of their proteome to metabolic
versatility and resource acquisition, while Flavobacteriales were
enriched in transcription/translation and specialized starch
transport functions. Similar patterns of protein-level expression
and de-novo protein production have been recorded previously
in these lineages using stable-isotope-probing experiments in
Monterey Bay, in which Rhodobacterales accounted for the
highest total amount of substrate assimilation (glucose, amino
acids, peptides), while Flavobacteriales bloomed under all
substrates but were significantly isotope-enriched only in a starch
treatment (Bryson et al., 2017).

Interestingly, the types of functions under positive
evolutionary selection in each lineage, which we determined
using high-quality population genomes acquired from
metagenome binning, appeared to be those that were
related their respective life-strategies. This suggests that
evolutionary selection may be a mechanism that maintains
lineage life-strategies over time (Violle et al., 2011),
allowing for the stable coexistence of Flavobacteriales and
Rhodobacterales across the habitats we sampled. Indeed, the
relationship between life-strategy and evolutionary selection
has been proposed to contribute significantly to present-
day observations of microbial function and community
assembly (Luo and Moran, 2015). However, because our
sampling was designed to focus on spatial rather than temporal
investigation, it will be necessary to verify our interpretations
over time (e.g., seasonal) or in other estuarine or coastal
ecosystems.

Taken together, results from the investigation of Order-level
pangenomes and panproteomes showed that the highly abundant
and co-occurring Flavobacteriales and Rhodobacterales lineages
were differentiated from one another not by broad functional
groups that were encoded at the genome level, but by
functions they expressed at the protein level. Results from the
examination of evolutionary selection on genes from highly
resolved, population-level genomes in each lineage showed that
positive selection on OGs encoded in Flavobacteriales and
Rhodobacterales appeared to be acting on gene sequences with
the types of functions that confer the life-strategy of both
groups (i.e., genes in Table 1 were biased toward growth and
replication functions for Flavobacteriales and metabolism-related
functions in Rhodobacterales). This is the first such example
of a connection between life-strategy and evolutionary selection
in estuarine microorganisms, though a link between functions
under positive selection and functions that are important in
defining the life-strategy of microbial populations has been
observed previously, including studies of deep sea bacteria
(Campanaro et al., 2008) and extremophilic archaea (Gunbin
et al., 2009).
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