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ABSTRACT

The ability of proteins to establish highly selective
interactions with a variety of (macro)molecular
partners is a crucial prerequisite to the realization
of their biological functions. The availability of com-
putational tools to evaluate the impact of mutations
on protein–protein binding can therefore be valuable
in a wide range of industrial and biomedical appli-
cations, and help rationalize the consequences of
non-synonymous single-nucleotide polymorphisms.
BeAtMuSiC (http://babylone.ulb.ac.be/beatmusic) is
a coarse-grained predictor of the changes in
binding free energy induced by point mutations. It
relies on a set of statistical potentials derived from
known protein structures, and combines the effect
of the mutation on the strength of the interactions at
the interface, and on the overall stability of the
complex. The BeAtMuSiC server requires as input
the structure of the protein–protein complex, and
gives the possibility to assess rapidly all possible
mutations in a protein chain or at the interface,
with predictive performances that are in line with
the best current methodologies.

INTRODUCTION

The formation of protein complexes plays an essential role
in the regulation of numerous biological processes. The
rational design or modification of the affinity and specifi-
city of protein–protein interactions is a challenging issue
that stimulated considerable efforts, as it presents
many promising applications, notably for therapeutical
purposes (1,2).

The characteristics of protein interfaces have been thor-
oughly investigated (3–10). Even if the diversity of binding
modes precludes the identification of a simple set of
general rules, a number of common features have been
underlined, such as the importance of hydrophobic
contacts and electrostatic interactions at the interface.
Importantly, it has also been shown that a small fraction

of the residues participating to the protein–protein inter-
face are generally responsible for most of the binding
affinity (11–13). These critical residues, commonly
referred to as ‘hotspots’, are usually defined as positions
where a mutation would cause an increase of the binding
free energy of at least 2.0 kcal/mol. Alanine scanning mu-
tagenesis has been widely used to experimentally charac-
terize protein–protein interfaces and identify these
hotspots, which constitute prime targets for the modula-
tion of protein–protein interactions (14,15).
Considerable attention has been devoted to the devel-

opment of computational methods for the identification of
hotspot residues in protein–protein interfaces (16–29).
Most rely on a machine learning technique to integrate a
variety of features characterizing each residue and its en-
vironment. These features typically include information
about sequence conservation, as well as physicochemical
(e.g. residue hydrophobicity, electrostatic charge), struc-
tural (e.g. solvent accessibility, number of contacts, sec-
ondary structure), or energetic parameters. Although
knowledge of the structure of the complex is generally
required, methods have also been implemented to
predict the localization of hotspots directly from the
sequence (18), or from docking simulations (22).
Besides the binary classification of hotspot residues, a

more general challenge consists in the estimation of the
impact of mutations on the free energy of binding.
Molecular mechanics combined to continuum solvent
models, MM-PBSA or MM-GBSA (MM: molecular
mechanics, PB: Poisson-Boltzmann, GB: generalized
Born, SA: surface area), have been exploited for that
purpose (30–33). Less computationally intensive app-
roaches, based on empirical energy functions coupled
with a somewhat simplified representation, have also
been described (34–37). With a few exceptions (34,37),
these methods have so far been mainly focused on
evaluating the effects of mutations into alanine, but not
into other types of amino acids.
We present here a webserver for the prediction of

changes in protein–protein binding affinity on mutations.
BeAtMuSiC is based on a set of statistical potentials
adapted to a coarse-grained representation of protein
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structures, which allows the fast assessment of all possible
mutations in the protein complex. Originally parametrized
on the basis of a data set of mutations into alanine (38),
our approach is here validated on a much larger data set
including mutations into any kind of amino acid (39).
In addition, our method stood among the top performers
during the 26th round of the blind prediction experiment
Critical Assessment of PRedicted Interactions (CAPRI)
(40), which consisted in the evaluation of �2000
mutations in two designed inhibitors of influenza
hemagglutinin.

METHODOLOGY

Binding models

Two different binding models are considered (38). In the
first model, both partners of the interaction are assumed
to be able to fold independently of each other. The change
in binding free energy (��GB 0) resulting from a mutation
is then expressed as follows:

��GB0 ¼ ��GC � ð��GP1
+��GP2

Þ ð1Þ

where ��G ¼ �Gmutant ��Gwildtype, �GP1
and �GP2

are
the respective folding free energies of the two partners,
and �GC is the folding free energy of the complex as a
whole (Figure 1). In the second model, the partners are
unable to fold independently, and the change in binding
free energy on mutation is thus given by

��GB00 ¼ ��GC ð2Þ

Change in folding free energy on mutation

��GB0 and ��GB00 can be obtained from the estimation
of the impact of the mutation on the folding free energy of
the partners (��GP1

and ��GP2
) and of the complex

(��GC). These contributions are computed as follows:

��G ¼
X13

i¼1

�iðAÞ��Wi

+�14ðAÞ�V++�15ðAÞ�V�+�16ðAÞ

ð3Þ

where ��Wi corresponds to the energetic change induced
by the mutation, according to 1 of 13 different statistical
potentials extracted from a data set of known protein
structures (41). These potentials describe the correlations
between amino acid types, pairwise inter-residue distances,
backbone torsion angles and solvent accessibilities. The
inter-residue distances are evaluated from the coordinates
of the average geometric centers of the side chains. In
addition, the terms �V+ and �V� were introduced to
account for the possible creation of packing defects:
�V� ¼ ðVm � VwÞH½�ðVm � VwÞ�, where H is the
Heaviside function, and Vw and Vm the volume of
the wild-type and mutant amino acid, respectively. The
weights �iðAÞ (i ¼ 1, . . . ,16) are sigmoid functions of the
solvent accessibility A of the mutated residue, and were
identified on the basis of a data set of experimentally
measured changes in folding free energy resulting from
2648 mutations (42).

Change in binding free energy on mutation

Although the behavior of many interacting proteins is
probably better described by the first binding model
[Equation (1)], numerous examples of natively unfolded
proteins—or protein regions—that fold only on binding
have also been reported (43). In addition, even if the two
partners adopt well-defined structures individually, their
interaction may in some cases induce extensive conform-
ational rearrangements. Given the limited amount of
currently available experimental mutagenesis data, it is,
however, difficult to build prediction tools that account
for the singular properties of each protein–protein inter-
action. The predictions of BeAtMuSiC are thus based on
the assumption of an intermediate situation, and the
change in binding affinity on mutation is obtained by
combining the output of the two binding models:

��GB ¼ vðw��GB0+ð1� wÞ��GB00 Þ ð4Þ

where v and w are adjustable parameters set to 1.25 and
0.7, respectively, after optimization on a data set of 362
mutations into alanine (35,38). The Pearson correlation
coefficient between measured and predicted ��GB

values reached 0.55 on the full data set and 0.76 on 90%
of the data set (Table 1).

Because conformational rearrangements on binding are
not explicitly modeled, ��GC and ð��GP1

+��GP2
Þ are

rigorously equal for mutations outside of the interface
region. ��GB0 is thus focused on the impact of the
mutation on the interactions established at the interface
[Equation (1)], whereas ��GB00 describes the effect of the

Figure 1. Schematic representation of the binding and folding free
energies. �GP1

and �GP2
are the folding free energies of the two

partners of the interaction. �GC is the folding free energy of the
complex as a whole. In the first binding model, the complex is
formed from the association of two individually folded partners, and
the binding free energy is �GB0 . In the second binding model, the
proteins are unable to fold independently, and the binding free
energy (�GB0 0 ) is thus equal to the folding free energy of the complex
(�GC). The figure was made using PyMOL.
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mutation on the overall stability of the complex [Equation
(2)]. Interestingly, if we consider the subset of 216 muta-
tions into alanine that occur at the protein–protein inter-
face, the optimal value of w remains close to 0.7.
Accounting for the variation in stability is thus important
for the evaluation of the change in binding affinity, even in
the case of mutations occurring at the interface.

VALIDATION

SKEMPI data set

We applied our prediction method to a recently published
data set, named SKEMPI, in which the experimentally
measured effects of mutations on protein–protein
binding affinity were compiled (39). This data set is not
limited to the results of alanine scanning experiments, and
thus includes mutations in any type of amino acid. Out of
the 3047 entries in the original data set, we removed 717
multiple mutations, 87 reverse mutations (i.e. from the
mutant protein back to the wild type) and 236 redundant
entries (i.e. when several experimental values of ��GB are
available for the same mutation in the same protein). In
case of redundant entries, the average value of the change
in binding free energy was used. The final data set contains
2007 mutations, with ��GB values ranging from �3.8 to
12.3 kcal/mol. These values are compared with the predic-
tions of BeAtMuSiC on Figure 2.

Strikingly, significant errors in the predictions are
observed for a set of 16 mutations of the lysine residue
in position 15 of the bovine pancreatic trypsin inhibitor
(BPTI), in complex with bovine b-trypsin (BT). Although
these mutations severely disrupt the protein–protein inter-
action, they are predicted to increase or mildly decrease
binding affinity (Figure 2). The interaction between BPTI
and BT relies mainly on a single residue, Lys 15, which
gets inserted into a small cavity on the surface of the
protease (Figure 3). The binding affinity is largely
determined by the shape complementary of the lysine
side-chain and the surface of the cavity, and the highly
specific interactions that are created (44). It is not
surprising that our coarse-grained approach may some-
times fail to provide an accurate description of the conse-
quences of mutations in such an extreme situation,
especially because no modeling and optimization of the
conformations of side-chains are performed.

If we discount these 16 mutations, the performances are
relatively similar—although somewhat lower—than those
observed in the data set of mutations into alanine used to
devise our method. The Pearson correlation coefficient
between prediction and experiments reaches 0.47 on the
full data set and 0.70 on 90% of the data set (Table 1).
Note that the 362 mutations into alanine used to identify
two parameters of the model are also included in the
SKEMPI data set. However, the performances are not
affected by the removal of these mutations (correlation
coefficient of 0.48 instead of 0.47).

CAPRI experiment

The 26th round of the blind prediction experiment CAPRI
(40) was the opportunity to assess the performances of our

Figure 3. Structure of the complex formed by BPTI (yellow)
and bovine BT (blue) (PDB: 2FTL). The lysine residue in
position 15 of BPTI is depicted in magenta. The figure was made
using PyMOL.
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Figure 2. Correlation between predicted and measured changes in
binding free energies in the SKEMPI data set. (Black circle) Main
data set. (Blue cross) 10% outliers. (Red triangle) Mutations of the
lysine at position I15 in the BPTI–BT complex (PDB: 2FTL).

Table 1. BeAtMuSiC performances

Data set Nmut All mutations Exclusion of 10%
outliers

R s (kcal/mol) R s (kcal/mol)

Ala scans 362 0.55 1.01 0.76 0.72
SKEMPI 2007 0.40 1.80 0.68 1.19
SKEMPIa 1991 0.47 1.59 0.70 1.18

Nmut is the number of mutations in the considered data set. R is the
Pearson correlation coefficient and s the root mean square error,
between predicted and measured ��GB values. aThis data set was
obtained after removal of 16 mutations of the Lysine residue at
position I15 in the BPTI–BT complex (PDB: 2FTL).
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method, in comparison with various approaches de-
veloped by other groups. The challenge consisted in the
evaluation of the effect of a large number of single-site
mutations in two de novo designed influenza inhibitors,
HB36.4 and HB80.3 (45), on the binding affinity with
their target, hemagglutinin. More precisely, predictions
were requested for 1007 mutations at 53 positions in the
sequence of HB36.4 (target 55), and 855 mutations at 45
positions in the sequence of HB80.3 (target 56).
Out of the 22 participating groups, 18 and 15 submitted

predictions for the complete set of mutations in HB36.4
and HB80.3, respectively. The predictions were compared
with previously unreleased experimental data concerning
the effect of these mutations on the binding properties of
the two inhibitors. This data was obtained using deep
sequencing of mutant libraries before and after selection
for binding (46). Kendall’s t rank correlation coefficient
between the predictions of the different groups and the
experimental measurements is reported in Figure 4.
The comparison of the results for the two target

proteins underlines the difficulty in establishing consist-
ently a detailed ranking of the different approaches. Yet,
in both cases, our method stands among the top per-
formers, indicating that the predictive power of
BeAtMuSiC is in line with the most efficient state-of-
the-art methodologies. The average performance of our
method on the two CAPRI targets is somewhat lower
than on the other data sets: Kendall’s t reaches 0.36 for
the 362 mutations into alanine and 0.29 for the 1991 mu-
tations of the SKEMPI data set. This may be due to the
fact that the experimental data used during the CAPRI
experiment does not consist in direct measurements of the
changes in binding affinity, and that other sources of error
may therefore be present.

WEBSERVER

Server input

The main input of the webserver is the structure of the
protein–protein complex, in PDB format. The user may
either upload his own structure file, or provide the 4-letter
PDB code of the structure, which will then be automatic-
ally downloaded from the Protein Data Bank (47).
Once the structure has been correctly retrieved, the

server will display a summary of the protein chains
present in the structure file. The second step consists in
the definition of the two partners of the protein–protein
interaction. Each chain must be assigned to either the first
or second partner, or discarded. Obviously, for the server
to provide meaningful predictions, each partner must
contain at least one protein chain, and the two partners
must be in contact.
The user may then choose to evaluate the effect a few

specific mutations, or to perform a systematic scan of all
possible mutations in a protein chain or at the protein–
protein interface. If several protein chains of identical
sequence are present, the mutations will be introduced
simultaneously in all of them.

Server output

The main output of the webserver is the change in
binding free energy resulting from each mutation.
Users should be aware that when several chains of iden-
tical sequence are present, the mutation is introduced
simultaneously in each one of those. In such cases, the
predictions are not normalized with respect to the
number of chains concerned by the mutation, and
the reported ��GB value corresponds thus to the
total change in binding free energy between the two
selected partners.

The webserver also reports the solvent accessibility of
the mutated residue, in the complex and in the individual
partners. The solvent accessibility is defined as the ratio
of the solvent-accessible surface in the considered struc-
ture, as computed by DSSP (48), and in an extended
tripeptide Gly-X-Gly (49). BeAtMuSiC identifies a
residue as part of the protein–protein interface if its
solvent accessibility in the complex is at least 5% lower
that in the individual partner. This latter information is
provided to the user for convenience, but not used during
the computations.

The results may be downloaded as a plain text file, or
browsed interactively on the Web site (Figure 5). In par-
ticular, if systematic mutations have been performed, the
user may choose to display the predictions for mutations
at a given position in the sequence, or for mutations with
the strongest predicted increase or decrease in binding
affinity.
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Figure 4. Kendall’s t rank correlation coefficient between predic-
tions and experiments, during the 26th round of the CAPRI experiment
(http://www.ebi.ac.uk/msd-srv/capri/round26). The results of our
method are depicted in black, and those of other participating
methods in gray. Groups that did not submit predictions for
the complete set of mutations are not considered here. The symbol
‘X’ is used when a group submitted a full set of predictions for one
target but not for the other. (a) Target 55: hemagglutinin-HB36.4.
(b) Target 56: hemagglutinin-HB80.3. A detailed analysis of the
results of this experiment, along with a description of the different
prediction methods, will be reported elsewhere (Moretti et al., manu-
script submitted).
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DISCUSSION

The prediction of the impact of a mutation on protein–
protein binding affinity is more challenging than the pre-
diction of the change in folding free energy. For instance,
the method that we previously developed for the latter
purpose, on the basis of a model with the same level of
coarse-graining, yielded a Pearson correlation coefficient
between prediction and experiments of 0.63 on a data set
of 2648 mutations, and 0.79 on 90% of the data set
(42,50).

In both cases, the accuracy of the predictions ultimately
hinges on the quality of the energy function. However,
because coarse-grained models do not describe explicitly
all of the structural and energetic consequences of a
mutation, a number of new obstacles arise when the
question of protein–protein binding is considered.
Firstly, evaluating mutations occurring outside of the
interface region can be challenging, as their impact on
binding may be related to an effect on the overall stability
of the complex, to an alteration of the dynamical
properties and flexibility of one of the interacting
partners, or to conformational changes affecting the
shape complementarity of the two partners. On the
other hand, protein–protein interfaces have been shown
to possess distinctive properties from core or surface
regions (3–10), and the highly specific nature of many
interactions established at those interfaces may be difficult
to render accurately without modeling side-chain con-
formations at atomic resolution. Finally, further investi-
gations would be needed to evaluate whether a single
coarse-grained model is sufficient to encompass the large
variety of binding modes that characterize protein–protein

interactions (individually folded or unfolded partners,
transient or permanent interfaces, occurrence of structural
rearrangements on binding, etc).
Although these considerations suggest that there is still

room for improvement, the results of the 26th round of the
CAPRI experiment demonstrated that the predictive
power of our method compares well with that of other
approaches developed for the same purpose, including
predictive models based on a much more detailed struc-
tural representation. In addition, the coarse-grained
nature of our method provides unique advantages in
terms of computational speed, with the possibility to
assess rapidly the impact of all possible mutations in a
protein chain or at the protein–protein interface. The
coarse-graining also ensures that the predictions are
robust to imperfections in the structural data. Therefore,
a similar level of performance should be expected when
using structural models rather than experimentally
determined structures (51), provided the relative position-
ing of the two partners of the interaction is correctly
defined.
The BeAtMuSiC server should thus prove useful in a

wide range of applications. Typically, protein engineering
projects aiming at the design or modification of protein–
protein interactions would benefit from the possibility to
identify a restricted number of mutations that would con-
stitute ideal candidates for further investigations using
more detailed computational approaches and/or experi-
mental tests. Given the importance of binding for the
proper biological functioning of many proteins,
BeAtMuSiC may also participate to a better understand-
ing of the pathological consequences of some non-
synonymous single-nucleotide polymorphisms.

Figure 5. Example output of the BeAtMuSiC server.
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