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Cordyceps militaris may show good promise in protecting against chronic kidney disease (CKD) but the molecular mechanism
remains unclear. CKD risk is associated with the Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway.
Cordycepin is the main component of Cordyceps militaris and may affect the TLR4/NF-κB pathway. Cordycepin was prepared
by preparative HPLC. CKD patients were assigned into Cordyceps militaris (COG, 100mg daily) and placebo (CG) groups.
Cordycepin activity was measured using human embryo kidney cells (HEK293T). Biochemical indices, the levels of TLR4, NF-
κB, cyclooxygenase-2 (COX2), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β), were measured by real-time
qRT-PCR, or ELISA kits and or Western blot. After 3-month treatment, cordycepin reduced the levels of urinal protein, blood
urea nitrogen (BUN), and creatinine by 36 7%±8 6%, 12 5%±3 2%, and 18 3%±6 6%, respectively (P < 0 05). Cordyceps militaris
improved lipid profile and redox capacity of CKD patients by reducing the serum levels of TG, TC, and LDL-C by 12 8%±3 6%,
15 7%±4 1%, and 16 5%±4 4% and increasing the HDL-C level by 10 1%±1 4% in the COG group when compared with the CG
group, respectively (P < 0 05). The serum levels of cystatin-C (Cys-C), myeloperoxidase (MPO), and malondialdehyde (MDA)
were reduced by 14 0%±3 8%, 26 9%±12 3%, and 19 7%±7 9% while nitric oxide (NO) and superoxide dismutase (SOD) were
increased by 12 5%±2 9% and 25 3%±13 4% in the COG group when compared with the CG group, respectively (P < 0 05).
Cordycepin reduced the levels of TLR4, NF-κB, COX2, TNF-α, and IL-1β in HEK293T cells too (P < 0 05). However,
cordycepin could not affect the levels anymore if TLR4 was silenced. Cordyceps militaris protected against CKD progression by
affecting the TLR4/NF-κB lipid and redox signaling pathway via cordycepin.

1. Introduction

Chronic kidney disease (CKD) is often caused by infections
[1, 2], toxins [3, 4], and autoimmune diseases [5] and a
major threat to public health [6]. CKD is involved with
glomeruli [7, 8], tubules [9, 10], and interstitial tissue
around the glomeruli and tubules [11]. CKD often results
in glomerular injury because of the destruction of glomeru-
lar structure caused by high-level inflammatory cells [12,
13]. The result will prevent blood flow, resulting in the
decrease in urine output and accumulation of uremic toxin.
Subsequently, red blood cells may be released from injured
glomeruli and hematuria will occur [14].

At present, there are many ways to treat CKD, including
hypoglycemic [15], antihypertensive [16, 17], and control of
urinary protein [18]. However, the treatment cost is high
[19], the side effects are obvious [20], and the therapy is
long-lasting [21] and ineffective [22]. Furthermore, there
are some contraindications to the treatment of CKD [23].
Therefore, it is imperative to explore new anti-CKD drugs
with few adverse effects.

Cordyceps militaris and its specific ingredient, cordyce-
pin, have attracted much attention with multiple health-
promoting properties, including anti-inflammatory, antican-
cer, antidiabetic, and antiobesity activities [24]. Cordycepin
has been reported to exert antidiabetic and antinephritic

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2019, Article ID 7850863, 16 pages
https://doi.org/10.1155/2019/7850863

http://orcid.org/0000-0002-4675-4575
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7850863


function [25]. However, the exact molecular mechanism for
its function on CKD remains unknown. An evaluated level
of TLR4 can cause renal fibrosis and result in CKD risk by
activating inflammatory cytokines and dysregulating
immune responses that are linked with CKD progression
[26]. Significant reduction in the amounts of TLR4+ mono-
cytes and impaired lipopolysaccharide are also linked with
CKD development [27]. On the other hand, the increase in
the level of nuclear factor-kappa B is also associated with
acute kidney injury (AKI) [28]. CKD is associated with
Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB)
signaling pathway [26, 29]. NF-κB increases the expression
of cyclooxygenase-2 expression (COX2) [30], while the level
of COX-2 is associated with interleukin-1β (IL-1β) and
tumor necrosis factor-alpha (TNF-α) [31]. Cystatin-C (Cys-
C) [32], myeloperoxidase (MPO) [33], malondialdehyde
(MDA) [34], nitric oxide (NO) [35], and superoxide dismut-
ase (SOD) [36] are involved with redox system and affect kid-
ney diseases. Lipid and redox activity play an important role
in CKD progression [37]. Lipid and redox activity can be
affected by TLR4 [38, 39] and NF-κB [40, 41]. Therefore,
the effects of cordycepin on CKD was explored by examining
the TLR4/NF-κB pathway and related molecules. Meanwhile,
all related biochemical molecules were also analyzed.

2. Materials and Methods

2.1. Materials and Antibodies. TLR4 (ab112362), NF-κB
(ab119636), COX2 (ab15191), TNF-α (ab46087), and IL-
1β (ab46052) ELISA kits were obtained from Abcam (Cam-
bridge, MA, USA). Cordyceps militaris in capsule form was
purchased from Shanghai BioAsia Pharmaceutical Com-
pany Ltd. (Shanghai, China) and is recommended at
100mg/day for an adult. Dried Cordyceps militaris (100 g)
were minced and extracted with two-liter distilled water
using an ultrasonic extraction (50KHz) for 30min. The
mixture was centrifuged at 12,000×g for 20min, and super-
natants were filtrated with a 1 kDa nominal molecular
weight limit membrane (Millipore Corp., Bedford, MA,
USA) and concentrated using vacuum evaporation. A total
of 3.5-gram powder was obtained finally and dissolved in
50mL ethanol.

2.2. Cordycepin Components Were Isolated by
Semipreparative HPLC. 50mL of the above aliquot was
injected into a semipreparative HPLC (Beckman, Brea, CA,
USA). HPLC was performed as follows: mobile phase,
methanol : water (15 : 85, v/v); flow rate, 1mL/min; and UV
detection, 260 nm. Cordycepin was confirmed using the
standards according to its retention time. Semi-Prep HPLC
condition was used as follows: column, ODS-BP column
(250mm × 30mm, Elite Analytical Instruments, Dalian,
China); mobile phase, methanol : water (15 : 85, v/v); and flow
rate, 15mL/min. Crude cordycepin solution (2mL) or
standards (carnine, N6-(2-hydroxyethyl)-adenosine (HEA),
adenosine, uridine, and cordycepin were from Sigma) was
injected. The peak was measured at 260nm. The collected
fraction was dried and resolved in 20mL ethanol.

2.3. Mass Spectrometry. Each fraction was analyzed by
Micromass ESI Mass Spectrometer (JEOL USA Inc.,
Peabody, MA, USA). Source temperature was 110°C, and
desolation gas temperature was 350°C. Nitrogen and argon
purity exceeds 99.99%. Desolation gas flow (L/h) was at 600
and cone gas flow at 55, respectively. The sampling cone was
at 30V and the capillary voltage was at 3.5 kV. The mass
spectrometer was set to scan a specific mass range m/z 0–350.

2.4. Participants. Before the experiment, all procedures were
approved by the Human Research Ethical Committee of
General Hospital of Daqing Oil Field (CCT02368). This
experiment was performed according to the World Medical
Association Declaration of Helsinki. Signed consent forms
were obtained from all patients. From March 2015 to June
2016, 98 CKD patients were recruited at our hospital, includ-
ing 57 males and 41 females. The age ranged from 33.28 to
60.16 years, and mean age was 48 12 ± 14 37 years. All the
patients were with the CKD late stage 3 or stage 4 (estimated
glomerular filtration rate (eGFR) 25 to 40mL/min). Patients
received blood tests and one-day urine collection.

2.5. Inclusion Criteria. All patients met the following
criteria: (1) urine protein/creatinine ratio < 5; (2) blood
pressure < 150/95 mmHg; (3) serum modified phosphorus
and calcium for albumin and intact parathyroid hormone
PTH < 100 pg/mL; (4) medically stable; and (5) signed a
written informed consent.

2.6. Exclusion Criteria. The following patients were excluded:
(1) took azathioprine, methotrexate, mycophenolate mofetil,
or cyclophosphamide within 12mon; (2) took calcium
binder or supplements, vitamin D, or phosphate binders;
(3) had renal thrombotic microangioplasty, preexisting
chronic renal failure, pregnancy, previous malignancy, and
diabetes mellitus; and (4) had anticipated poor compliance
with the protocol.

2.7. Patient Groups. After the inclusion and exclusion cri-
teria, 98 CKD patients were recruited and randomly
assigned into cordycepin (COG, the patients received
100mg of Cordyceps militaris/d) and control (CG, the
patients received dried chickweed herb placebo/d) groups.
The whole period was three months.

2.8. Measurement of Renal Function. Urinary protein in
patient urine was determined using the kit from Beckman
Coulter Inc. (South Kraemer Boulevard, Brea, CA, USA).
Blood urea nitrogen (BUN) was measured using the kit
from StressMarq Biosciences (Victoria, Canada) to deter-
mine kidney normal function. Urea nitrogen is a waste
product and the kidneys filter out the waste, which is
removed out from the body via urinating. The increase in
BUN levels is supposed to be associated with CKD [42].
Creatinine is a chemical waste generated from muscle
metabolism and is a reliable biomarker of kidney function
[43]. Blood creatinine was measured by the kit from Enzo
Life Sciences (Shanghai, China). eGFR was measured by
using the modification of diet in renal disease study equa-
tion before and after 3-month therapy [44]. Interval
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diagnosis of CKD and possible cause (these will have rele-
vance to the ability of any therapeutic agent to alter the
course of the disease. Specifically, they will affect the agent’s
ability to affect the pathological changes in the kidney) was
one month.

2.9. Biochemical Index Analysis. Serum lipid profiles, includ-
ing triglycerides (TG), total cholesterol (TC), low-density
lipoprotein cholesterol (LDL-C), and high-density lipopro-
tein cholesterol (HDL-C), have been reported to be linked
with CKD development [45]. Serum TG was determined by
using an immunometric assay (Beijing Chemclin Biotech,
Beijing, China). Serum TC was analyzed by using an auto-
mated kit (Biosino Biotech, Beijing). HDL-C was measured
by an automated chemistry analyzer (Shanghai ChemDo
International Trade Co. Ltd., Shanghai, China). Serum
LDL-C was determined by using an LDL-C kit (Shanghai
Kexin Institute of Biological Technology, Shanghai, China).

Serum Cys-C was measured by using the Behring system
(BCS, Dade Behring, Marburg, Germany). MPO was mea-
sured using orthodianisidine colorimetric assay at 450 nm
[46]. MDA and SOD were measured using thiobarbituric
acid reaction [47]. NO was measured by using the kit from
Dojindo Laboratories (Kumamoto, Japan).

2.10. The Analysis of Renal Pathology. Renal tissues were
isolated from all patients by using a noninvasive surgery
[48]. 200mg of kidney biopsy specimen was obtained from
each subject using a laser capture microscope (Arcturus Engi-
neering, Mountain View, CA, USA). 100mg of renal tissues
was fixed with 5% formaldehyde, reached equilibrium in
24h at 25°C, embedded with paraffin, and cut into 2μm sec-
tions. The sections were stained by using periodic acid-Schiff
(PAS) stain or hematoxylin and eosin stain (H&E stain) and
visualized under a light microscope. Inflammatory cell infiltra-
tion was examined by PAS stain, and the changes of glomeru-
lar filtration membrane were observed using H&E stain.

2.11. Cell Culture and Treatment. Human embryo kidney
cells (HEK293T) were purchased from Cell Bank, Chinese
Academy of Sciences (Shanghai, China). HEK293T cells were
cultured in DMEM with 10% fetal bovine serum, 100μg/mL
penicillin, and 100μg/mL streptomycin at 37°C and 5% CO2.
Cordycepin was the main component of Cordyceps militaris,
and the dose was referred to previous reported indicated con-
centrations of cordycepin (100 ng/mL) [49]. To explore the
effectivity, the extracts were used in the same dose. One-
hundred microliter HEK293T cells at a density of 1 × 105
cells were placed in a 96-well cell plate and treated with dif-
ferent components (100 ng/mL) of Cordyceps militaris
extracts and further cultured for 3 d.

2.12. shRNA Constructs for TLR4 Gene Silencing. The pTZU6
+1 expression plasmid was a gift from Chongqing Medical
University (Chongqing, China). According to shRNA design
principles and the TLR4 coding sequence, 19-21 nt of DNA
oligos were designed. In this study, both TLR4 coding
sequence and the reverse complementary sequence were
synthesized as follows: siTLR4, sense 5′-TCgtctgtgcaataaa-
tactttgGACCAGTGAATGAGCTCCGGCATTGGcaaagtattta

ttgcacagacTTTTTT-3′, antisense 5′-CTAG AAAAAAgtctgtg-
caataaatactttgCCAATGCCGGAGCTCATTCACTGGTCcaaa
gtatttattgcacagacGAGG-3′; SalI and XbaI sites were used in
both ends of the oligos and inserted into pTZU+6 vector.
Thus, pTZU6+1-shRNA-TLR4 vector was reconstructed.

2.13. Transfection of HEK293T Cells. The HEK293T cells
were transfected with pTZU6+1-shRNA-TLR4 as treatment
groups. The HEK293T cells were transfected with pTZU6
+1 as control groups. Transfection was performed in 50%-
60% confluent cells in 6-well plates using 9μL of Lipofecta-
mine 2000™ (Invitrogen, USA). Briefly, when the cells
reached 50%-60% confluency, different concentrations of lin-
earized plasmid, F12 medium, and Lipofectamine were
mixed. The prepared solution was added to the cells, and cells
were incubated at 37°C and 5% CO2. After 1-day transfec-
tion, the medium that contained plasmid was removed and
replaced with 4mL fresh medium. After 3-day culture, the
cells were trypsinized and centrifuged at 800×g for 5min.
The transformed cells were subjected to G418 selection for
20 d and cultured separately.

2.14. Real Time-PCR Analysis. 200mg of renal tissues was iso-
lated from all patients using a noninvasive surgery [48]. Total
RNA was isolated from kidney tissues or cells using TRIzol.
The concentration was determined by optical density mea-
surement at 260nm on a spectrophotometer. The total RNA
was isolated with RNA purification kit according to the
manufacturer’s instruction. The purity and concentration of
RNA were detected using an UV spectrophotometer. cDNAs
were synthesized from purified RNA with reverse transcrip-
tion kit. The mRNA levels of TLR4, NF-κB, COX2, IL-1β,
and TNF-α were measured using the primers as follows:
TLR4, sense primer, 5′-gccttttctggactatcaag-3′ and antisense
primer, 5′-aatttgaaagattggataag-3′, 140 bp; NF-κB, sense
primer, 5′-gatgggatctgcactgtaac-3′ and antisense primer, 5′-
cgtcttccacctcccctggc-3′, 200 bp; COX-2, sense primer, 5′-gtgc
ctgatgattgcccgac-3′ and antisense primer, 5′-gtgctgggcaaaga
atgcaa-3′, 150 bp; IL-1 β, sense primer, 5′-ctctgccctctggatggc
gg-3′ and antisense primer, 5′-caggtcattctcctggaagg-3′,
150 bp; TNF-α, sense primer, 5′-cagctccagtggctgaaccg-3′
and antisense primer, 5′- gggtgaggagcacatgggtg-3′, 160 bp;
and β-actin, sense primer, 5′-cctgttcctccctggagaag-3′ and
antisense primer, 5′-cactgtgttggcatacaggt-3′, 200 bp. β-Actin
was used as a loading control. Relative unit was measured
as 2-ΔΔCt where ΔΔCt equaled the difference between the
ΔCt of target genes. The ΔCt of the target gene was counted
as the difference between the cycle threshold of the target
gene and β-actin.

PCR was performed with initial denaturation cycle at
94°C for 2min, followed by 45 cycles consisting of 95°C
for 6 sec, annealing at 58°C for 15 sec, and extension at
72°C for 25 sec. After the steps, a melting step was per-
formed, consisting of 94°C for 6 sec, cooling to 43°C for
25 sec, and finally an increase in temperature to 90°C at a
rate of 0.1°C per second with fluorescence decline.
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2.15. Protein Concentration Measurement of TLR4-/NF-κB-
Related Molecules. HEK293T cells were lysed in lysis buffer
containing 20mM Tris-HCl (pH8.0), 100mM NaCl, 0.1%
Triton X-100, 10mM EDTA, 0.1% sodium dodecyl sulfate
(SDS, Cat. No. L4509, Sigma-Aldrich, St. Louis, MO,
USA), 50mM sodium fluoride (NaF, Cat. No. S7920,
Sigma-Aldrich, St. Louis, MO, USA), 100μM phosphatase
inhibitor sodium orthovanadate (Cat. No. S6508, Sigma-
Aldrich, St. Louis, MO, USA), and 100μM phenylmethyl-
sulfonyl fluoride (PMSF, Cat. No. P7626, Sigma-Aldrich).
Cellular proteins were measured using TLR4, NF-κB p65,
COX2, IL-1 β, and TNF-α ELISA kits.

2.16. Western Blot Analysis of TLR4/NF-κB-Related Molecules
in HEK293T Cells. The supernatant was separated from cell
lysate via centrifugation at 12,000×g for 15min at 4°C. Protein
samples were separated by12% SDS-PAGE and transferred to
a polyvinylidene fluoride membrane (PVDF, Millipore,
Bedford, MA USA). Membranes were blocked in TBST buffer
(20mM Tris-HCl, pH 8.0, 100mM NaCl, and 0.1% Tween-
20) with 5% nonfat dry milk for 1h. The blots were then incu-
bated with primary antibodies anti-TLR4, NF-κB, COX2, IL-
1β, TNF-α, β-actin, phospho-TLR4, and phospho-NF-κB
p65 (Ser529) (Sangon, Shanghai, China) overnight at 4°C.
The blots were rinsed with TBST buffer and incubated with
HRP-conjugated anti-rabbit and anti-mouse secondary anti-
bodies (at 1 : 5000 dilution, Sangon, Shanghai, China). Target
proteins were visualized using chemiluminescence horserad-
ish peroxidase (Millipore, Bedford, MA USA) and analyzed
by densitometry using ImageQuant software (Molecular
Dynamics, Sunnyvale, CA, USA).

2.17. Statistical Analyses. All number data were compared by
using χ2 values, and quantitative data were compared by
using two-way ANOVA to explore the interaction between

two factors. The data were analyzed by using SPSS 20.0
software package (SPSS Inc., IBM, NY, USA).

3. Results

3.1. Characterization of the Extracts of Cordyceps militaris.
Figure 1 showed that Cordyceps militaris was rich in cordyce-
pin, which may be useful for controlling CKD. Five main
components (mg/100 g, carnine 10, HEA 15, adenosine 18,
uridine 20, and cordycepin 37) were isolated from Cordyceps
militaris. The above components were further identified by
ESI MASS spectrometry produced mass spectra with
M+H +. Figure 2 showed that the predicted masses of urine
(Figure 2(a)), HEA (Figure 2(b)), cordycepin (Figure 2(c)),
adenosine (Figure 2(d)), and carnine (Figure 2(e)) were
224, 311, 251, 267, and 161Da, respectively.

3.2. Baseline Characters of Participants. For baseline charac-
ters of participants, there was no statistically significant
difference for sex distribution, body mass index (BMI),
age, diastolic blood pressure (DBP), and systolic blood
pressure (SBP) (Table 1 P < 0 05).

3.3. Cordyceps militaris Improved Inflammatory Status and
Thickness of Glomerular Filtration Membrane of Renal Tissues.
PAS stain showed that inflammatory situation was obvious in
renal biopsy specimens from the patients in the CG group
(Figure 3(a)) when compared with the COG group
(Figure 3(b)). On the other hand, H&E stain showed that the
renal biopsy specimens were with thickening of glomerular fil-
tration membrane as the arrow showed in the CG group
(Figure 3(c)) while renal biopsy specimens were with normal
glomerular filtrationmembrane in the COG group (Figure 3(d)).

3.4. Cordyceps militaris Reduced the Biomarker Levels of
CKD. Before therapy, there was no statistically significant
difference in the levels of urinal protein, BUN, and
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Figure 1: HPLC analysis of the main components of Cordyceps militaris. (a) Five standard samples (carnine, N6-(2-hydroxyethyl)-adenosine
(HEA), adenosine, uridine, and cordycepin). (b) Five main components were isolated from different Cordyceps militaris batches after HPLC
detection.
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creatinine between the COG and CG groups (P > 0 05).
After the three-month treatment, the levels of urinal pro-
tein, BUN, and creatinine were significantly reduced by
36 7%±8 6%, 12 5%±3 2%, and 18 3%±6 6%, respectively,
in the COG group when compared with the CG group
(Table 2, P < 0 05). The results suggested that Cordyceps
militaris improved kidney function and controlled the
blood levels of urinal protein, BUN, and creatinine.

3.5. Cordyceps militaris Improved the Chemical Indices of
CKD Patients. Before therapy, there was no statistically

significant difference for lipid profile (serum TG, TC,
LDL-C, and HDL-C) between the COG and CG groups
(p > 0 05). After the three-month treatment, the serum
levels of TG, TC, and LDL-C were significantly reduced
by 12 8%±3 6%, 15 7%±4 1%, and 16 5%±4 4%, while
HDL-C was significantly increased by 10 1%±1 4% in
the COG group when compared with the CG group,
respectively (Table 3, P < 0 05). The results suggest that
Cordyceps militaris improved the lipid profile of CKD
patients by affecting serum levels of TG, TC, LDL-C,
and HDL-C.
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Figure 2: ESI MASS spectrometry analysis of bioactive fractions from Cordyceps militaris under the conditions that produced mass spectra
with M+H +. (a) Mass spectra were visualized following the separation of urine ( M+H + = 225 Da). (b) Mass spectra were visualized
following the separation of HEA ( M+H + = 312 Da). (c) Mass spectra were visualized following the separation of cordycepin
( M+H + = 252 Da). (d) Mass spectra were visualized following the separation of adenosine ( M+H + = 268 Da). (e) Mass spectra were
visualized following the separation of carnine ( M+H + = 162 Da).

5Oxidative Medicine and Cellular Longevity



Table 1: Baseline characters of chronic kidney disease.

Parameters CG COG Chi-square statistic/t-value P values

Cases (male/female) 49 (28/21) 49 (29/20) 0.042 0.837

Age (years) 46 2 ± 13 6 44 7 ± 11 2 -0.575 0.288

SBP (mmHg) 126 2 ± 11 5 130 5 ± 12 7 -1.674 0.076

DBP (mmHg) 87 2 ± 7 1 86 5 ± 7 8 -1.096 0.156

BMI 25 9 ± 1 7 24 5 ± 1 4 -1.543 0.094

TC (mmol/L) 5 5 ± 0 6 5 7 ± 0 8 -0.698 0.214

TG (mmol/L) 2 2 ± 0 8 2 3 ± 0 9 -2.153 0.106

LDL-C (mmol/L) 2 0 ± 0 6 2 3 ± 0 8 -1.865 0.181

HDL-C (mmol/L) 1 8 ± 0 4 1 6 ± 0 3 -2.689 0.078

Cr (μmol/L) 85 2 ± 13 8 87 0 ± 14 1 -1.214 0.134

HbA1C (%) 8 4 ± 0 7 8 7 ± 0 8 -0.664 0.241

eGFR (mL/min) 32 9 ± 7 4 33 1 ± 8 1 -0.072 0.345

Note: chi-square test and t-test were used to compare the significant difference between COG and CG groups. BMI: body mass index; eGFR: estimated
glomerular filtration rate. All data were presented as mean value ± SD (standard deviation). There were statistically significant differences between the two
groups if P < 0 05.

100 �휇m

(a)

100 �휇m

(b)

100 �휇m
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100 �휇m
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Figure 3: Histology analysis of renal biopsy specimens. (a) PAS stain of renal biopsy specimens with some neutrophils in the CG group. Red
arrow: glomerular and renal interstitial fusion after rupture of basement membrane of Bauman’s sac; green arrow: inflammatory cell
infiltration of renal interstitial tissue. (b) PAS stain of renal biopsy specimens in the COG group. (c) H&E stain of renal biopsy specimens
with thickening of glomerular filtration membrane as the arrow showed in the CG group. Red arrow: glomerular capillary stenosis,
occlusion; black arrow: glomerular basement membrane thickening. (d) H&E stain of renal biopsy specimens with normal glomerular
filtration membrane in the COG group.

Table 2: The effects of Cordyceps militaris on the kidney functions of CKD patients.

Parameters
CG COG

Before therapy After therapy P value Before therapy After therapy P value

Urinal protein (g/24 h) 2 77 ± 0 85 2 65 ± 0 73 0.65 2 83 ± 0 69 1 36 ± 0 45 0.001

BUN (mmol/L) 9 67 ± 2 62 9 72 ± 2 38 0.78 9 38 ± 2 10 8 84 ± 2 36 0.026

Creatinine (mmol/L) 85 2 ± 13 8 81 6 ± 12 7 0.33 87 0 ± 14 1 59 63 ± 10 18 0.001

Note: BUN: blood urea nitrogen. All data were presented asmean value ± SD. There were statistically significant differences between the two groups if P < 0 05.
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Before therapy, there was no statistically significant dif-
ference for Cys-C, MPO, NO, SOD, and MDA (Table 4,
P > 0 05). After the three-month treatment, the serum
levels of Cys-C, MPO, and MDA were significantly reduced
by 14 0%±3 8%, 26 9%±12 3%, and 19 7%±7 9% while NO
and SOD were significantly increased by 12 5%±2 9% and
25 3%±13 4% in the COG group when compared with the
CG group, respectively (Table 4, P < 0 05). The results sug-
gest that Cordyceps militaris improved redox properties of
CKD patients by affecting serum levels of Cys-C, MPO,
NO, SOD, and MDA.

3.6. Cordyceps militaris Improved eGFR of CKD Patients.
Before Cordyceps militaris treatment, there was no significant
difference for the eGFR of CKD patients between the COG
and CG groups (P > 0 05). After the three-month therapy,
the values of eGFR (28 3 ± 5 2) were reduced significantly
when compared with the CG group (32 8 ± 9 2, P < 0 05).

3.7. Cordyceps militaris Reduced Relative mRNA Levels of
TLR4/NF-κB in CKD Patients. In order to assess the
properties of Cordyceps militaris on CKD patients, we first
assessed the effects of Cordyceps militaris on CKD patients.
The results showed that Cordyceps militaris reduced mRNA
levels of TLR4 (Figure 4(a)), NF-κB p65 (Figure 4(b)),
COX2 (Figure 4(c)), IL-1β (Figure 4(d)), and TNF-α
(Figure 4(e)) when compared with the control group
(P < 0 05).

3.8. Cordyceps militaris Reduced the Concentrations of
TLR4/NF-κB in CKD Patients. ELISA analysis showed the
similar results: Cordyceps militaris reduced protein concen-
tration of TLR4 (Figure 4(f)), NF-κB p65 (Figure 4(g)),

COX2 (Figure 4(h)), IL-1β (Figure 4(i)), and TNF-α
(Figure 4(j)) when compared with the CG group without
Cordyceps militaris treatment (P < 0 05).

3.9. Cordycepin Reduced Relative mRNA Levels of TLR4/NF-
κB Signaling Pathway in Cells. In order to understand the
properties of cordycepin in HEK293T cells, we first assessed
the effects of each component on HEK293T cells. Real-time
qRT-PCR showed that both Cordyceps militaris extracts
and cordycepin had strong inhibitory effect for reducing
the mRNA levels of TLR4 (Figure 5(a)), NF-κB p65
(Figure 5(b)), COX2 (Figure 5(c)), IL-1 β (Figure 5(d)), and
TNF-α (Figure 5(e)). Comparatively, carnine and adenosine
could reduce relative mRNA levels of TLR4, NF-κB p65,
COX2, IL-1β, and TNF-α too, but all of the changes were less
than caused by cordycepin and the extracts (Figure 5, P <
0 05). Furthermore, cordycepin could not reduce these mol-
ecules anymore when TLR4 was silenced (Figure 5).

3.10. Cordycepin Reduced the Concentrations of TLR4/NF-κB
Signaling Pathway in Cells. In Figures 5 and 6, relative levels
of mRNA and protein of TLR4 were lowest in TLR4-
knockdown cells when compared with other groups, suggest-
ing that the TLR4 gene was silenced. Similarly, ELISA analy-
sis showed that extracts and cordycepin had strong
inhibitory effect for reducing protein levels of TLR4
(Figure 6(a)), NF-κB p65 (Figure 6(b)), COX2 (Figure 6(c)),
IL-1β (Figure 6(d)), and TNF-α (Figure 6(e)). Compara-
tively, carnine and adenosine could reduce protein levels of
TLR4, NF-κB p65, COX2, IL-1β, and TNF-α too, but all of
the changes were less than caused by cordycepin and the
extracts (Figure 6, P < 0 05). Furthermore, the extracts and
cordycepin could not reduce the levels anymore when

Table 3: The effects of Cordyceps militaris on the lipid profile of CKD patients.

Parameters
CG COG

Before therapy After therapy P value Before therapy After therapy P value

TC (mmol/L) 5 5 ± 0 6 5 9 ± 0 7 0.09 5 7 ± 0 8 4 9 ± 0 5 0.04

TG (mmol/L) 2 2 ± 0 8 2 4 ± 0 9 0.08 2 3 ± 0 9 2 0 ± 0 6 0.02

LDL-C (mmol/L) 2 0 ± 0 6 2 2 ± 0 6 0.12 2 3 ± 0 8 1 7 ± 0 5 0.01

HDL-C (mmol/L) 1 8 ± 0 4 1 7 ± 0 5 0.29 1 6 ± 0 3 1 9 ± 0 5 0.02

Note: TG: triglycerides; TC: total cholesterol; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol. All data were presented
as mean value ± SD. There were statistically significant differences between the two groups if P < 0 05.

Table 4: The effects of Cordyceps militaris on redox of CKD patients.

Parameters
CG COG

Before therapy After therapy P value Before therapy After therapy P value

Cys-C (mg/L) 1 1 ± 0 2 1 0 ± 0 3 0.07 1 2 ± 0 3 0 8 ± 0 2 0.01

MPO (mg/L) 25 1 ± 3 9 23 3 ± 4 3 0.13 24 7 ± 4 1 14 5 ± 3 4 0.01

MDA (mmol/L) 8 8 ± 2 1 8 1 ± 2 5 0.09 8 3 ± 2 0 5 4 ± 1 9 0.01

NO (μmol/L) 5 2 ± 1 9 5 8 ± 2 1 0.28 5 5 ± 2 2 6 8 ± 2 5 0.01

SOD (U/L) 521 4 ± 123 8 507 2 ± 131 2 0.31 509 7 ± 126 4 698 4 ± 145 6 0.01

Note: Cys-C: cystatin-C; MPO: myeloperoxidase; MDA: malondialdehyde; NO: nitric oxide; and SOD: superoxide dismutase. All data were presented as
mean value ± SD. There were statistically significant differences between the two groups if P < 0 05.
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Figure 4: Continued.
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TLR4 was silenced (Figure 6). The results suggest that cordy-
cepin may affect the NF-κB signaling pathway via TLR4.

3.11. Cordycepin Reduced the Relative Protein Levels of the
Main Molecules in TLR4/NF-κB Signaling Pathway.Western
blot analysis showed that extracts and cordycepin had
strong inhibitory effect for reducing protein levels of p-
TLR4 and TLR4 (Figures 7(a) and 7(b)), p-NF-κB and
NF-κB (Figures 7(c) and 7(d)), COX2 (Figure 7(e)), IL-
1β (Figure 7(f)), and TNF-α (Figure 7(g)). Comparatively,
carnine could reduce these protein levels too. Furthermore,
the extracts and cordycepin could not reduce the levels
anymore when TLR4 was silenced (Figure 7). The results
suggest that cordycepin may affect the NF-κB signaling
pathway via TLR4.

4. Discussion

Moderate consumption of Cordyceps militaris was found to
be associated with a lower incidence of kidney failure [50].
Cordyceps militaris reduced CKD severity and the progres-
sion of kidney failure in the present study (Figure 8). Cor-
dyceps militaris increased kidney function and controlled
the blood levels of urinal protein, BUN, and creatinine
(Table 2, P < 0 05). According to an earlier report, the
active constituents of Cordyceps militaris could downregu-
late the levels of phospho-AKT and phospho-GSK-3beta,
decrease the oxidation in a urolithiasis animal model, and
exert antinephritic activities [25]. Cordyceps militaris
improved the lipid profile of CKD patients by affecting
serum levels of TG, TC, LDL-C, and HDL-C (Table 3, P
< 0 05). The lipid-improving results were only approved
in the animal models by feeding a high-fat diet in a

previous report before the present study [51]. Cordycepin
may affect the serum lipid profile because it has been found
to effect lipid deposition and improve lipid profiles by
increasing the activity of lipoprotein lipase and hepatic
lipase [51]. Meanwhile, Cordyceps militaris improved redox
properties of CKD patients by affecting serum levels of Cys-
C, MPO, NO, SOD, and MDA (Table 4, P < 0 05). The
antioxidant properties of Cordyceps militaris were reported
in the animal models with reproductive damage induced by
bisphenol A by improving the SOD level and reducing the
MDA level [52]. Comparatively, ascorbic acid has been well
known to have strong antioxidant properties while a previ-
ous report showed that a significant protective effect of
ascorbic acid was not observed and could not affect peak
postoperative serum creatinine and the lowest postoperative
creatinine clearance on the incidence of postoperative acute
renal injury either [53].

Cordycepin is relatively abundant in Cordyceps militaris
and has been associated with the removal of apoptotic cells
by inducing autophagy [54, 55]. Autophagy is a highly evolu-
tionally degradation process by which cytosolic materials and
damaged organelles are degraded into basic components.
Autophagy can get rid of some destructed materials and pro-
duce new components for cell normal cycle and stability. The
association of organ autophagy and risks of kidney disease
has been reported [56].

The cell culture studies were performed on healthy
“untreated” cells, and the results could not be interpreted
in association with biopsy results from “CKD” kidneys.
However, the cell test showed that cordycepin may affect
the NF-κB signaling pathway via TLR4 (Figures 6 and 7).
In Figures 5–7, cordycepin reduces the mRNA expressions
and concentration of IL-1 β, TLR4, TNF-α, NF-kappaB,
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Figure 4: The effects of Cordyceps militaris on the levels of the main molecules in the TLR4/NF-κB pathway in CKD patients. (a) Relative
mRNA level of TLR4. (b) Relative mRNA level of NF-κB. (c) Relative mRNA level of COX2. (d) Relative mRNA level of IL-1β. (e)
Relative mRNA level of TNF-α. (f) The concentration of TLR4. (g) The concentration of NF-κB. (h) The concentration of COX2. (i) The
concentration of IL-1 (j). The concentration of TNF-α. All data were presented as mean value ± SD. There were statistically significant
differences if ∗P < 0 05 vs. the control group.
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Figure 5: The effects of different components of Cordyceps militaris extracts on relative mRNA levels of the main molecules in the TLR4/NF-
κB pathway in HEK293T cells. (a) The relative mRNA level of TLR4. (b) The relative mRNA level of NF-κB. (c) The relative mRNA level of
COX2. (d) The relative mRNA level of IL-1β. (e) The relative mRNA level of TNF-α. All data were presented asmean value ± SD. There were
statistically significant differences if ∗P < 0 05 vs. the control group.
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Figure 6: The effects of different components of Cordyceps militaris extracts on the concentrations of the main molecules in the TLR4/NF-κB
pathway in HEK293T cells. (a) The concentration of TLR4. (b) The concentration of NF-κB. (c) The concentration of COX2. (d) The
concentration of IL-1β. (e) The concentration of TNF-α. All data were presented as mean value ± SD. There were statistically significant
differences if ∗P < 0 05 vs. the control group.
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and COX2 in both wild-type and TLR4-knockdown cells.
We guessed that TLR4 promoted the expression of IL-1
β, TNF-α, NF-kappaB, and COX2. Thus, cordycepin
reduced the level of TLR4, resulting in the decrease in the
expression of IL-1 β, TNF-α, NF-kappaB, and COX2 in
wild-type cells. Comparatively, TLR-4 knockdown also
reduced the level of TLR4, also resulting in the decreased
in the expression of IL-1 β, TNF-α, NF-kappaB, and
COX2 in TLR4-knockdown cells.

Normally, TLR4 mediates the NF-κB signaling pathway
and is the upstream protein of NF-κB [57], and cordycepin
as the main component of Cordyceps militaris can signifi-
cantly inhibit lipopolysaccharide-induced TLR4 [49].
Cordycepin may affect TLR4 more directly than NF-κb.
Cordycepin reduces the expression of TLR4 and will
suppress the TLR4/NF-κB signaling pathway. However,

the underlying mechanism responsible for cordycepin on
CKD progression remains uncertain. Cordycepin could
affect TLR4/NF-κB lipid and redox signaling pathway sig-
nificantly. Activation of NF-κB p65 by TLR4 can promote
the production of COX2, which results in the increase in
the levels of cytokines IL-1β and TNF-α.

Cordyceps militaris still have an alternative therapeutics.
For instance, the isolated polysaccharides (AE-PS) from Cor-
dyceps militaris had a pyran-type polysaccharide with α- and
β-configurations and exerted antioxidant and hypoglycemic
functions on type 2 diabetes mellitus in an animal model
[58]. Cordycepin and adenosine of Cordyceps militaris also
have been reported to have protective effects on the liver dis-
ease by inhibiting proinflammatory factor and fibrosis-
related factor expression [59]. Further work is highly needed
to expand its application in various chronic diseases.
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Figure 7: Western blot analysis of the relative protein levels of the main molecules in the TLR4/NF-κB pathway in HEK293T cells. Lanes 1-9
stand for the extracts, cordycepin, uridine, carnine, HEA, adenosine, TLR4-, TLR4-/cordycepin, and control groups, respectively. (a) Relative
protein level of p-TLR4. (b) Relative protein level of TLR4. (c) Relative protein level of p-NF-κB. (d) Relative protein level of NF-κB. (e)
Relative protein level of COX2. (f) Relative protein level of IL-1β. (g) Relative protein level of TNF-α. All data were presented as mean
value ± SD. There were statistically significant differences if ∗P < 0 05 vs. the control group.
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5. Conclusions

The present study provided the evidence that Cordyceps
militaris negatively controlled CKD progression by regulat-
ing the TLR4/NF-κB redox signaling pathway via cordyce-
pin. These findings provide further support for the current
clinical trials aimed at assessing the effects of cordycepin
administration against CKD progression.
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