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The depressor response to
intracerebroventricular hypotonic
saline is sensitive to TRPV4
antagonist RN1734
Claire H. Feetham, Nicolas Nunn and Richard Barrett-Jolley*

Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK

Several reports have shown that the periventricular region of the brain, including the
paraventricular nucleus (PVN), is critical to sensing and responding to changes in
plasma osmolality. Further studies also implicate the transient receptor potential ion
channel, type V4 (TRPV4) channel in this homeostatic behavior. In previous work we
have shown that TRPV4 ion channels couple to calcium-activated potassium channels in
the PVN to decrease action potential firing frequency in response to hypotonicity. In the
present study we investigated whether, similarly, intracerebroventricular (ICV) application
of hypotonic solutions modulated cardiovascular parameters, and if so whether this
was sensitive to a TRPV4 channel inhibitor. We found that ICV injection of 270 mOsmol
artificial cerebrospinal fluid (ACSF) decreased mean blood pressure, but not heart rate,
compared to naïve mice or mice injected with 300 mOsmol ACSF. This effect was
abolished by treatment with the TRPV4 inhibitor RN1734. These data suggest that
periventricular targets within the brain are capable of generating depressor action in
response to TRPV4 ion channel activation. Potentially, in the future, the TRPV4 channel,
or the TRPV4–KCa coupling mechanism, may serve as a therapeutic target for treatment
of cardiovascular disease.
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Introduction

Body fluid osmolality is usually regulated within an extremely narrow range (∼290–300 mOsmol;
Bourque, 2008). This is largely maintained through regulation of renal function, but control areas
exist within the central nervous system (CNS). One important reason why animals have evolved
to control osmolarity within the CNS is that osmoregulation is a complex process and needs to
be integrated with other homeostatic elements. Body systems defend electrolyte composition and
osmolarity in parallel with blood pressure (BP) and blood volume (Share and Claybaugh, 1972). In
laboratory experiments each of these may be differentially regulated, but within a healthy animal

Abbreviations: ACSF, artificial cerebrospinal fluid; ACTH, adrenocorticotropic hormone; Ang II, angiotensin II; CRF, cor-
ticotrophin releasing factor; DMSO, dimethyl sulfoxide; GABA, γ-aminobutyric acid; ICV, intracerebroventricular; IML,
intermediolateralis; IP, intraperitoneal; KCa Ca2+ , activated K+ channel; KO, knock-out; MPO, Medial Preoptic Area;
NMDA, N-methyl-D-aspartate receptor; NO, nitric oxide; NOS, nitric oxide synthase; PVN, paraventricular nucleus; RSNA,
renal sympathetic nervous activity; SCN, suprachiasmatic nucleus; SFO, subfornical organ; SNA, sympathetic nervous
activity; SNS, sympathetic nervous system; TRP, transient receptor potential; TRPV, transient receptor potential vanilloid.
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each must be controlled as part of an overall pattern of homeosta-
sis. Within the brain, the area of the hypothalamus surrounding
the third ventricle is particularly important for osmoregulation.
Key areas identified to date include the SFO, organum vas-
culosum lamina terminalis (OVLT), circumventricular organs
(CVO), medial preoptic area (MPO), and PVN of the hypotha-
lamus (Toney et al., 2003; Stocker et al., 2007). Our particular
focus has been on the PVN since this is also an established auto-
nomic control center exerting influence over heart rate (HR) and
BP in response to a number of homeostatic challenges including
temperature (Cham andBadoer, 2008), day–night cycle (Feetham
and Barrett-Jolley, 2014), volume load (Lovick et al., 1993), and
osmolarity (Stocker et al., 2004a).

The PVN is conveniently subdivided into two major areas;
the parvocellular and magnocellular “sub-nuclei” (Swanson and
Sawchenko, 1983). The magnocellular region is a logical site
of osmosensation since it contains a high density of neurons
that secrete vasopressin (also known as anti-diuretic hormone,
ADH) from the neurohypophysis (posterior pituitary; Swanson
and Sawchenko, 1983). In addition to its anti-diuretic properties,
vasopressin also exerts profound effects on vascular contractil-
ity (Share, 1988). The parvocellular region of the PVN is named
after the smaller “parvocellular” neurons within. These neurons
sub-serve diverse functions. Many release corticotropin-releasing
factor (CRF) into the hypophyseal portal circulation, which, in
turn, evokes release of adrenocorticotropic hormone (ACTH)
from the adenohypophysis (anterior pituitary) and is a key part
of the ACTH-adrenal-cortisol axis (Antoni, 1993). Additionally,
the parvocellular region of the PVN also contains a number
of neurons which modulate autonomic control. These neurons
project to areas such as the intermediolateral nucleus (IML) of
the spinal cord and synapse with preganglionic sympathetic neu-
rons (Motawei et al., 1999; Barrett-Jolley et al., 2000; Pyner and
Coote, 2000). When activated, these “pre-autonomic” neurons
elevate HR, BP, and sympathetic nervous activity (SNA) includ-
ing rSNA (Womack et al., 2007). Some authors have alternatively
concluded that the spinally projecting pre-autonomic PVN neu-
rons are neither parvocellular, nor magnocellular, but a family of
intermediately sized neurons they named mediocellular neurons
(Kiss et al., 1991). Under resting conditions the pre-autonomic
parvocellular neurons richly express GABAA receptors (Zaki and
Barrett-Jolley, 2002) and exist under a state of tonic inhibition
by GABAergic input (Nunn et al., 2011). Furthermore, applica-
tion of the GABAA antagonist bicuculline evokes increases in
rSNA, HR, and BP (Chen et al., 2003). This tonic inhibition is
not absolute, since paraventricular application of the GABAA
agonist muscamol produces powerful inhibition of SNA with
associated decreases of HR and BP (Zhang et al., 2002). Toney
et al. (2003), however, report that this response is more appar-
ent in chronically dehydrated rats, where tonic inhibition of the
PVN is reduced (Stocker et al., 2004b; Holbein et al., 2014).
This reduction in tonic inhibition is due to an additional excita-
tory input from the MPO, rather than a demonstrable alleviation
of the tonic GABAergic inhibition (Stocker and Toney, 2005).
Thus, dehydration and hypertonicity applied by either direct
application to the hypothalamus or via intra-carotid cannulae,
lead to; (i) elevated c-fos expression in pre-autonomic PVN

neurons (Stocker et al., 2004a; Gottlieb et al., 2006; Arnhold
et al., 2007), (ii) increased spiking activity of hypothalamic
neurons (Cross and Green, 1959), (iii) glutaminergic activity in
medulla-projecting neurons (Stocker et al., 2006), and finally (iv)
increased activity of vasopressin-ergic spinal neurons (Antunes
et al., 2006).

The complexity of the whole-animal osmoregulation sys-
tem begins to emerge when one also considers the cardiovas-
cular response to water consumption. Initially, this would be
expected to increase plasma volume and decrease plasma osmo-
lality. However, the response to water consumption in people
is variable, depending on age and health status. In people with
autonomic failure, consumption of moderate quantities of water
evokes a substantial rise in BP of up to 100 mHg (Jordan et al.,
1999; Cariga and Mathias, 2001; Lipp et al., 2005). This effect is
absent in young, healthy human subjects (Jordan et al., 2000). The
complex pattern of cardiovascular response to water consump-
tion also includes increases in total peripheral resistance; presum-
ably reflecting sympathetic vasomotor activity and a decrease in
HR despite very little overall change in BP (Brown et al., 2005).
This decrease in HR results from an increase in cardiac vagal
drive (Routledge et al., 2002). Since these effects are seen with
water, rather than oral consumption of isotonic saline (Lipp et al.,
2005), plasma osmolality is clearly key. However, physiologically
this may be an adaptation to rapidly redistribute plasma to the
capacitance apparatus (Greenway and Lister, 1974), rather than
simply initiating diuresis. This makes sense from an evolution-
ary context, since animals tend to preserve water and ions where
possible (Share and Claybaugh, 1972). It appears that in healthy
animals, blood volume increase is opposed by increasing (sympa-
thetically driven) vascular tone, but resultant BP elevation is then
limited by a vagal decrease in HR. This is more complex than
a simple implementation of the baroreceptor reflex and whilst
the site of such integrative control is not known, the hypotha-
lamic PVN is well placed to contribute since it contains both
sympathetic and vagal pre-autonomic neurons (Li et al., 2003).
The PVN has been shown to be critical to the sympathetic nerve
response to isotonic volume expansion (Haselton et al., 1994), but
not the baroceptor reflex, which is centered in the medulla (Spyer,
1994).

Whilst there have been far fewer studies of “hypotonic
responses” than there have been studies on responses to hyper-
tonic exposure, there are some data available. For example, intra-
carotid application of hypotonic solution decreases SNA and
BP, but increases HR (Brooks et al., 2005). In the Brooks et al.
(2005) study, these responses were only seen in water-deprived
animals, however, the earlier study of Cross and Green (1959)
showed suppression of action potential activity in the hypothala-
mus following intra-carotid hypotonic saline. In our own ex vivo
“brain-slice” work, we found that a proportion of parvocellular
neurons did respond to direct application of hypotonic solutions
(Feetham et al., 2014). This would certainly have been expected
for magnocellular neurons, which would switch off vasopressin
release and thus increase diuresis, but was unexpected in parvo-
cellular neurons. In our ex vivo work we established that TRPV4
was a critical element in osmosensing. This finding is consis-
tent with the observations that TRPV4 is expressed in the PVN
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FIGURE 1 | Immunofluorescent identification of TRPV4 in the
paraventricular nucleus. PVN coronal slice labeled with antibody to TRPV4.
(A) Negative control showing DAPI blue (a nuclear stain), with the absence of
TRPV4 antibody staining (−TRPV4ab). Scale bar 100 μm and 3V indicates the
third ventricle. (B) TRPV4 antibody applied together with a blocking peptide
included (TRPV4 + bp). Red staining would indicate TRPV4 immunoreactivity,

blue is DAPI nuclear staining. Scale bar 100 μm and 3V indicates the third
ventricle. (C) Red staining indicates TRPV4 immunoreactivity, blue is DAPI
nuclear staining. Scale bar 100 μm and 3V indicates the third ventricle. (D) High
magnification images of the section seen in (C). Red staining is TRPV4 and blue
is DAPI nuclear staining; arrows indicate where overlap can be seen. Scale bar
is 25 μm in each panel.

(Carreno et al., 2009) and that TRPV4−/− KOmice are unable to
detect hypo-osmolarity and respond with diuresis (Liedtke and
Friedman, 2003; Mizuno et al., 2003).

In the current work we therefore investigated whether
direct intra-cerebroventricular application of hypotonic saline to
healthy CD1 mice modulated their cardiovascular parameters,
and if so, whether this response was sensitive to the TRPV4
antagonist RN1734.

Materials and Methods

Immunohistochemistry
Immunohistochemistry was performed using a rabbit primary
antibody for TRPV4 (1:300; Abcam, UK), and goat secondary
antibody anti-rabbit CY3 (1:300; Abcam, UK). Blue DAPI dye
was applied as a nuclear counter-stain, using VECTASHIELD
mounting medium with DAPI (Vector laboratories, UK). Two
types of negative control were used; one was omission of primary
antibody, the second was the use of a specific TRPV4 blocking
peptide (Abcam, UK). Blocking peptide was first incubated for
2 h with the primary antibody and then added to the slides along
with the primary antibody throughout its incubation.

Cannulation
Adult CD1 wild-type male mice (30–40 g) were anesthetized with
a combination of urethane and α-chloralose (Sigma–Aldrich,
UK), administered at an appropriate dose IP in saline. Urethane
was used to minimize the effects on the cardiovascular system
(Carruba et al., 1987). Following injection of the anesthetic, the
mice were returned to their cage for several minutes until they
lost consciousness. Body temperature was recorded immediately
and continuously by rectal probe and maintained at 37 ± 0.5◦C
by use of a heat lamp. Once loss of paw-withdrawal and eye-
blink reflexes was achieved the trachea was intubated in order
to maintain respiration. The carotid artery was cannulated with
stretched PE25 tubing filled with heparinised saline. BP was
recorded by a pressure transducer attached to the tubing and
connected to a NeuroLog (Digitimer Ltd, Herefordshire, UK) BP
amplifier. BP signals were digitized to PC with a CEDMicro1401
(Cambridge Electronic Design, Cambridge, UK) using WinEDR
at 5 kHz.

Heart Rate Measurement
Heartbeats were annotated to the amplified AC coupled BP signal
using Wabp from the PhysioNet suite of programs to give a HR
read out (Goldberger et al., 2000). Briefly, the signal was analyzed
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FIGURE 2 | Intracerebroventricular injection of isotonic ASCF has no
effect on cardiovascular parameters. Adult male CD1 mice were
anesthetized with urethane–chloralose, and BP was recorded by cannulation of
the carotid artery. (A) Raw BP trace with annotated beats (purple lines), before (i)
and after (ii) injection of 300 mOsmol ACSF/DMSO vehicle. Annotated beats are

used to derive R–R interval and HR. (B) Example R–R interval trace shows no
difference before (i) and after (ii) ICV injection of isotonic ACSF. (C) Example HR
trace shows no difference before (i) and after (ii) injection of isotonic ACSF. (D)
Average BP and (E) HR do not change with injection of isotonic vehicle (n = 6;
p > 0.05).

at 1/10th sampling frequency (i.e., 500 Hz), and resampled to
125Hz for optimal beat detection byWabp. Annotated beats were
then reverted to 10 times speed to give the actual HR.

Intracerebroventricular Injections
For ICV injections the anesthetized mice were placed in a stereo-
taxic frame adapted for mice (Kopf instruments). Bregma was
located according to the Paxinos and Franklin (2001) adult
mouse stereotaxic atlas); a 2 mm craniotomy, 1 mm lateral,
and 0.2 mm caudal to bregma allowed for drug or vehicle
to be applied via 10 μL Hamilton syringe. All drugs were
given in ACSF as the vehicle, and injected in a 1 μL vol-
ume gradually over a 30 s period. All injections were given
into the lateral ventricle at the following coordinates; 0.2 mm
caudal, 1 mm lateral, 3.2 mm vertical. The syringe was left

at the injection site for 2 min and elevated to just above the
injection site after this time, where it was kept in place for
the duration of the recording. At the end of the procedure all
animals were injected with 1% pontamine blue dye (Sigma–
Aldrich, UK) at the same injection site using the same volume
in order to confirm the correct location for the injection site.
Post mortem, the brain removed and sliced to 300 μm on a
Campden Instruments Ltd. 752 M Vibroslice to locate the injec-
tion site.

Drug Injections
Drugs and vehicle controls used were; 1 μL iso-
tonic/isotonic + DMSO ACSF, hypotonic ACSF
(∼280 mOsmol) and RN1734 (Tocris, UK) in vehicle (ACSF;
100 nmol/kg).
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FIGURE 3 | Intracerebroventricular injection of hypotonic ASCF
decreases BP but has no effect on HR. BP significantly decreases
after injection of hypotonic ACSF. (A) Raw BP trace with annotated beats
(purple lines), before (i) and after (ii) injection. Annotated beats are used to
derive R–R interval and HR. (B) Example R–R interval trace shows no

difference before (i) and after (ii) ICV injection of hypotonic ACSF.
(C) Example HR trace shows no difference before (i) and after (ii) injection
of hypotonic ACSF. (D) Average BP is significantly reduced with injection
of hypotonic ASCF (n = 6; ∗p < 0.01), but HR (E) remains unchanged
(p > 0.05).

Statistical Analysis
Means are given ± SE (n = number of subjects). Hypothesis
testing between two means was conducted with a t-test and
where there were more than two groups a one way ANOVA
was employed with Tukey’s multiple comparison adjustment.
Statistical tests were conducted in Minitab (Minitab Ltd.,
Coventry, UK).

Results

It has been suggested that TRPV4 may be responsible for vol-
ume control centrally (Bourque, 2008). Therefore we began
by confirming a previous report (Carreno et al., 2009)
of TRPV4 ion channel expression within the PVN using

immunohistochemistry. We detected clear TRPV4 immunoreac-
tivity within the parvocellular subnucleus of the PVN (Figure 1)
and this was absent when a TRPV4 blocking peptide was
included. Next, we investigated whether simple ICV injec-
tion had a confounding effect on cardiovascular parame-
ters. In mice injected ICV with isotonic ACSF plus DMSO
0.01% (∼300 mOsmol) neither BP nor HR were significantly
changed (Figures 2 and 5; n = 6; p > 0.05 by ANOVA
using Tukey’s post hoc comparison). Next, ICV injections of
1 μL ∼270 mOsmol ACSF were given to investigate the cen-
tral effects of hypo-osmolality on cardiovascular parameters.
Hypotonic ACSF administered centrally resulted in a signif-
icant decrease in mean arterial pressure of −9 ± 2 mmHg
(n = 6; p < 0.01 by ANOVA using Tukey’s post hoc com-
parison). No change in HR was observed (Figures 2 and 5;
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FIGURE 4 | Intracerebroventricular injection of the TRPV4 inhibitor
RN1734 prevents the effect of hypotonic ACSF on BP. (A) Raw BP trace
with annotated beats (purple lines), before (i) and after (ii) injection. Annotated
beats are used to derive R–R interval and HR. (B) Example R–R interval trace

shows no difference before (i) and after (ii) ICV injection. (C) Example HR trace
shows no difference before (i) and after (ii) ICV injection. (D) Average BP
response to hypotonic ASCF is prevented by injection of RN1734 (n = 6;
p > 0.05). (E) Average HR remains unchanged (n = 6; p > 0.05).

n = 6; p > 0.05 by ANOVA; Figure 3). Reduction in BP upon
hypotonic injection was also significant compared to control (iso-
tonic) ICV ACSF injection (Figures 3 and 5; −9 ± 2 mmHg vs.
−2 ± 1 mmHg; n = 6; p < 0.01 by ANOVA with Tukey’s post hoc
comparison).

Finally, we investigated whether the depressor action of hypo-
tonic solution was dependent on TRPV4 channels. We tested
this using 100 nM/kg of the selective TRPV4 inhibitor RN1734
(Vincent et al., 2009), along with hypotonic ASCF was injected
ICV into anesthetized mice. Addition of the TRPV4 inhibitor
prevented the reduction in mean arterial pressure observed with
injection of hypotonic ACSF alone (Figures 4 and 5; n = 6;
p > 0.05 by ANOVA using Tukey’s post hoc comparison). Again,
no difference in HR was observed (Figures 4 and 5; n = 6;
p > 0.05 by ANOVA using Tukey’s post hoc comparison).

Discussion

In this study we identify a clear depressor action of euhydrated
CD1 mice challenged with ICV hypotonic solution. This effect
was prevented by treatment with the TRPV4 antagonist RN1734.

Several studies have indicated that the periventricular region
of the brain is a key to detecting and responding to osmotic chal-
lenge (Toney et al., 2003; Stocker et al., 2007). Furthermore, our
own work has demonstrated that, in vitro, PVN neurons can
detect and respond to hypotonic solutions with a decrease in
action potential firing (Feetham et al., 2014). In vivo the complex
homeostatic response to PVN challenge with osmotic stimuli is
likely to include both vasopressin release and activity of spinally
projecting neurons; including interactions between these two
pathways via dendritic–dendritic signaling (Stern, 2014).
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FIGURE 5 | Summary average changes in cardiovascular parameters
from ICV injections. (A) Average change in BP compared to control of
several ICV injection treatments. No significant change was seen with vehicle
(isotonic ACSF) or the TRPV4 inhibitor, RN1734 (100 nM/kg) alone vs. control
(n = 6; p > 0.05). BP is significantly reduced in animals injected with
hypotonic ACSF compared to those injected with vehicle (n = 6; ∗p < 0.01).
ICV injections with RN1743 + hypotonic ACSF did not produce a significant
BP change compared to vehicle injections (n = 6; p > 0.05), but BP was
significantly reduced compared to hypotonic injections (n = 6; #p < 0.01).
(B) Average HR did not change significantly between any of the conditions
stated (n = 6; p > 0.05 by ANOVA).

Our previous report analyzed this coupling in fine detail and
found that TRPV4 channels initially allow Ca2+ entry which,
in turn, activates potassium channels and subsequently inhibits
the firing of action potentials (Feetham et al., 2014). This effect
is consistent with previous reports that the TRPV4 channel is
known to be activated by osmolality changes (Liedtke et al., 2000)
and has a role in volume control in other tissues (Becker et al.,
2005; Guilak et al., 2010; Benfenati et al., 2011). Our combina-
tion of isolated neuron and brain slice experiments suggested
that this is a direct effect within PVN parvocellular neurons
rather than an indirect modulation of PVN projecting neurons.
The latter, however, remains a possibility since spinally project-
ing PVN neurons receive functional inputs from a number of
other hypothalamic nuclei (Cui et al., 2001; Stocker and Toney,
2005; Womack and Barrett-Jolley, 2007). This region of the PVN
includes spinally projecting neurons which positively modulate
the cardiovascular system (Coote, 2007) and so we hypothe-
sized that such inhibition may result in a depressor action and

reduction in HR. In the present study we find that whilst ICV
hypotonic solutions do reduce BP, they have little effect on HR.
Furthermore, the nature of this injection site means that it is
not possible to know if the target neurons are in the PVN or
some other periventricular site. It seems likely that this effect
involves TRPV4 channels since these proteins are expressed
in the PVN (Figure 1 and see Carreno et al., 2009), and the
TRPV4 inhibitor RN1734 (Vincent et al., 2009) abolished the
effect. It has been shown previously that TRPV4−/− mice have
a diminished thirst response (Kinsman et al., 2014) although
other work has shown that osmosensing in the periventricu-
lar area of the brain can also involve TRPV1 channels (Ciura
and Bourque, 2006). Although TRPV1 involvement is a possi-
bility, RN1734 is approximately 10× selective for TRPV4 over
TRPV1 (Vincent et al., 2009) and our own in vitro work showed
a TRPV4 dependent osmosensitivity of PVN neurons (Feetham
et al., 2014). Future studies of this putative TRPV4 dependent
mechanism could also use TRPV4−/− mice. Absence of the
response in such animals would provide further weight to the
argument, although this approach too could provide its own
complications.

It is important to note that it was necessary to conduct
this study in anesthetized animals, which may have affected the
response to hypotonicity. Anesthetics do affect the cardiovascu-
lar system; for example, by reducing resting BP. It is worth noting
here that the recorded BP is quite low in this study compared to
what one may expect in a conscious animal study, but is in line to
that recorded previously in mice (Nunn et al., 2013).

These data support previous reports that changes in central
osmolality result in the modulation of BP (Scrogin et al., 1999;
Brooks et al., 2005). In previous studies altered HR has also
been recorded upon osmotic change (Chen and Toney, 2001);
however, our results show no statistically significant differences.
This is not completely unexpected due to the baroreceptor reflex,
which would be working to counteract the reduction in BP
(Spyer, 1994).

Together, our current and previous data (Feetham et al., 2014)
support the notion that there is a role for central TRPV4 chan-
nels in sensing osmolality changes and initiating changes in BP.
This mechanism appears to operate within the PVN, but the exact
phenotype of the active neurons is not known. Further investi-
gation, perhaps in identified spinally projecting neurons, will be
required to establish this. Potentially, pharmacological modula-
tion of BP via TRPV4 or other RN1734 sensitive ion channels
could be useful in the treatment of cardiovascular disease; how-
ever, the widespread distribution of TRPV4 ion channels could
limit their practical usefulness. Therefore future studies will be
aimed at identifying the receptor and neurotransmitter profile of
PVN osmosensing neurons to determine if we can identify more
specific therapeutic targets.
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