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ABSTRACT We report here the completion of the genome sequence of a new species
of haloarchaea, Haloarcula taiwanensis, isolated in southern Taiwan. The 3,721,706-bp
genome consisted of chromosome I (2,966,258 bp, 63.6% GC content), chromosome II
(525,233 bp, 59.6% GC content), plasmid pNYT1 (129,893 bp, 55.3% GC content), and
plasmid pNYT2 (100,322 bp, 55.7% GC content).

Haloarchaea (halophilic archaea) are prokaryotes that thrive in high-salt aqueous
environments, such as solar salterns and salt lakes. They adopt a microbial rho-

dopsin (M-Rho) system capable of exerting light-driven ion transportation and photo-
sensing to assist in solar energy harvest, and they adjust their physical position with
illumination that favors their optimal survival (1, 2). Among the M-Rho proteins,
bacteriorhodopsin is a light-driven outward proton pump that can generate a proton
gradient for further ATP generation via F1Fo ATP synthase (3, 4), while halorhodopsin
functions as a light-driven inward chloride pump (5) to maintain, at least, the osmolarity
of cells. Three types of sensory rhodopsins (SR) have been identified, i.e., SRI (6, 7) and
SRII (8), which mediate positive and negative phototaxis responses, respectively, and
SRM (9), which senses green light, although its function has yet to be elucidated.

Crystallographic studies unveiled the structures of bacteriorhodopsins (10, 11),
halorhodopsins (12, 13), and a sensory rhodopsin II (NpSRII) from Natronomonas
pharaonis (14). Both NpSRII alone and NpSRII-NpHtrII signal transducer structures were
resolved, and the signal transduction from photoreceptor to transducer was proposed
(15). On the other hand, possibly due to instability under low-salt conditions, no SRI
protein structure has been reported previously. To search for stable SRI protein
candidates, we sequenced a new Haloarcula species, Haloarcula taiwanensis, isolated
in southern Taiwan, and found that it possessed a four-rhodopsin system, including
the SRI.

Whole-genome shotgun sequences were obtained using a PacBio single-molecule
real-time (SMRT) sequencer (16) from Genomics BioSci & Tech (Taipei, Taiwan). The
shotgun sequences were assembled using the Hierarchical Genome Assembly Process
3 (HGAP 3) software (17). The assembled contigs contained redundant terminal re-
peated sequences (RTRS), which were detected by Blast2seq analysis of each assembled
Haloarcula taiwanensis contig sequence against itself. Within the 17,951- to 55,432-bp
imperfect RTRS of the four contigs, multiple polymorphic sites, usually single nucleotide
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insertions/deletions, were detected. To identify the likely correct sequence, each pair of
approximately 240-bp sequences with the polymorphic site near the center were
searched against archaeal reference protein sequences using the Blastx algorithm, and
the one which matched to protein sequence(s) was considered to have the correct
sequence (18). Finally, one of the RTRS copies in each contig was removed by splicing
the likely correct sequence in the terminal repeats using the EditPad Lite 7 text editor
(Just Great Software).

Accession number(s). The sequences of chromosome I, chromosome II, pNYT1, and

pNYT2 have been deposited in GenBank under the accession numbers CP019154,
CP019155, CP019156, and CP019157, respectively.
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